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Abstract In this work, we show how the double-Youla parameterization can be used

to recast the robust tuning of a feedback controller as a robust estimation problem.

The formulation as an estimation problem allows tuning of the controller in real-

time on the basis of closed loop data. Furthermore, robust estimation is obtained by

constraining the parameter estimates so that feedback stability will be maintained

during controller tuning in the presence of plant uncertainty. The combination of

real-time tuning and guaranteed stability robustness opens the possibility to perform

Robust Estimation for Automatic Controller Tuning (REACT) to slowly varying

disturbance spectra. The procedure is illustrated via the application of narrow-band

disturbance rejection in the active noise control of cooling fans.

1 Introduction

In the 60’s and 70’s there was a significant amount of work [8, 12, 14, 15] towards

rejecting disturbances that satisfy differential equations. An interesting instance of

this theory is when the differential equations have constant coefficients and poles

on the imaginary axis. In this context, these results (known as the internal model

principle) dictate what is required of the system so that a controller exists to reject

disturbances that satisfy a known differential equation.

Today, the same principles are studied in discrete time repetitive and learning

control literature [9]. The same constraints upon the system are needed as well as

knowledge of the disturbance model. In practice, it is very difficult to precisely

model the disturbance frequency and therefore many methods were developed to

design controllers that were robust against this uncertainty in the disturbance model

or to design controllers to adapt to the disturbance. Hillerström [13] used adaptive
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repetitive control to suppress vibrations. Bodson [3] showed an equivalence between

time-varying internal models and adaptive feedforward control. Brown and Zhang

[5] update the internal model to cancel a disturbance with an unknown frequency.

In [4] the adaptive internal model principle is discussed. In [18], we show how

the extended Kalman filter can be used to update parameters in a controller that

satisfies the internal model principle. In [17], we find a family of controllers off-line

that satisfy the internal model principle and a frequency estimator is used to switch

between controllers online.

Landau et al. [20] used the Youla parameterization of all stabilizing controllers

for a SISO system to update the controller online to reject the disturbance when

the disturbance model was not completely known. It was assumed that the plant

model was known exactly and the disturbances had poles on the unit circle. In [19],

we added to this result by showing how to consider uncertainty to develop robust

algorithms for updating the controller of SISO stable systems. The convergence of

the algorithm was not analyzed.

In this work, we add to the work of [20] and [19] by considering a more general

setting and proving convergence of the tuning algorithm. In this work, the plant is

a MIMO system with uncertainty. The natural representation to express the uncer-

tainty turns out to be the double-Youla parameterization [11]. This parameterization

was studied by Schrama [24] in the context of cautious controller enhancement,

where a controller perturbation is found off-line to improve nominal and robust per-

formances. This parameterization is beneficial because it provides a clear strategy

to maintain stability and gives access to many closed loop signals that aid in the

control design. Our goal is to tune the controller in realtime to reduce the effect of

the disturbances on the output and, if possible, achieve complete regulation. Atten-

uation of the disturbances will be accomplished in the presence of uncertainty in the

plant and with very limited knowledge of the disturbance class. The only knowl-

edge of the disturbance that will be used is the order of the generating system. The

convergence of the realtime control algorithm will be analyzed be using Lyapunov

theory and concepts from slowly-varying system [16]. The stability of the closed

loop system will be analyzed via the Small Gain Theorem [26]. To demonstrate

the effectiveness of the proposed Robust Estimation for Automatic Controller Tun-

ing (REACT) algorithm, an experimental study based upon active noise control has

been included.

2 Approach to Automatic Controller Tuning

2.1 Simultaneous Perturbation of Plant and Controller

We are considering the problem shown in Fig. 1. The output of the plant y∈Rny , the

reference signal r ∈ Rnr , the output of the controller yc ∈Rnu , the input disturbance

di ∈ R
nu , and the output disturbance do ∈ R

ny .
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The nominal plant model Gx(s) ∈ Rp(s) is a ny× nu transfer function matrix,

where Rp(s) denotes the set of rational proper transfer function matrices [26], that

admits a bicoprime factorization [26] given by Gx = NxD−1
x = D̃−1

x Ñx. The nominal

controller C(s) ∈ Rp(s) is a nu× ny transfer function matrix that the bicoprime

factorization C = NCD−1
C = D̃−1

C ÑC.

