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Abstract— A novel subspace identification method is pre-
sented which uses a shift-invariant property of the output data
to estimate system dynamics. It is shown that the algorithm
may be used with correlation function estimates in addition to
input-output data. The algorithm is compared to other subspace
methods in a simulation study based on an existing benchmark
problem. The results show that the proposed method used with
correlation function data achieves consistent system estimates
in the presence of highly-colored noise.

I. INTRODUCTION

Subspace identification methods derive a set of state-space
system matrices from an estimation of the range of some
alternative matrix containing the system dynamics. Most
familiar subspace methods can be stated in the framework
of the unifying theorem of [8], which interprets subspace
identification methods in terms of the range of a weighted
extended observability matrix. Once the range space of
the extended observability matrix is estimated, the state-
to-output behavior is typically determined using the shift-
invariant structure of the extended observability matrix, and
the input-to-state behavior is estimated in a weighted least-
squares problem. Popular methods interpreted in this frame-
work include Robust N4SID [7], MOESP [10], CVA [4], and
ORT [2]. Thorough overviews of these methods can be found
in [9] and [2]. Alternatively, in [5], a subspace identification
algorithm was formulated that estimates the system Markov
parameters explicitly by projecting the input and output data
onto a subspace containing the system impulse response.

In this paper, we propose a method of estimating the
system dynamics not from the shift-invariant structure of the
extended observability matrix, but by exploiting the propaga-
tion of the system dynamics in the shifted input-output data
itself. A least-squares problem is presented that will solve
for the system dynamics given an estimate of an extended
observability matrix with respect to some arbitrary state ba-
sis. This solution reduces to an algorithm previously studied
in [6] if a specific choice of the extended observability
matrix is made based on the singular-value decomposition.
The method is extended to correlation function estimates
and shown to provide consistent results regardless of the
spectrum of the noise signal. A simulation study based on a
benchmark problem in [2] illustrates the performance of the
proposed subspace identification methods in comparison with
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the subspace methods implemented in the Matlab System
Identification Toolbox.

II. SUBSPACE IDENTIFICATION METHODS

Consider a linear, time-invariant, discrete-time system

y(t) =
∞∑
k=0

G(k)u(t− k) + v(t). (1)

The system Markov parameters G(k) ∈ Rny×nu define
the relationship between the input signal u(t) ∈ Rnu and
the output signal y(t) ∈ Rny , which contains an additive
noise signal v(t) ∈ Rny . We assume that the input and
output signals are quasi-stationary and that the noise v(t)
is stationary.

Such a system has an infinite number of state-space
representations of the form

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) + v(t)

(2)

given in terms of constant matrices A ∈ Rn×n, B ∈ Rn×nu ,
C ∈ Rny×n, and D ∈ Rny×nu . The state-space matrices are
related to the system Markov parameters by

G(k) =


0 k < 0
D k = 0
CAk−1B k > 0

. (3)

We assume that all state-space representations are control-
lable, observable, and minimal (see [2] for relevant defini-
tions).

The identification problem considered is to estimate (i)
the system order n and (ii) state-space matrices A, B, C,
and D from measured data generated by the above system.
The problem of estimating a realization of the process that
generates v(t) is not addressed.

Consider the system described by (1) and (2), and form
a column vector y0|i−1 of output data from time t = 0 to
t = i− 1

y0|i−1 = vec(
[
y(0) y(1) y(2) · · · y(i− 1)

]
).

This output-data vector can be expressed in terms of the
initial state vector x0 = x(0), a vector of future input
sequences also from t = 0 to t = i− 1

u0|i−1 = vec(
[
u(0) u(1) u(2) · · · u(i− 1)

]
),

and a vector of noise data from time t = 0 until time t = i−1

v0|i−1 = vec(
[
v(0) v(1) v(2) · · · v(i− 1)

]
).
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These four vectors are related to one another by an iny × n
extended observability matrix

Γ =
[
CT (CA)T (CA2)T · · · (CAi−1)T

]T
. (4)

and an iny × inu lower-triangular block-Toeplitz matrix of
Markov parameters

T0|i−1 =


G(0)
G(1) G(0)

...
...

