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Abstract: Subspace identification techniques are reinterpreted via classical realization theory to
formulate a wide class of subspace identification methods. Re-formulating subspace identification
in terms of a low rank decomposition of a weighted Hankel matrix allows special cases such as
impulse-based and step-based input signals, but also realization based on arbitrary input signals
and correlation functions. Ideas are illustrated with a simulation example.

1. INTRODUCTION

Of the various approaches to system identification, “sub-
space state-space system identification” methods – collec-
tively referred to as 4SID methods – represent a powerful
class of algorithms capable of providing consistent esti-
mates of state-space models. The goal of subspace methods
is to construct a realization of a system from the identifica-
tion of the subspace spanned by the extended observability
matrix. A reduced-order approximation of this matrix is
subsequently determined via the singular value decomposi-
tion (SVD), and the mapping from input-to-state is solved
for in a least-squares sense. Popular subspace methods
include N4SID [Van Overschee and De Moor (1994)], CVA
[Larimore (1990)], and MOESP [Verhaegen and Deprettere
(1991)], which are presented in a unified framework in Van
Overschee and De Moor (1996) and Katayama (2005).

Related to subspace identification methods is the realiza-
tion algorithm of Kung (1978), which uses noise-corrupted
estimates of the system Markov parameters to construct
the system Hankel matrix. The SVD is then used to
form a reduced-order approximation of the Hankel matrix,
and the shift-invariant property of this matrix is used to
solve for the system dynamics. A similar generalization
of Kung’s algorithm to arbitrary input-output data was
previously presented in de Callafon et al. (2008).

In this paper, we generalize Kung’s realization algorithm
to arbitrary input-output data, formulating a subspace
method with a direct connection to classical realization
theory that may be used with input-output correlation
functions as well. First, an overview of state-space real-
ization from Markov parameters is provided, followed by
a revised derivation of subspace methods. We then show
that the oblique projection of subspace identification can
be applied to any Markov-parameter convolution, result-
ing in a generalization of classical realization methods to
arbitrary signals.

2. SYSTEM IDENTIFICATION VIA REALIZATION

2.1 Notation and Problem Formulation

Consider a discrete, linear, time-invariant, system de-
scribed in state-space form as

x(t + 1) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t) + v(t)
(1)

with state vector x ∈ R
n, input vector u ∈ R

m, output
vector y ∈ R

p, and system matrices A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, D ∈ R
p×m. The vector v(t) ∈ R

p is a zero-mean
noise signal with constant variance. We restrict ourselves
to systems that are both controllable and observable.

The input-output map can alternatively be described by
the convolution operation

y(t) =

∞
∑

k=0

g(k)u(t − k) + v(t) (2)

involving the system Markov parameters g(k) defined as

g(k) =

{

D k = 0

CAk−1B k > 0
. (3)

When applied to sequences of data, (2) may be expressed
with two matrices mapping past and future input se-
quences, up and uf respectively, onto a future output
sequence yf , as

yf = Hup + Tuf + v (4)

in which

up = [u(0) u(−1) u(−2) · · ·]
T

,

uf = [u(1) u(2) u(3) · · ·]
T

,

yf = [y(1) y(2) y(3) · · ·]
T

,

v = [v(1) v(2) v(3) · · ·]
T

,

and

H =







g(1) g(2) · · ·
g(2) g(3) · · ·

...
...

. . .






, T =







g(0) 0
g(1) g(0)

...
...

. . .






.

T is a block-Toeplitz matrix, and H is the familiar block-
Hankel matrix of system Markov parameters [Van Der
Veen et al. (1993)].

2.2 Deterministic Realization from Markov Parameters

The objective of the deterministic realization problem is to
find the system order n and a state-space model (1) with
respect to an arbitrary state basis given a finite number
of system Markov parameters (3). A celebrated algorithm
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given by Ho and Kalman (1966) uses the following two
facts to obtain the system matrices (A, B, C) from H :

(1) H is the product of the extended observability matrix
Γ and the extended controllability matrix Ω:

H = ΓΩ =
[

C CA CA2 · · ·
]T [

B AB A2B · · ·
]

.

(2) H exhibits a shift-invariant property such that should
H be shifted up by p rows or to the left by m rows, the

result is a block-Hankel matrix
−→
H with the property

−→
H = ΓAΩ.