The uncertain system G∆ ∈Rp(s) is a ny×nu transfer function matrix that has a

dual-Youla parameterization given by

G∆ = NG∆
D−1

G∆
= (Nx + Dc∆G)(Dx−Nc∆G)−1

= D̃−1
G∆

ÑG∆
= (D̃x− ∆̃GÑc)

−1(Ñx + ∆̃GD̃c) , (1)

where NG∆
and DG∆

are right coprime factors ÑG∆
and D̃G∆

are the left coprime

factors of the uncertain system.
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Fig. 1 Double-Youla parameterization of a feedback system with a MIMO controller C∆ and a
MIMO uncertain plant G∆ . The controller C∆ is expressed with the Youla parameterization and the
plant G∆ is expressed with the dual-Youla parameterization.

The uncertainty for the plant is considered to belong to the following set

Ξ = {∆ : ‖∆‖∞ < 1/γ, ∆ ∈RH ∞} , (2)

for a given ∞ > γ > 0. This class of uncertainty creates a set of plants Π , given by

Π =
{

P : P = (Nx + Dc∆G)(Dx−Nc∆G)−1,∆G ∈ Ξ
}

(3)

for which a robustly stabilizing controller is sought.

The perturbed or tuned controller is described with the Youla parameterization

given by

C∆ = NC∆
D−1

C∆
= (NC + Dx∆C)(DC−Nx∆C)−1

= D̃−1
C∆

ÑC∆
= (D̃C− ∆̃CÑx)

−1(ÑC + ∆̃CD̃x) , (4)

where NC∆
and DC∆

a right coprime factors of the tuned controller and ÑC∆
and D̃C∆

are the left coprime factors. The controller perturbation ∆C is used to improve per-

formance while maintaining robust stability in the presence of ∆G. The perturbation
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∆C ∈RH ∞ is a stable system, such that (I−D−1
C Nx∆C)(∞) and (I− ∆̃CÑxD̃−1

C )(∞)
are invertible.

2.2 Disturbance Model

Each element of the input disturbance di and the output disturbance do is assumed

to satisfy

ẋ = diag

([
0 ω1

−ω1 0

]

,

[
0 ω2

−ω2 0

]

, . . . ,

[
0 ωnd

−ωnd
0

])

x = Adx, x(0) = xo

yd = Cdx ,

such that the system is observable. This implies that every input and every output

channel of the plant is subjected to a sum of periodic disturbance. However, the

magnitude and phase are not known since we assume that the initial conditions are

unknown.

For notational simplicity, we will assume that di and do are produced by

ẋi = AHi
xi ẋo = AHo xo

di = CHi
xi do = CHo xo ,

where

AHi
= diag(Ad ,Ad , ...,Ad

︸ ︷︷ ︸

nu times

) AHo = diag(Ad ,Ad , ...,Ad
︸ ︷︷ ︸

ny times

)

CHi
= diag(Cd ,Cd , ...,Cd

︸ ︷︷ ︸

nu times

) CHo = diag(Cd ,Cd , ...,Cd
︸ ︷︷ ︸

ny times

) .

When ωi, i = 1, ...,nd are known constants, this problem can be solved with the

servocompensator theory developed by Davison [7, 8], Johnson [15], Francis and

Wonham [12], and more recently de Roover et al. [9]. However, the precise knowl-

edge of the frequencies is sometimes not feasible. Therefore, in this work we will

create a realtime control algorithm to reject the disturbances without knowledge of

the frequencies ωi, i = 1, ...,nd and maintain robust stability.

2.3 Overview of REACT

The aim of the REACT algorithm is to update the controller without violating the

robustness constraint imposed by the plant uncertainty ∆G and without complete

knowledge of the disturbance model. To facilitate the automatic or realtime con-
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troller tuning, the double-Youla parameterization is used to create a robust estima-

tion problem to find the controller perturbation ∆C.