. . .
G(i− 1) G(i− 2) · · · G(0)

 (5)

in which the first element of the index (0 above) represents
the farthest right Markov parameter on the bottom row, and
the second element (i− 1 above) represents the farthest left
Markov parameter on the bottom row. The output vector may
then be expressed as

y0|i−1 = Γx0 + T0|i−1u0|i−1 + v0|i−1. (6)

Our goal is to isolate the system dynamics contained in
the extended observability matrix Γ by estimating a basis
for its range. To accomplish this, we extend the data vectors
column-wise to form full-row-rank matrices of data that
contain the full range of Γ in (6). Such a basis can be found
by first extending y0|i−1 by l columns, forming an iny × l
block-Hankel matrix of output data

Y0|i−1 =


y(0) y(1) · · · y(l − 1)
y(1) y(2) · · · y(l)

...
...

...
y(i− 1) y(i) · · · y(l + i− 2)

 .
Similarly expanding the input vector u0|i−1 results in a inu×
l block-Hankel matrix

U0|i−1 =


u(0) u(1) · · · u(l)
u(1) u(2) · · · u(l + 1)

...
...

...
u(i− 1) u(i) · · · u(l + i− 2)

 , (7)

and expanding v0|i−1 results in a block-Hankel matrix

V0|i−1 =


v(0) v(1) · · · v(l − 1)
v(1) v(2) · · · v(l)

...
...

...
v(m− 1) v(m) · · · v(l +m− 2)

 .
Finally, we expand x(0) incrementally as

X =
[
x(0) x(1) · · · x(l)

]
resulting in the data-matrix equation

Y0|i−1 = ΓX + T0|i−1U0|i−1 + V0|i−1. (8)

A. Advancing the Output

Now suppose the output vector is advanced by one time
sample to form

y1|i = vec(
[
y(1) y(2) y(3) · · · y(i)

]
).

Similar to (6), y1|i may be expressed as y1|i = ΓAx0 +
T0|iu0|i + v1|i. Note that only the input term incremented
by one and that T no longer has the initial parameter G(0)
appearing in the top-left corner.

Expanding y1|i as was done with y0|i−1 in (8) results in

Y1|i =


y(1) y(2) · · · y(l)
y(2) y(3) · · · y(l + 1)

...
...

...
y(i) y(i− 1) · · · y(l + i− 1)

 ,
and applying the same expansion to u0|i and v0|i leads to
the shifted data-matrix equation

Y1|i = ΓAX + T0|iU0|i + V1|i. (9)

B. Removing the Effects of Future Input

To estimate the range of Γ, we isolate the propagation of
the states X by projecting the output Y onto the null space
of the future input U . Define the l × l projection matrix

Π0|i = I − UT0|i(U0|iU
T
0|i)
†U0|i (10)

for which U0|iΠ0|i = 0 and (·)† represents the Moore-
Penrose pseudoinverse.

Lemma 1: Let T0|i−k, U0|i−k, and Π0|i be defined as in
(5), (7), and (10), respectively. For k ≥ 0,

T0|i−kU0|i−kΠ0|i = 0

Proof: For k = 0, the proof is trivially shown by
substitution. For k < 0, notice in (6) that the input matrix
U0|i−1 may be extended beyond t = i−1 so long as columns
of zeros are added to the right of T0|i−1. Let T−p|i be the
block-Toeplitz matrix of Markov parameters with p columns
of zeros added to the right, so that T−1|i is T0|i with one
additional column of zeros and so on. (This corresponds to
the definition of T and the Markov parameters given in (3)).
Thus for any p ≥ 0,

T−p|i−kU0|i−k+p = T0|i−kU0|i−k.

The desired result is found by letting p = k and multiplying
the above on the right by Π0|i.