A controllable and observable system implies that Γ and Ω
respectively have full column and full row rank n, making
H a rank-n matrix. Thus, given a finite-dimensional pair

H ∈ R
N1×N2 and

−→
H ∈ R

N1×N2

H =









g(1) g(2) · · · g(n2)
g(2) g(3) · · · g(n2 + 1)

...
...

. . .
...

g(n1) g(n1 + 1) · · · g(n1 + n2 − 1)









(5)

−→
H =









g(2) g(3) · · · g(n2 + 1)
g(3) g(4) · · · g(n2 + 2)

...
...

. . .
...

g(n1 + 1) g(n1 + 2) · · · g(n1 + n2)









in which N1 = n1 · p ≥ n and N2 = n2 · m ≥ n, for any
factorization of H

H = ΓΩ

=
[

C CA · · · CAn1−1
]T [

B AB · · · An2−1B
]

there exist a left inverse Γ† of Γ and a right inverse Ω† of
Ω such that A may be solved for as

A = Γ†−→HΩ† (6)

in which (·)† denotes the Moore-Penrose psuedoinverse.
C is subsequently taken as the first p rows of Γ and B
from the first m columns of Ω. With D taken from g(0),
a complete, irreducible, state-space realization of (1) is
obtained.

2.3 Realization From Noise-Corrupted Markov Parameters

If imperfect estimates of Markov parameters are used to
construct an estimate Ĥ of (5), non-deterministic effects

will likely cause Ĥ to have full rank. As shown in Kung
(1978), both the system order n and a rank-n estimate of

H can be computed from the SVD of Ĥ :

Ĥ = [Un Us]

[

Σn 0
0 Σs

] [

V T
n

V T
s

]

in which Σn and Σs are diagonal matrices containing the
singular values ordered from largest to smallest, such that

the first n singular values of Ĥ are contained in Σn and
the remaining in Σs.

In the deterministic case, Ĥ = H , rank(Ĥ) = n, and

Σs = 0. In the non-deterministic case, a “large” Ĥ will
exhibit a relatively large difference in the value between
the nth and the (n + 1)th singular value. An estimate of
n may be determined by choosing a threshold at which

the singular values decrease significantly, and a rank-n
approximation of Ĥ is then given by

Ĥn = UnΣnV T
n . (7)

The decomposition of Ĥn in (7) also provides a convenient
means of estimating the controllability and observability
matrices as

Γ = UnΣ1/2

n , Ω = Σ1/2

n V T
n ,

with the expressions for the left inverse Γ† and right inverse
Ω† in (6) simplifying to

Γ† = Σ−1/2

n UT
n , Ω† = VnΣ−1/2

n .

Many methods exist to generate state-space realizations
with the above algorithm, notably Juang and Pappa
(1985) and King et al. (1988). A disadvantage of these
methods is that either a broad-band excitation signal or
free-response data is required to provide reliable Markov
parameter estimates.

3. SUBSPACE IDENTIFICATION

3.1 Elementary Data Equation

Subspace-based identification techniques formulate a lower-
rank decomposition of the map from past-input to future-
output without estimating the Markov parameters di-
rectly. The following differs slightly from common deriva-
tions in terms of matrix definitions to emphasize the equiv-
alence with classical realization algorithms.

We return to the system description given in (4). Because
(1) is an LTI system, (4) may be expanded column-wise
to include arbitrarily many sequences of data so that
the data-sequence vectors yf , up, and uf become data
matrices Yf , Up, and Uf , respectively. In the realistic case
in which we have access to only a single, finite sequence of
input-output data, we may time-shift the data sequences
to construct these data matrices. We also likely have no
knowledge of the input sequence prior to our measured
output, so we must separate the effects of the initial
state x0 on the future output into an auxiliary term
X0 =

[

Ax0 A2x0 · · ·An2x0

]

. The resulting equation for
a sequence of N = n1 + n2 data points is

Yf = HUp + TUf + ΓX0 + V (8)

in which

Yf =









y(1) y(2) · · · y(n2)
y(2) y(3) · · · y(n2 + 1)

...
...

. . .
...

y(n1) y(n1 + 1) · · · y(n1 + n2 − 1)









, (9)

Up =









u(0) u(1) · · · u(n2 − 1)
0 u(0) · · · u(n2 − 2)
...