The REACT algorithm inputs signals from the closed loop system and outputs the

controller perturbation ∆C by using information regarding the nominal plant model

and nominal controller to formulate an estimation problem. In the end, REACT

provides a method for updating ∆C to improve performance and maintain robust

stability. The derivation of REACT is presented in Sec. 3, where we define and min-

imize a cost function. The stability and convergence of the algorithm are considered

in Sec. 4. Finally, in Sec. 5 the REACT algorithm is applied to reduce the periodic

noise emitted by a pair of cooling fans.

3 REACT Algorithm

3.1 Defining an Error Function

In this section, we will define an error function based upon the how the disturbances

do and di effect the output y. The equation that relates the disturbances and output

is given by

y = (I + G∆C∆ )−1do + G∆ (I +C∆ G∆ )−1di

= (I + G∆C∆ )−1do +(I + G∆C∆ )−1G∆ di

= DC∆ Λ̃−1D̃G∆
(do + G∆ di) ,

where Λ := D̃C∆
DG∆

+ ÑC∆
NG∆

and Λ̃ := D̃G∆
DC∆

+ ÑG∆
NC∆

. After some tedious

algebra we can write Λ and Λ̃ as Λ = Λ0 + ∆̃CΛ̃0∆G and Λ̃ = Λ̃0 + ∆̃GΛ0∆C, where

Λ0 = D̃CDx + ÑCNx and Λ̃0 = D̃xDC + ÑxNC.

From [23, Lemma 3.2], we get Λ̃ = Λ̃0 + Λ̃0∆G∆C = Λ̃0(I + ∆G∆C) = (I +
∆̃G∆̃C)Λ̃0 therefore it is easy to see that we require the feedback connection of ∆C

and ∆G to be stable if it is desired that the feedback system of G∆ and C∆ is stable.

Next, notice that

Λ̃−1
o (D̃xy− Ñxyc) = Λ̃−1

o (D̃xDC∆ + ÑxNC∆ )D−1
C∆ y = D−1

C∆ y

= Λ̃−1D̃G∆
(do + G∆ di) ,

which is obtained by substituting y and rearranging. Thus the output satisfies y =
DC∆ Λ̃−1

o (D̃xy− Ñxyc), where Λ̃−1
o is stable since the nominal feedback system of C

and G is stable, Dx and Nx are stable, and the signals y and yc are known.

Let η be defined as η := Λ̃−1
o (D̃xy− Ñxyc) then the output is simply y = (Dc−

Nx∆C)η .

At this point, we will introduce two parameters: θ and ψ . This will facilitate in

the analysis of the control algorithm by separating the optimization problem from

the feedback system. Let ∆C(θ ) indicate the parameter that will be used in the op-
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timization problem and let ∆C(ψ) indicate the controller perturbation that is imple-

mented in the feedback system. In this case, we have the following error signal ε ,

defined as

ε(t,θ ,ψ) := (Dc(t)−Nx(t)∗∆C(t,θ ))∗η(t,ψ) (5)

η(t,ψ) = Λ−1
o (t)∗ (D̃x(t)∗ y(t)− Ñx(t)∗ yc(t,ψ)) , (6)

where ∗ is the convolution operator.

The separation between the optimization and the feedback system is needed for

convergence of the adaptive algorithm. The separation will be used to create two

different time-scales, one time-scale for the feedback system and one for the op-

timization algorithm. The separation of time-scales is a common theme in the ro-

bustness analysis of adaptive systems [2, 22] and the same idea will be used here to

prove convergence in the presence of uncertainty.

Notice that ε(t,ψ ,ψ) = y(t,ψ) with ∆C(ψ) implemented. Thus, this error signal

has fixed points in common with y(t) but is not always equal. Also, ε(t,ψ ,ψ) is

a nonlinear function of ∆C(ψ) and it depends upon the uncertainty ∆G. For these

reasons it is not possible to use ε(t,ψ ,ψ) as an error signal, but we can use ε(t,θ ,ψ)
and minimize over θ .

3.2 Derivation of Algorithm

Since ∆C appears affinely in Eq. (5), if we pick an affine parameterization of ∆C(θ )
then ε(t,θ ,ψ) will be an affine function of θ . This will aid in the analysis of robust

stability when the small gain theorem is applied.