Hence the same projection matrix can be used to eliminate
the effects of the input on the output matrices Y0|i−1 and Y1|i.
Multiplying (8) and (9) on the right by (10) results in

Y0|i−1Π0|i = ΓXΠ0|i + V0|i−1Π0|i (11)

and
Y1|iΠ0|i = ΓAXΠ0|i + V1|iΠ0|i, (12)

respectively, so that the matrix products Y0|i−1Π0|i and
Y1|iΠ0|i now effectively contain free-response data with
additive noise.
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Some additional restrictions must be put on the projection
matrix Π0|i to preserve the rank of Γ in the above equation.

Lemma 2: The rank of Γ in (11) and (12) will be pre-
served only if

l ≥ (i+ 1)nu + n. (13)
Proof: The null space of U0|i must have dimen-

sion of n or higher for the rank of Γ to be pre-
served, that is dim(null(U0|i)) = rank(Π0|i) ≥ n.
Since rank(U0|i) ≤ min((i + 1)nu, l), and recalling that
rank(U0|i) + dim(null(Uf )) = l, a necessary condition to
preserve the rank of Γ is (13).

Thus l must be chosen that U0|i is sufficiently “fat” and
i must be chosen so that Y0|i−1 and Y1|i are sufficiently
“tall” to span the range of Γ. A thorough discussion of
requirements for the input matrix to preserve the rank and
span of Γ can be found in [11]. Although it strictly applies
to the input matrix not extended by an additional row
(U0,i−1), the requirements on sufficiency of excitation are
straightforward to extend to U0|i used above.

C. Estimating the Extended Observability Matrix and Iden-
tifying the System Order

In the deterministic case (v(t) = 0), the order of the
system n may be found by simply examining the rank of
Y0|i−1Π0|i, and an extended observability matrix Γ with
respect to some arbitrary state basis may be found from any
factorization

Γ(XΠ0|i) = Y0|i−1Π0|i

in which Γ has n columns. In the nondeterministic case,
V0|i−1 will have full rank, causing Y0|i−1Π0|i to have full
rank, and instead a rank-n estimate of ΓXΠ0|i−1 must be
constructed from Y0|i−1Π0|i. Inspired by the method origi-
nally developed by [3] for approximating the system Hankel
matrix from Markov parameter estimates, a reasonable goal
is to find a rank-n matrix R that minimizes

e = min
rank(R)=n

∣∣∣∣R− Y0|i−1Π0|i
∣∣∣∣

2. (14)

If Y0|i−1Π0|i has the singular-value decomposition

Y0|i−1Π0|i =
[
Un Us

] [Σn 0
0 Σs

] [
V Tn
V Ts

]
, (15)

in which Σn = diag(σ1, σ2, . . . , σn) contains the first n
singular values, the matrix that minimizes (14) is [1]

R = UnΣnV Tn . (16)

Additionally, e = σn+1. Thus, if n is unknown, we can
determine a likely value for n by examining the singular
values of Y0|i−1Π0|i and searching for a significant drop-
off. The place of the singular value immediately prior to this
drop-off is taken to be n.

An estimate of Γ — denoted Γ̂ — and an estimate of the
free-response states — denoted X̂Π0|i — may then be taken
from some factorization of R instead:

Γ̂(X̂Π0|i) = R.

A natural choice is to use

Γ̂ = UnΣ1/2
n (17)

for which

X̂Π0|i = Σ1/2
n V Tn = Γ̂†Y0|i−1Π0|i,

although any appropriately-dimensioned factorization is
valid.

D. Estimating the System Dynamics — Deterministic Case

The most common means of estimating the system dynam-
ics is by solving for A from the shift-invariant structure of
the extended observability matrix Γ̂ [10]. In this section, we
demonstrate a method of solving for the system dynamics
exactly in the deterministic case that will later be shown
to be the solution to a least-squares problem in the non-
deterministic case. The first results immediately follow from
(11) and (12).