...
. . .

...
0 0 · · · u(0)









,

Uf =









u(1) u(2) · · · u(n2)
u(2) u(3) · · · u(n2 + 1)

...
...

. . .
...

u(n1 + 1) u(n1 + 2) · · · u(n1 + n2)









,
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V =









v(1) v(2) · · · v(n2)
v(2) v(3) · · · v(n2 + 1)

...
...

. . .
...

v(n1) v(n1 + 1) · · · v(n1 + n2 − 1)









,

T =









g(0) 0 · · · 0 0
g(1) g(0) · · · 0 0

...
...

. . . 0 0
g(n1 − 1) g(n1 − 2) · · · g(0) 0









(10)

With N1 = n1 · m and N2 = n2 · p, the matrix Up is a
N2 ×N2 upper-triangular block-Toeplitz matrix, and T is
a N1 × N1 + 1 block-Toeplitz matrix. The zero column in
T is included to provide a place-holder for working with

a shifted version
−→
T of the same size without losing g(0)

in the proceeding section. The matrices Uf and V are
block-Hankel matrices of size N1 + 1 × N2 and N1 × N2

respectively.

Note that the first data point in the matrices Yf , Uf , and
V is at t = 1, whereas in the traditional formulation
the data begins at t = 0. A similar formulation of
subspace identification with Hankel matrices was pursued
in Vajk and Hetthessy (2005), but was not applied to the
realization problem.

3.2 Subspace Identification via the Extended Observability
Matrix

Subspace-based identification methods reconstruct the ex-
tended observability matrix Γ from input-output data,
with the various methods differing primarily in how the
system is then extracted from Γ. As such, the block-Hankel
matrix H in (8) is factored into the extended observability
matrix Γ and the extended controllability matrix Ω:

Yf = Γ(ΩUp + X0) + TUf + V. (11)

Note that the subspace equation (11) is traditionally
written with a matrix of states X in place of ΩUp + X0.

Remark 1. With x0 = 0 and u(t) a unit-pulse input
applied at t = 0, (11) simplifies to Yf = H + V , and the
subspace identification problem reduces to a realization
from Markov parameter estimates [Van Overschee and De
Moor (1996)].

To isolate the extended observability matrix Γ in (11), the
effect of Uf is removed by projecting Yf onto the null space
of Uf , such that

YfΠU⊥

f
= Γ(ΩUp + X0)ΠU⊥

f
+ V ΠU⊥

f

in which
ΠU⊥

f
= I − UT

f (UfUT
f )†Uf (12)

The projection of Yf is subsequently weighted by matrices
W1 and W2 such that

W1YfΠU⊥

f
W2 = W1Γ(ΩUp + X0)ΠU⊥

f
W2

+ W1V ΠU⊥

f
W2

in which W1 and W2 are chosen to be rank-preserving and
such that W1V ΠU⊥

f
W2 → 0 as the number of samples

N → ∞. Explorations of the role of W1 and W2 as well
as suggestions for their contents can be found in Van
Overschee and De Moor (1996) and Favoreel et al. (2000).
Subsequently, the SVD can be applied to W1YfΠU⊥

f
W2

and, as in Kung’s algorithm, the system order n is chosen
by examining the singular values. The decomposition is
used to compute a rank-n estimate of Γ, the most common
factorization of which is

W1Γ = UnΣ1/2

n

(ΩUp + X0)ΠU⊥

f
W2 = Σ1/2

n V T
n

The projection operation makes it impossible to guarantee
that Ω can be successfully determined from the above
factorization. An LQ-decomposition-based stochastic re-
alization algorithm presented in Tanaka and Katayama
(2006) does extract Ω from a similar decomposition and
factorization but does not include a projection step due to
the nature of the problem considered. Instead, subspace
algorithms take one of the following approaches: either

treat Σ
1/2

n V T
n as a space of system states, or identify the

A and C matrices from the shift-invariant property of
Γ. Whichever method is chosen, the remaining unknown
parameters are linear in (1) and can be computed via a
least squares solution.