The controller perturbation has a parameterization given by

∆C[u(t)] = Θ(t)T

∫ t

0
(CDeAD(t−τ)BD + DD)u(τ)dτ

= Θ(t)T (D(t)∗ u(t)) , (7)

where Θ ∈ R
nynθ×nu , D is the stable LTI system given by

D
T =

[
(

s−p0
s+p0

) (
s−p0
s+p0

)2

. . .
(

s−p0
s+p0

)nθ

]

,

and p0 > 0. The state space realizations for D and ∆C are given by

D :

[
AD BD

CD 0

]

∆C :

[
AD BD

Θ T (t)CD 0

]

with zero initial conditions. Notice that since ∆C is strictly proper, this parameteri-

zation guarantees that (I−D−1
C Nx∆C)(∞) is invertible.
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If the Θ is stacked into a vector instead of a matrix then define θ as θ T :=
vec(Θ)T =

[
θ T

1 . . . θ T
nθ

]
, where vec(·) is the vectorization operator and θi is the

ith column of Θ . With this notation we get

ε(t,Θ ,ψ) =
(
Dc(t)−Nx(t)∗

(
Θ T (t)D(t)

))
∗η(t,ψ) (8)

= v(t,ψ)−Nx(t)∗
(
Θ T (t)ηD(t,ψ)

)
, (9)

where v(t,ψ) := Dc(t)∗η(t,ψ) and ηD(t,ψ) := D(t)∗η(t,ψ).
Suppose that we want to minimize V (t,θ ,ψ) = 1

2
‖ε(t,θ ,ψ)‖2

2 then ∇V is given

by

∂V (t,θ ,ψ)

∂θ
=−






[Nx]11 ∗ηD . . . [Nx]ny1 ∗ηD

...
. . .

...

[Nx]1nu ∗ηD . . . [Nx]nynu ∗ηD




ε(t,θ ,ψ) (10)

=−Φ(t,ψ)ε(t,θ ,ψ) . (11)

Thus, update equation is given by

dθ

dt
= µΦ(t,ψ)ε(t,θ ,ψ)

= µr(t,ψ)− µΦ(t,ψ)Φ(t,ψ)T θ ,

where r(t,ψ) := Φ(t,ψ)v(t,ψ). This is the LMS algorithm for updating θ when ψ
is constant. Thus, if ψ is constrained to vary slowly then we expect similar properties

to the standard LMS algorithm [2, 22].

4 Stability and Convergence of the Tuning Algorithm

In this section the stability and convergence of the realtime tuning algorithm is con-

sidered. The stability of the feedback system during tuning will be analyzed via the

Small Gain Theorem [25, 26]. The convergence of the algorithm will be analyzed

with Lyapunov theory [16].

4.1 Stability of the Feedback System

In this section, we investigate two different scenarios. The first is where the con-

troller is updated very quickly. In this case, a Small Gain Theorem for time-varying

systems can be used. In the second scenario, we will constrain ψ to vary slowly. In

this case, we will be able to impose an LTI Small Gain Theorem for stability.
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Suppose that Ψ(t) is a time-varying function. If the magnitude of Ψ(t) is con-

strained to be small enough then stability of the feedback system is assured. The

following theorem clarifies this point.

Theorem 1. Consider the feedback system depicted in Fig. 1 where the uncertain

plant G∆ ∈Π has a representation given by Eq. (1) and the controller has a Youla-

parameterization given by Eq. (4) with ∆C given by Eq. (7) with Θ replaced by Ψ .

If the time-varying matrix Ψ(t) satisfies

‖Ψ(t)‖2 ≤
γ

‖D‖∞
∀t

then the feedback system of G∆ and C∆ is L2-stable for all G∆ ∈Π .

Proof. The feedback system of G∆ and C∆ is stable iff the feedback system of ∆G

and ∆c is stable since Λ̃−1 = (I +∆G∆C)−1Λ̃−1
0 and Λ̃−1

0 is stable since the feedback
system of Gx and C is stable. Let uD(t) := D(t)∗ u(t) then

‖∆C[u]‖2
L2 =

∫ ∞

0
‖∆C[u]‖2

2dt =

∫ ∞

0
‖Ψ(t)T uD(t)‖2

2dt

≤

∫ ∞

0
‖Ψ(t)T‖2

2‖uD(t)‖2
2dt .