Theorem 1: Let the output signal y(t) be a purely deter-
ministic signal generated by u(t) and some initial condition
x(0), that is, v(t) = 0 for all t. Let i be such that Y0|i−1

and Y1|i have at least n rows, or i ≥ n/nu. Assume that
condition (13) is met and that U0|i has full row rank. Let

Yn = first n rows of Y0|i−1 Y n = first n rows of Y0|i

Then
Ac = Y nΠ0|i

(
YnΠ0|i

)†
where Ac = TAT−1 with A in (2) with respect to some
state basis of x and T a valid similarity transformation.

Proof: Let Γn bet the first n rows of Γ in (11) and
(12). Then YnΠ0|i = ΓnXΠ0|i, Y nΠ0|i = ΓnAXΠ0|i. X
and Π0|i must have at least rank n based on the conditions
put on i and the input matrix U0|i. While Π0|i is likely not
invertible, YnΠ0|i and XΠ0|i will have full row rank and thus
a right pseudoinverse. Then Ac = ΓnAXΠ0|i(XΠ0|i)†Γ†n =
ΓnAΓ†n
In the single-input-single-output case, i = n, and Ac will be
in controller-canonical form, although this is not strictly true
for the multivariable case.

In general, the above will give undesirable results when
applied to the nondeterministic case. We can, however,
estimate the dynamics in an arbitrary but more internally-
balanced state basis.

Theorem 2: Given the same assumptions in Theorem 1,
assume the extended observability matrix Γ for the system
(2) is known. Then for any i ≥ n/nu that satisfies (13),

A = Γ†Y1|iΠ0|i(Γ†Y0|i−1Π0|i)† (18)

in which A is with respect to the same state basis as Γ.
Proof: The proof is a straightforward extension to

Theorem 1. Note that because Γ has full column rank, its left
inverse will have full row rank, the term Γ†Y0|i−1Π0|i will
have full row rank, and thus the right inverse of Γ†Y0|i−1Π0|i
will exist.
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If unknown beforehand, the extended observability matrix
can be found from any factorization

Γ(XΠ0|i) = Y0|i−1Π0|i

in which Γ has n columns and full column rank and XΠ0|i
has n rows and full row rank. With C taken from the top
ny rows of Γ, the matrices B, D, and an initial condition x0

may be solved for via a least-squares problem [10].

E. Estimating the System Dynamics – Nondeterministic Case
In the nondeterministic case, only an estimate of the

extended observability matrix Γ̂ will be available, and the
free-response states XΠ0|i will be corrupted by noise. The
preceding means of solving for A, however, may still be used
to provide a least-squares estimate Â.

We propose the following problem: given an estimate of
the extended observability matrix Γ̂ and an estimate of the
free-response states X̂Π0|i, find the estimate Â that best
estimates the propagation of the system dynamics in the
output data. We define this as the quantity

min
rank (Â)=n

∣∣∣∣∣∣ÂX̂Π0|i − Γ̂†Y1|iΠ0|i

∣∣∣∣∣∣
2

= min
rank (Â)=n

∣∣∣∣∣∣ÂΓ̂†Y0|i−1Π0|i − Γ̂†Y1|iΠ0|i

∣∣∣∣∣∣
2
. (19)

The solution of the above is given by

Â = Γ̂†Y1|iΠ0|i

(
Γ̂†Y0|i−1Π0|i

)†
(20)

which is equivalent to (18) in the deterministic case.
With the Γ̂ taken from (17), this expression reduces to

Â = Σ−1/2
n UTn Y1|iΠ0|iVnΣ−1/2

n . (21)

Thus the above estimate of A, originally presented in [6],
is a solution to the least-squares problem (19), which solves
for A exactly in the deterministic case. With Â given above
and Ĉ taken from the first ny rows of Γ̂; B̂, D̂, and x̂0 may
be solved for via a least-squares problem.