4. SUBSPACE IDENTIFICATION VIA
SHIFT-INVARIANCE OF OUTPUT DATA

4.1 Shifted Elementary Data Equation

The shift-invariance of the Hankel matrices in (5) can
be extended to the projected output term YfΠU⊥

f
, al-

lowing for the union of subspace-based and realization-
based approaches into a single algorithm. Additionally,
by generalizing the approach of subspace identification to
Hankel operators, the applications of subspace techniques
may be extended to any arbitrary situation in which the
convolution of Markov parameters may be found.

We begin by reexamining the subspace equation (11) and

define
−→
Y f as Yf shifted by a single column to the left, thus

now including y(N) (N = n1 + n2):

−→
Y f =









y(2) y(3) · · · y(n2 + 1)
y(3) y(4) · · · y(n2 + 2)

...
...

...
...

y(n1 + 1) y(n1 + 2) · · · y(n1 + n2)









.

Performing this column-wise shift allows one to write a
shifted data equation

−→
Y f =

−→
HUp +

−→
T Uf +

−→
Γ X0 +

−→
V (13)

where
−→
H is given in (5) and

−→
T =









g(1) g(0) 0 · · · 0
g(2) g(1) g(0) · · · 0

...
...

...
...

...
g(N1) g(N1 − 1) · · · g(1) g(0)









,
−→
Γ =







CA
...

CAn1






.

The shifted data equation can also be written as
−→
Y f =

−→
Γ (ΩUp + X0)

−→
T Uf +

−→
V (14)

by factoring the shifted Hankel matrix
−→
H into the shifted

extended observability matrix
−→
Γ and the extended con-

trollability matrix Ω. The data equation given in (8), (11)
and the shifted data equation in (13), (14) form the basis
of the following subspace-based identification algorithms.
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4.2 Realization from Step-Response Data

Instead of applying a unit-pulse as in Remark 1, consider
the more practical situation of applying a unit-step input
with initial state x0 = 0. The matrix Up is then an upper-
triangular unity matrix, and the matrix product TUf is
given by

TUf =

















g(0) g(0) · · · g(0)
g(0) + g(1) g(0) + g(1) · · · g(0) + g(1)

...
...

...
L

∑

i=0

g(i)

L
∑

i=0

g(i) · · ·

L
∑

i=0

g(i)

















which is equivalent to the noise-free step response data

TUf =









y(0) y(0) · · · y(0)
y(1) y(1) · · · y(1)

...
...

...
y(L) y(L) · · · y(L)









. (15)

In the deterministic case, the weighted Hankel matrix
R = HUp can be computed from (8)

R = HUp = Yf − TUf

while a similar shifted version
−→
R can be computed from

(13) [de Callafon (2003)]. The following results hold for R

and
−→
R in the deterministic case:

• If u(0) �= 0, the square N2 × N2 matrix Up has full
rank. Consequently, rank(R) = rank(H) = n, and
R has a decomposition R = R1R2 in which R1 and
R2 have respectively full column rank n and full row
rank n. In the case of noise-corrupted observations, a
rank-n approximation of R can be found via its SVD.

• Since R = HUp is a post-multiplication of H , R
exhibits the same shift-invariant property as H , and

therefore
−→
R = R1AR2 can be used to recover A via

left and right inverses taken from the decomposition
R = R1R2.

The above observations imply that a realization algorithm
similar to Kung’s can be formulated using R instead of H .

Remark 2. Given the output y(t) of a unit-step response,
applying the realization algorithm to R = Yf − TUf

will yield significantly better results than applying the
algorithm to an estimate of H obtained by differentiating
the step response measurements, as doing so would amplify
high-frequency noise and increase the variance of the
estimated parameters.

4.3 Realization from Arbitrary Input-Output Data

Consider (11) and its shifted version (14) for an arbitrary

u(t) and an unknown x0. Projecting both Yf and
−→
Y f onto

the null-space of Uf results in

YfΠU⊥

f
= Γ(ΩUp + X0)ΠU⊥

f
+ V ΠU⊥

f

−→
Y fΠU⊥

f
=

−→
Γ (ΩUp + X0)ΠU⊥

f
+
−→
V ΠU⊥

f

(16)

If x0 = 0, ΓΩ and
−→
Γ Ω may be collected as H and

−→
H ,

respectively.