Since ‖uD‖L2 ≤ ‖D‖∞‖u‖L2 holds, if ‖Ψ‖2 ≤
γ

‖D‖∞
then

‖∆C[u]‖2
L2 ≤

γ2

‖D‖2
∞

∫ ∞

0
‖uD(t)‖2

2dt =
γ2

‖D‖2
∞

‖uD(t)‖2
L2

≤
γ2

‖D‖2
∞
‖D‖2

∞‖u‖
2
L2 = γ2‖u‖2

L2

implies that the L2/L2 gain of ∆C is not greater than γ . Since ‖∆G‖∞ < 1/γ the
closed loop system of ∆G and ∆C is L2-stable [25]. 2

The result in Theorem 1 is similar to [11, Proposition 1], except here we are consid-

ering the case where the controller perturbation is a time-varying operator.

The preceding work constrains the magnitude of Ψ (t) only. If a less restrictive

bound is sought then additionally constraining Ψ̇(t) is an option. Under the right

conditions, if Ψ̇(t) is small enough then the stability constraint is equivalent to the

LTI case. Before stating the result, a lemma from obtained from [10] will be pre-

sented.

Lemma 1. Consider ẋ = A(t)x where A(t) is a piecewise continuous function on

R
+. Suppose that supt≥0 ‖A(t)‖< ∞ and supt≥0 Re(eig(A(t))) < 0 then there exists

an ε > 0 such that ẋ = A(t)x is stable if supt≥0 ‖Ȧ(t)‖ ≤ ε .

Theorem 2. Suppose that ‖∆G‖∞ < 1/γ , the frozen time system ∆C satisfies

‖∆C(Ψ)‖∞≤ γ for each t ≥ 0, and that supt≥0 ‖Ψ(t)‖< ∞. Then there exits an ε > 0

such that the feedback system of G∆ and C∆ is stable if supt≥0 ‖Ψ̇(t)‖ ≤ ε .
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Proof (Outline) The proof shows that the conditions for Lemma 1 are upheld.

supt≥0 ‖Ψ(t)‖ < ∞ implies that supt≥0 ‖Acl(t)‖ < ∞ is true, where Acl is the “A”

matrix of the closed loop system. supt≥0 ‖∆G‖∞‖∆C(Ψ)‖∞ ≤ ‖∆G‖∞γ < 1 implies

that supt≥0 Re(eig(A(t))) < 0.

By Lemma 1 there exists an ε∗ such that supt≥0 ‖Ȧcl(t)‖ ≤ ε∗ implies that

the closed loop is stable. Due to the affine structure of the controller parame-

terization, for each ε∗ there exits an ε > 0 such that supt≥0 ‖Ψ̇(t)‖ ≤ ε implies

supt≥0 ‖Ȧcl(t)‖ ≤ ε∗. 2

4.2 Convergence of the Tuning Algorithm

In this section, we analyze the convergence of the tuning algorithm by separating the

time-scale of the feedback system and the update algorithm. So far, we have defined

how the parameters in the optimization are updated but have not defined how the

controller is updated. First it is necessary to constrain the controller perturbation

parameters to be in the set of parameters that stabilize the feedback system. This

can be done via the following algorithm.

θ̇ = µr(t,ψ)− µΦ(t,ψ)Φ(t,ψ)T θ

ψ̇ = Proj
ψ∈S

(

−λ
ψ−θ

1 +‖ψ−θ‖

)

,

where Projψ∈S (·) is the projection operator [2, 22] that guarantees that ψ never

leaves the set of stabilizing parameters S . The set S can either be

S = {ψ : ‖Ψ‖2 ≤ γ/‖D‖∞} (12)

in agreement with Theorem 1 or

S = {ψ : ‖∆C(Ψ )‖∞ ≤ γ}
⋂{

ψT ψ ≤ Nψ < ∞
}

(13)

in agreement with Theorem 2, where Nψ is a large number that guarantees that

supt≥0 ‖Ψ(t)‖ < ∞. In the latter case, λ must be chosen small enough to satisfy

Theorem 2. In either case, the set S is a compact set. Also, note that the approxi-

mation ‖Ψ‖2 ≤ ‖Ψ‖F = ‖ψ‖2 can be used for computational speed.