Expanding the expression within the norm of (19) to

ÂΓ̂†(ΓX − ΓAX)Π0|i + Γ̂†(V0|i−1 − V1|i)Π0|i,

we see that even when the noise signal v(t) is perfectly white,
the term Γ̂†(V0|i−1− V1|i)Π0|i will not be orthogonal to the
regressor Γ̂†(ΓX − ΓAX)Π0|i, since the multiplication of
the rank-reducing Γ̂† on the left will effectively “rotate”
the noise to be in-line with the system dynamics. The
unfortunate consequence of this is that (21) is not guaranteed
to provide consistent estimates, with consistency defined as
the condition that the eigenvalues of Â converge to those of
A as the number of data matrix columns l→∞.

To illustrate the difficulties this may cause, let
(Av, Bv, Cv, Dv) form a state-space representation of the
process that generates the noise signal v(t). The system (1)
expressed in innovations form is then[
x(t+ 1)
xv(t+ 1)

]
=
[
A 0
0 Av

] [
x(t)
xv(t)

]
+
[
B
0

]
u(t) +

[
0
Kv

]
ev(t)

y(t) =
[
C Cv

] [ x(t)
xv(t)

]
+
[
D
0

]
u(t) +

[
0
I

]
ev(t)

where xv(t) is the state of the noise-generating process and
ev(t) is white noise. Note that the states of the noise process
xv(t) are uncontrollable. If n is chosen to be the correct
order of the system, the poles of the estimated extended
observability matrix will be biased by the poles of the noise-
generating process, as shall be seen in the example given in
Section V. In fact, as the signal-to-noise ratio goes to 0 the
estimation problem becomes that of a stochastic realization
problem. If Â is estimated from the extended observability
matrix (in the framework of [8]), and n is chosen artificially
large, the eigenvalues of Â will contain estimates of the
eigenvalues of A and Av .

It should be emphasized here that these issues are not
common to all subspace identification methods. A notable
difference between these methods and the solution presented
here is that (20) will not identify the poles of the noise-
generating process, although the poles that are identified will
still be biased. Also, the ORT method of [2] will provide
consistent estimates even in the presence of colored noise.

F. Obtaining Consistent Estimates

To obtain consistent estimates, we must “whiten” the
effects of the noise terms so that they become orthogonal
to AXΠ0|i and XΠ0|i. Prefiltering the noise signal would
require knowledge not only of the process that generates v(t),
but of the system dynamics in Γ that are exactly what we
are trying to identify, so this is often not practical. Another
means of doing so is to weight the projected output terms
by weighting matrices W1 and W2:

W1Y0|i−1Π0|iW2 = W1ΓXΠ0|iW2 +W1V0|i−1Π0|iW2

W1Y1|iΠ0|iW2 = W1ΓAXΠ0|iW2 +W1V1|iΠ0|iW2

in which W1 and W2 are chosen such that
limN→∞W1V∗W2 = 0 and the rank of Γ is preserved.
Thus as N →∞,

W1Y0|i−1Π0|iW2 = W1ΓXΠ0|iW2

W1Y1|iΠ0|iW2 = W1ΓAXΠ0|iW2.
(22)

A consequence of (22) is that the weighting matrices W1

and W2 must somehow be chosen to satisfy the criteria
W1VΠ0|iW2 → 0, or they must at least sufficiently whiten
the noise so that it does not bias the estimation of the range of
Γ. If the nondeterministic components of W1Y0|i−1Π0|iW2

remain colored, however, the realization generated with Γ
will naturally be biased by the poles of the process that
generated the signal v(t).

With this in mind, we propose a straightforward means of
extending subspace identification methods to datasets beyond
general input-output data that guarantee consistent estimates
regardless of the noise spectrum.

III. EXTENSION OF SUBSPACE METHODS TO
CORRELATION DATA

The estimation framework developed in the previous sec-
tion may be directly extended to alternative forms of data,
most notably correlation functions. The cross-correlation of
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the output y(t) and the input u(t) and the autocorrelation of
the input u(t)

Ryu(τ) = E[y(t+ τ)uT (t)], Ru(τ) = E[u(t+ τ)uT (t)]

are related by the same Markov-parameter convolution in
(1):

Ryu(τ) =
∞∑
k=0

G(k)Ru(k − τ)

Using correlation function estimates derived from N samples
of data

R̂Nu (τ) =
N−τ−1∑
t=0

u(t+ τ)uT (t)

R̂Nyu(τ) =
N−τ−1∑
t=0

y(t+ τ)uT (t)

the effect of noise is reduced due to the fact that the output
noise is uncorrelated with the input, or

lim
N→∞

R̂Nvu(τ) = E[v(t+ τ)uT (t)] = 0.