The goal is to apply Kung’s algorithm to the pair YfΠU⊥

f

and
−→
Y fΠU⊥

f
. Doing so requires that the rank of H be

preserved in equation above. With this in mind, the
following observations regarding the rank of each term can
be made:

• If rank(Uf ) = k ≤ min(N1+1, N2), then rank(ΠU⊥

f
) =

N2−k due to the fact that ΠU⊥

f
is an N2×N2 matrix

and is defined as a projection onto the null-space of
Uf .

• Without loss of generality, we can assume u(0) �= 0
and rank(Up) = N2 (Up is full rank).

• Because rank(H) = n ≤ min(N1, N2)), the rank
conditions on Up imply that rank(HUpΠU⊥

f
) ≤

min(n, rank(ΠU⊥

f
)).

• If V = 0 (the deterministic case), rank(HUpΠU⊥

f
) =

rank(YfΠU⊥

f
). If V �= 0, then rank(HUpΠU⊥

f
) ≤

rank(YfΠU⊥

f
).

Thus the constraint rank(ΠU⊥

f
) ≥ n is sufficient to pre-

serve the rank of H . If N2 > N1 + n, rank(Uf ) = k ≤ N1,
and the following result is obtained:

rank(ΠU⊥

f
) = N2 − k > N1 + n − k ≥ N1 + n − N1 = n

From this, we can conclude that the use of “wide” matrices
Yf and Up in (16) for which N2 > N1 +n will preserve the
rank of H .

As with other subspace methods, a proper choice of
weighting matrices W1 and W2 results in the eventual
elimination of the noise terms such that W1V ΠU⊥

f
W2 → 0

and W1

−→
V ΠU⊥

f
W2 → 0 as N → ∞, reducing (16) to

W1YfΠU⊥

f
W2 = W1HUpΠU⊥

f
W2

W1

−→
Y fΠU⊥

f
W2 = W1

−→
HUpΠU⊥

f
W2

(17)

Assume that u(t) is persistently exciting and that the
matrices W1 and W2 are rank-preserving, and let Q1 and
Q2 be any factorization Q1Q2 = W1YfΠU⊥

f
W2 in which

Q1 has n columns with full column rank and in which Q2

has n rows with full row rank. There then exist a Γ and Ω
such that

Q1 = W1Γ, Q2 = ΩUpΠU⊥

f
W2, H = ΓΩ.

Non-deterministic effects, however, require that Q1 and
Q2 instead be factored from a rank-n approximation of
W1YfΠU⊥

f
W2. As in the previous approaches, the SVD is

a useful tool for computing estimates of Q1 and Q2.

From the decomposition

W1YfΠU⊥

f
W2 = [Un Us]

[

Σn 0
0 Σs

] [

V T
n

V T
s

]

the system order n is determined by examining the sin-
gular values for some threshold between large and small
values. Having decided on an appropriate system order n,
Q1 and Q2 are taken to be

Q1 = UnΣ1/2

n Q2 = Σ1/2

n V T
n

Substitution of (6) into (17) then results in

W1

−→
HUpΠU⊥

f
W2 = W1ΓAΩUpΠU⊥

f
W2 = Q1AQ2

Because Q1 has full column rank, it has a left-inverse Q†
1
,

and because Q2 has full row rank, it has a right-inverse

Q†
2
, so that A may be solved for via
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A = Q†
1
W1

−→
Y fΠU⊥

f
W2Q

†
2

The matrix C can then be estimated as the first p rows of
Q1. With A and C known, B and D can then be solved
for via least-squares methods.

Remark 3. With x0 = 0 and u(t) a unit-pulse input
applied at t = 0, Uf = 0N1×N2

, ΠU⊥

f
= IN2×N2

, and

(13) simplifies to Yf = H + V . With W1 = W2 = I,
the above algorithm again reduces to a realization from
Markov parameter estimates.

The reinterpretation of the matrix product W1YfΠU⊥

f
W2

in terms of Hankel and Toeplitz operators allows us to
apply subspace techniques in a more general framework.
It is often the case that with large datasets, computing the
singular value decomposition of W1YfΠU⊥

f
W2 can become

computationally infeasible. Alternatively, we may seek
out other relationships in which the Markov parameters
appear and apply the same techniques. As a final note
it should be mentioned that the above algorithm does
not guarantee a stable state space model or positive
real results for stochastic models, as it is subject to
the same limitations of traditional subspace identification
algorithms examined in Lindquist and Picci (1996).