To analyze this system consider for the moment ψ as being a fixed parameter and

recall the error signal

ε(s,θ ,ψ) = (Dc−Nx∆C(θ ))η(s,ψ)

η(s,ψ) = Λ−1
o (D̃xy(s)− Ñxyc(s,ψ))

= (DC∆ (ψ)−G∆ NC∆ (ψ))−1(do + G∆ di) .
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The purpose the the tuning algorithm is to place blocking zeros [26] in the transfer

function from the disturbances to the output. Thus, it is required that there exists a

θ ∗ such that

DC( jωi)−Nx( jωi)∆C( jωi,θ
∗) = D̄C( jωi) = 0 (14)

for some D̄C that internally stabilizes the system and has blocking zeros at the

given ωi. From this equation it can be seen that it is required that Nx( jωi) have

full row rank. This agrees with general servocompensator theory [15, 8, 12, 6, 9]

since Nx( jωi) having full row rank is the same as Gx having no zeros on the jω-axis

located at ωi and at least as many inputs as outputs.

In this case, one such controller perturbation is given by

∆C( jωi,θ
∗) = Nx( jωi)

T (Nx( jωi)Nx( jωi)
T )−1DC( jωi,θ

∗) .

When ∆C = Θ T D then Θ given by

Θ T = Nx( jωi)
+DC( jωi,θ

∗)D( jωi)
+

will satisfy Eq. (14), where it is required that D( jωi) ∈ Cnθ ny×ny has full column

rank, Nx( jωi)
+ = Nx( jωi)

T (Nx( jωi)Nx( jωi)
T )−1, and

D( jωi)
+ = (D( jωi)

T D( jωi))
−1D( jωi)

T .

Theorem 3. Consider the controller perturbation ∆C given by Eq. (7). Suppose that

Nx( jωi) has full row rank for all 0≤ i≤ nd and that nθ ≥ 2nd .

Define the following matrices: D :=
[
D( jω1) D( jω2) . . . D( jωnd

)
]

,

bT :=








DC( jω1)
T (Nx( jω1)

+)T

DC( jω2)
T (Nx( jω2)

+)T

...

DC( jωnd
)T (Nx( jωnd

)+)T








, A :=

[
Re(DT )
im(DT )

]

, and B :=

[
Re(bT )
im(bT )

]

.

Then A is full rank if ωi 6= ω j for all i 6= j and in this case the optimal parameter

given by Θ ∗ = A+B satisfies DC( jωi)−Nx( jωi)(Θ ∗)T D( jωi) = 0 , for all 0 ≤ i≤
nd .

Proof. For the controller perturbation given in Eq. (7) D can be written as

D = Iny×ny⊗












jω1−po

jω1+po(
jω1−po

jω1+po

)2

...
(

jω1−po

jω1+po

)nθ

jω2−po

jω2+po(
jω2−po

jω2+po

)2

...
(

jω2−po

jω2+po

)nθ

. . .

. . .

. . .

. . .

. . .

jωnd
−po

jωnd
+po

(
jωnd

−po

jωnd
+po

)2

...
(

jωnd
−po

jωnd
+po

)nθ












,

where ⊗ is the Kronecker product.
Thus, [D D̄] is the first ndny columns of a block Vandermonde matrix which can

be written as [D D̄] = I⊗d where d is the first nd columns of a Vandermonde matrix

and ¯(·) is the complex conjugate. The Vandermonde matrix is invertible if ωi 6= ω j

for all i 6= j. Thus [D D̄] is full rank. And since
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[D D̄]

[
1
2

1
2 j

− 1
2
− 1

2 j

]

= [Re(D) im(D)]

then [Re(D) im(D)] is full rank.
The equation (Θ ∗)T [Re(D) im(D)]− [Re(b) im(b)] = 0 can be written as

(Θ ∗)T [D D̄]

[
1
2

1
2 j

− 1
2
− 1

2 j

]

= [b b̄]