Thus, the use of correlation functions instead of raw data
has the advantage that consistency of the system estimates
is a straightforward consequence of the consistency of the
correlation function estimates. This allows for the consistent
identification of input-output behavior of a system even in
the presence of colored noise.

Additionally, correlation function estimates have the at-
tractive property that identification methods may be per-
formed using matrices a fraction of the size of those that
would be required with raw data. Signal analyzing hardware
is also often capable of providing correlation function esti-
mates computed in real-time that incorporate a larger data
set than would be possible to acquire directly. For example,
hardware that can compute correlation function estimates
from 50,000 data points may only be able to store 5,000 data
points at a time. In many situations, acquiring correlation
function estimates is simply more practical.

Implementing the correlation function estimates with sub-
space methods is straightforward and consists of substituting
the the input data with the estimate RNu (τ) and the output
data with the estimate RNyu(τ) for some suitable range
τ ∈ [τmin, τmax] (τmin may be < 0). The range over which
the function is used must be chosen carefully, as the new
input signal Ru(τ) will have a brief maximum at τ = 0
then likely lose excitation quickly. Let Ryu0|i−1 be the block-
Hankel matrix filled with cross-correlation function estimates
RNyu(τ), and let Ru0|i be the block-Hankel matrix filled with
auto-correlation function estimates RNu (τ), in which the
subscript indices agree with the definitions of Y0|i−1 and
U0|i. Then, as N →∞,

Ryu0|i−1ΠR
0|i = ΓXΠR

0|i

Ryu1|iΠ
R
0|i = ΓAXΠR

0|i.

where

ΠR
0|i = I − (Ru0|i)

T
(
Ru0|i(R

u
0|i)

T
)†
Ru0|i.

Thus the products Ryu0|i−1ΠR
0|i and Ryu1|iΠ

R
0|i contain the

product of the extended observability matrix Γ and free
response states XΠR

0|i, which in the second case have been
propagated through the system dynamics present in A. The
terms Ryu0|i−1ΠR

0|i and Ryu1|iΠ
R
0|i may then be used in place

of Y0|i−1Π0|i and Y1|iΠ0|i with the guarantee of consistency
even when weighting matrices are omitted.

IV. IMPLEMENTATION ISSUES

Instead of projecting the output data onto the null space
of the input data, more accurate results may be obtained by
dividing the input data into “past” and “future” segments,
with the past segment taken from time t = −s to time t =
−1. Because the deterministic component of the input-free
data Y0|i−1Π0|i and Y1|iΠ0|i is a linear combination of the
deterministic components of the past input and output data, a
projection onto the space of past data along the null space of
the future input data will generally result in better estimates
and in certain cases can be shown to be the best possible
estimate of the states XΠ0|i[7]. The indices s and i are often
called the “past horizon” and “future horizon,” respectively.
Applied to the algorithm presented here, the result is six data
matrices instead of three: the past and future output matrices
Y−s|−1 and Y0|i−1, the time-advanced past and future output
matrices Y−s+1|0 and Y1|i, and the past and future input
matrices U−s|−1 and U0|i.

Rather than implementing these projections by explicitly
forming projection matrices, it can be shown that the pro-
jection matrices can be found within the LQ-decompositions
[2] 

U0|i
U−s|−1

Y−s|−1

Y0|i−1

 =


L11

L21 L22

L31 L32 L33

L41 L42 L43 L44



QT1
QT2
QT3
QT4


and 

U0|i
U−s|−1

Y−s+1|0
Y1|i

 =


L11

L21 L22

L′31 L′32 L′33
L′41 L′42 L′43 L′44



QT1
QT2
Q′T3
Q′T4


The algorithm may then be performed with
W1(L42Q

T
2 +L43Q

T
3 )W2 in place of W1Y0|i−1Π0|iW2 and

W1(L′42Q
′T
2 + L′43Q

′T
3 )W2 in place of W1Y1|iΠ0|iW2 .