4.4 Realization via Correlation Functions

Another situation in which the Markov-parameter con-
volution can be found is the relationship between the
autocorrelation function of the input signal Ru(τ) and
the cross-correlation of the output with the input Ryu(τ)
which can be shown [Ljung (1999)] to satisfy the relation

Ryu(τ) =

∞
∑

i=0

g(i)Ru(i − τ).

By using correlation function estimates

RN
u (τ) =

1

N

N
∑

t=0

u(t)u(t− τ), RN
yu(τ) =

1

N

N
∑

t=0

y(t)u(t− τ)

the effect noise for large data sets can be reduced while
minimizing the size of the matrices on which the SVD is
applied. This is due to the fact that

lim
N→∞

RN
vu(τ) = 0 (18)

provided the noise v(t) is uncorrelated with the input u(t).

Similar to the way in which the convolution sum of (2) was
written in matrix form and separated into past and future
components, the cross-correlation of y(t) and u(t) can be
separated into operations on past and future sequences of
correlation functions, but with respect to τ instead of t.
The result is

Ryu,f = HRu,p + TRu,f + Rvu (19)

in which H and T are given in (5) and (10) respectively
and Ryu,f is given by











RN
yu(1) RN

yu(2) · · · RN
yu(N2)

RN
yu(2) RN

yu(3) · · · RN
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...
...

...
...

RN
yu(N1) RN

yu(N1 + 1) · · · RN
yu(N1 + N2 − 1)











(20)

and

Ru,p =




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


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...
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...
0 0 · · · RN

u (0)











,

Ru,f =











RN
u (1) RN

u (2) · · · RN
u (N2)

RN
u (2) RN
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...

...
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
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



.

Rvu is the matrix generated from shifting sequences of
Rvu(τ) with τ . A projection similar to the one in (12) can
then be applied such that

Ryu,fΠR⊥

u,f
= HRu,pΠR⊥

u,f
+ RvuΠR⊥

u,f
(21)

in which

ΠR⊥

u,f
= I − RT

u,f (Ru,fRT
u,f )†Ru,f (22)

A minimal-rank estimation of the left hand side of (21)
may then be found via its SVD, but with the matrices
much smaller in size than what would otherwise have been
necessary. The resulting decomposition

Ryu,fΠR⊥

u,f
= [Un Us]

[

Σn 0
0 Σs

] [

V T
n

V T
s

]

(23)

is then used to estimate the system matrix A as

A = Σ−1/2

n UT
n

−→
Ryu,fΠR⊥

u,f
VnΣ−1/2

n (24)

in which
−→
Ryu is the matrix Ryu shifted by one unit of

τ . The matrix C may then be determined from the top

p rows of UnΣ
1/2

n , and B and D may be solved for in a
least-squares sense using any arbitrary (small) sequence of
data.

Remark 4. If the input signal {u(t)} is white noise, Ru,p →
I and Ru,f → 0 as N → ∞. Therefore Ryu,f → H , and the
algorithm once more reduces into realization from Markov
parameter estimates.

Remark 5. The averaging effects caused by first estimating
the correlation functions may significantly reduce the size
of the matrices required in the projection and decom-
position steps of the subspace identification algorithm,
allowing for more efficient processing of large data sets.

4.5 Simulation Example

To demonstrate the proposed subspace-based identifica-
tion methods that use the shift-invariance property for
both input-output data and the auto- and cross-correlation
functions, we generate a random 10th order stable single-
input, single-output discrete-time system G(q) in Mat-
lab and produce a pseudo-random binary input u(t)
and a noise disturbed output measurement ynf (t) =
G(q)u(t), y(t) = ynf (t) + v(t). We produce N = 2048
data points and the noise v(t) is a zero-mean white noise
with a variance normalized to 1/10th of the variance of
the noise free output ynf (t).