[
1
2

1
2 j

− 1
2
− 1

2 j

]

,

and since

[
1
2

1
2 j

− 1
2
− 1

2 j

]

is invertible then we get (Θ ∗)T [D D̄] = [b b̄]. From the

first part of this matrix, Θ ∗ satisfies (Θ ∗)T D = b which is the same as

(Θ ∗)T = Nx( jωi)
+DC( jωi,θ

∗)D( jωi)
+ ,

for all 0 ≤ i≤ nd since Nx( jωi) has full row rank and D( jωi) has full column rank
when ωi 6= ω j for all i 6= j. This implies that

DC( jωi)−Nx( jωi)(Θ
∗)T

D( jωi) = 0 ,

for all 0≤ i≤ nd . 2

In the case that the ωi’s are known then this theorem provides an equation for

θ ∗ that can be implemented. In this work, we are considering the ωi’s as unknown

and are using the realtime tuning algorithm to converge to this point θ ∗. Using this

optimal point θ ∗, the error signal is written as

ε(s,θ ,ψ) = (Dc−Nx∆C(θ ))η(s,ψ)

= (D̄C(s)+ Nx(∆C(θ ∗)−∆C(θ )))η(s,ψ) ,

where D̄C is given in Eq. (14). In the time domain, this can be written as

ε(t,θ ,ψ) = D̄C(t)∗η(t,ψ)+ Nx(t)∗
(

(Θ ∗−Θ(t))T ηD(t,ψ)
)

,

where D̄C(t)∗η(t,ψ)→ 0 since D̄C(s) ∈RH ∞ and has blocking zeros at ωi.

Hence, the point θ ∗ such that Dc( jωi)−Nx( jωi)∆C( jωi,θ ∗) = 0 is an equilib-

rium point for all fixed ψ ∈ Γ . Next, change variables x = θ −θ ∗ to get

ẋ = µr(t,ψ)− µΦ(t,ψ)Φ(t,ψ)T (x + θ ∗)

=−µΦ(t,ψ)Φ(t,ψ)T x + ν(t,ψ) ,

where ν(t,ψ) is an exponentially decreasing signal due to initial conditions. The

solution x→ 0 if v(t,ψ)→ 0 exp. fast and ẋ = −µΦ(t,ψ)Φ(t,ψ)T x is exp. stable.

So, by studying the stability of
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ż =−µΦ(t,ψ)Φ(t,ψ)T z

we can determine when the optimization will converge to the desired solution.

To analyze the convergence of the algorithm, we will find a Lyapunov function.

To this end we first start by examining when a suitable Lyapunov function exists for

a given system.

Lemma 2. Let x = 0 be an equilibrium for

ẋ = f (t,x,α) ,

where f : [0,∞)×D×γ→Rn is continuously differentiable, D = {x∈Rn : ‖x‖< r},
and

∥
∥
∥
∥

∂ f

∂x

∥
∥
∥
∥
≤ L1

∥
∥
∥
∥

∂ f

∂α

∥
∥
∥
∥
≤ L2‖x‖

on D, uniformly in t and α . Let k, λ , and ro be positive constants with ro < r/k. Let

Do = {x ∈ Rn : ‖x‖< ro}. Assume that the trajectories of the system satisfy

‖x(t)‖ ≤ k‖x(t0)‖e
−λ (t−t0) ∀x ∈ D,t ≥ t0 ≥ 0,α ∈ Γ

then there exists a function V : [0,∞)×Do× γ → R such that the following hold

c1‖x‖
2 ≤V (t,x,α) ≤ c2‖x‖

2,
∂V

∂ t
+

∂V

∂x
f (t,x,α) ≤−c3‖x‖

2,

∥
∥
∥
∥

∂V

∂α

∥
∥
∥
∥
≤ c4‖x‖

2 .

Proof (Outline) Let φ(τ,t,x,α) indicate the solution to ẋ(t) = f (t,x(t),α) starting

at (t,x) for a given α ∈ Γ . Thus φ(t,t,x,α) = x. Choose

V (t,x,α) =
∫ t+δ

t
φ(τ,t,x,α)T φ(τ,t,x,α)dτ

as the Lyapunov function. It can be shown that this Lyapunov function satisfies the

inequalities, and the proof is similar to proofs of Theorem 4.14 and Lemma 9.18 in

[16]. 2

Now, we can state the convergence result.