To the best of the authors’ knowledge, this is the only
subspace identification method that requires two separate
decompositions when implemented in the LQ framework.

V. SIMULATION EXAMPLE

The algorithm was applied to signals generated by a
simulated system used for several examples in [2]. The
system to be identified, G, is excited by an input u that
is generated by white noise eu with variance σ2

u = 1 filtered
through F . The output signal y is corrupted by additive noise
v, the result of white noise ev with variance σ2

v filtered
through the noise model H . The models used for G, H , and
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Fig. 1. Pole locations of 1000 estimates from (a) N4SID with CVA
weighting, n = 5; (b) N4SID with CVA weighting, n = 7; (c) output-
shifting estimate with raw data; (d) output-shifting estimate with correlation
function data. The locations of the system poles are marked by ‘x’; the
locations of the noise-process poles are marked by ‘+.’ The circles represent
the locations of the poles estimated, centered about the average estimate.
The radius of the circles is equivalent to 2 standard deviations of the pole
locations. N = 1000, and σ2

v = 0.002

F are (given in terms of a the forward time-shift operator
q):

G(q) = (0.0275q−4 + 0.0551q−5)/(1− 2.3443q−1

+ 3.081q−2 − 2.5274q−3 + 1.2415q−4 − 0.3686q−5),

H(q) =
1− 0.2q−1 − 0.48q−2

1 + 0.4q−1 + 0.4q−2
,

F (q) =
0.0513

1− 0.9q−1
.

Note that the signal-generation model F and the system G
share a stable, real pole. The relationship between the input,
output, and noise is y(t) = G(q)u(t) + v(t) with u(t) =
F (q)eu(t) and v(t) = H(q)ev(t).

The simulation was run 1000 times and system estimates
were generated with (a) N4SID with CVA weighting [8]
and a system order of 5, (b) N4SID with CVA weighting
and a system order of 7, (c) the algorithm presented in this
paper with a system order of 5, and (d) the same algorithm
with correlation function estimates used in place of raw data.
The pole locations of the resulting estimates are represented
in Figure 1. The implementations of the N4SID variants
(a) and (b) were taken from Matlab’s System Identification
Toolbox. The toolbox automatically selects past and future
horizons, and the horizons of (c) and (d) were selected to
match the horizons of (a). The correlation function estimates
were generated over the domain τ ∈ [−2s, 3s] where s is
the past horizon selected by the Matlab toolbox. Figure 2
shows the singular values of the matrix products Y0|i−1Π0|i
and Ryu0|i−1ΠR

0|i.

1 3 n = 5 7 9 11 13 150

0.2

0.4

0.6

0.8

1

Y0|i−1Π0|i

Ryu0|i−1 ΠR
0|i

Fig. 2. The first 15 singular values of Y0|i−1Π0|i and Ryu
0|i−1

ΠR
0|i. The

natural log of the singular values was taken and the values were scaled from
1 to 0 for plotting purposes.

VI. CONCLUSION

A new algorithm that identifies state-space realizations
of systems from input-output data was presented. This al-
gorithm uses the invariance of system dynamics in shifted
time-domain data to estimate the state-dynamics matrix A,
while the matrix C mapping the system state to the output
is taken from an estimate of the extended observability
matrix. The matrices B and D are solved for by a least-
squares method. The algorithm was shown to be the solution
to a least-squares problem and to reduce to a previously-
presented algorithm when given a specific estimate of the
extended observability matrix. Simulation results confirm
that the algorithm generates estimates with the same bias as
estimates generated from other subspace methods and that
the algorithm generates consistent estimates when used with
correlation function data.
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