We create matrices Yf and Uf in (8) with the size N1 = 20,
N2 = 1024 to use all data points, and matrices Ryu,f and
Ru,f in (19) of only N1 = 20, N2 = 40 to be able to
estimate at least a 20th order model. Choosing weighting
matrices W1 = W2 = I, the singular value plots for
YfΠU⊥

f
, Ryu,fΠR⊥

u,f
, and the original Hankel matrix H ,

106



are shown in Figure 1 after normalization so that the plots
can be compared. The additional averaging inherent in the
auto- and cross-correlations enables a better separation
between the large and small singular values in Ryu,fΠR⊥

u,f
,

whereas the singular value plot of YfΠU⊥

f
levels due to the

noise. The singular value plot shows a 7th order model can
be estimated and the result has been depicted in Figure 2.
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Fig. 1. Singular value plot (normalized) of YfΠU⊥

f
given

in (9), (12) and Ryu,fΠR⊥

u,f
given in (20), (22) for

the same noisy data set. For comparison, the singular
values of H in (5) for noise free data has been plotted.
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Fig. 2. Bode plot of original 10th order system G(q) (solid)
and identified 7th order state space model (dashed).

5. CONCLUSION

Subspace identification techniques are interpreted in the
framework of classical realization theory by applying the
shift invariant property of the Hankel matrix directly to
input-output data or auto-/cross-correlation functions. It
is shown that matrix computations collapse to classical
realization techniques for special experimental conditions.
In addition, realization algorithms are formulated based
on step response data or correlation functions.

REFERENCES

R. A. de Callafon. Estimating parameters in a lumped
parameter system with first principle modeling and
dynamic experiments. In System Identification, 2003.
13th IFAC Symposium on, pages 1613–1618, 2003.

R. A. de Callafon, B. Moaveni, J. P. Conte, X. He,
and E. Udd. General realization algorithm for modal
identification of linear dynamic systems. Journal of
Engineering Mechanics, 134(9):712–722, 2008.

W. Favoreel, B. De Moor, and P. Van Overschee. Subspace
state space system identification for industrial processes.
Journal of Process Control, 10(2-3):149–155, April 2000.

B. L. Ho and R. E. Kalman. Effective construction of lin-
ear state-variable models from input/output functions.
Regelungstechnik, 14:545–548, 1966.

J. N. Juang and R. S. Pappa. An eigensystem realization
algorithm (ERA) for modal parameter identification
and model reduction. JPL Proc. of the Workshop on
Identification and Control of Flexible Space Structures,
3:299–318, April 1985.

T. Katayama. Subspace Methods for System Identification.
Communications and Control Engineering. Springer-
Verlag, 2005.

A. M. King, U. B. Desai, and R. E. Skelton. A generalized
approach to q-Markov covariance equivalent realizations
for discrete systems. Automatica, 24(4):507–515, July
1988.

S. Y. Kung. A new identification and model redaction
algorithm via singular value decomposition. In 12th
Asilomar Conference on Circuits, Systems and Comput-
ers, pages 705–714, 1978.

W. E. Larimore. Canonical variate analysis in identifica-
tion, filtering, and adaptive control. In Decision and
Control, 1990., Proceedings of the 29th IEEE Confer-
ence on, pages 596–604 vol.2, 1990.

A. Lindquist and G. Picci. Canonical correlation analysis,
approximate covariance extension, and identification of
stationary time series. Automatica, 32(5):709–733, May
1996.

L. Ljung. System Identification: Theory for the User. PTR
Prentice Hall Information and System Sciences. Prentice
Hall PTR, Upper Saddle River, NJ, 2nd edition, 1999.

H. Tanaka and T. Katayama. A stochastic realization
algorithm via block LQ decomposition in hilbert space.
Automatica, 42(5):741–746, May 2006.

I. Vajk and J. Hetthessy. Subspace identification methods:
review and re-interpretation. In Control and Automa-
tion, 2005. ICCA ’05. International Conference on, vol-
ume 1, pages 113–118 Vol. 1, 2005.

A. Van Der Veen, E. F. Deprettere, and A. L. Swindle-
hurst. Subspace-based signal analysis using singular
value decomposition. Proceedings of the IEEE, 81(9):
1277–1308, 1993.

P. Van Overschee and B. De Moor. N4SID: subspace algo-
rithms for the identification of combined deterministic-
stochastic systems. Automatica, 30(1):75–93, 1994.

P. Van Overschee and B. De Moor. Subspace Identification
for Linear Systems: Theory, Implementatin, Applica-
tions. Kluwer Academic Publishers, 1996.

M. Verhaegen and E. Deprettere. A fast, recursive MIMO
state space model identification algorithm. In Decision
and Control, 1991., Proceedings of the 30th IEEE Con-
ference on, pages 1349–1354 vol.2, 1991.

107