Theorem 4. Suppose that Φ(t,ψ) is uniformly P.E., i.e. there exists constants β , δ ,

and T such that

∞ > β I ≥

∫ to+T

to

Φ(t,ψ)Φ(t,ψ)T dt ≥ δ I > 0

holds for all to ≥ 0, all fixed ψ ∈S , and where β and δ are independent of ψ . Then

there exists an ε∗ > 0 such that

ż =−µΦ(t,ψ(t))Φ(t,ψ(t))T z, ψ : R
+ →S



REACT 119

converges to the origin exponentially fast if ‖ψ̇‖ ≤ ε∗.

Proof (Outline) Since the system is continuously differentiable and driven by a

bounded periodic signal it can be shown that the assumptions of Lemma 2 are up-

held. Therefore, there exists a Lyapunov function s.t.

c1‖z‖
2 ≤V (z,ψ ,t)≤ c2‖z‖

2

∂V

∂ t
+

∂V

∂ z
ż≤−c3‖z‖

2

∥
∥
∥
∥

∂V

∂ψ

∥
∥
∥
∥
≤ c4‖z‖

2

hold. Using this function V (z,ψ(t)) as the Lyapunov function for

ż =−µΦ(t,ψ(t))Φ(t,ψ(t))T z ,

where now ψ(t) is a function of t instead of a fixed parameter, yields

V̇ (z,ψ ,t) =

∥
∥
∥
∥

∂V

∂ t
+

∂V

∂ z
ż+

∂V

∂ψ
ψ̇

∥
∥
∥
∥
≤−c3‖z‖

2 +

∥
∥
∥
∥

∂V

∂ψ
ψ̇

∥
∥
∥
∥

≤−c3‖z‖
2 +

∥
∥
∥
∥

∂V

∂ψ

∥
∥
∥
∥
‖ψ̇‖ ≤ −c3‖z‖

2 + c4‖z‖
2‖ψ̇‖

= (c4‖ψ̇‖− c3)‖z‖
2 .

Therefore if ‖ψ̇‖< c3/c4 := ε∗ then z = 0 is exponentially stable. 2

This theorem states when θ converges to the correct point θ ∗. To conclude when

regulation will occur the set S must contain θ ∗ and the point θ ∗ must exist in the

first place. Thus we have the following.

Theorem 5. Consider the feedback system depicted in Fig. 1 where the uncertain

plant G∆ ∈Π has a representation given by Eq. (1) and the controller has a Youla-

parameterization given by Eq. (4) with Θ replaced by Ψ . Assume that the controller

perturbation parameters ψ are updated with the following tuning algorithm

θ̇ = µr(t,ψ)− µΦ(t,ψ)Φ(t,ψ)T θ

ψ̇ = Proj
ψ∈S

(

−ε
ψ−θ

1 +‖ψ−θ‖

)

,

where S is defined in either Eq. (12) or Eq. (13). If Nx( jωi) has full row rank for

all 0 ≤ i ≤ nd , nθ ≥ 2nd , and Φ(t,ψ) is uniformly P.E. then there exists an ε∗ > 0
such that limt→∞ ‖θ (t)−θ ∗‖= 0 whenever ε ≤ ε∗, where θ ∗ is given in Theorem 3,

and if θ ∗ ∈S then limt→∞ ‖ψ(t)−θ ∗‖= 0 which implies limt→∞ ‖y(t)‖= 0.

Proof. Straightforward combination of Theorem 3 and Theorem 4, where either
Theorem 1 or Theorem 2 is used to show that the set S is a set of robustly stabilizing
parameters. 2
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5 Application to ANC

5.1 Description of System

Fig. 2 shows the layout of the acoustic system that we are considering. Two variable

speed cooling fans connected in series are used to cool the enclosure, similar to a

server or PC. However, due to the high speeds of the fans, acoustic noise is created.

To combat the acoustic noise, 4 speakers are mounted near the fan and 4 feedback

microphones are placed near the speakers and downstream of the acoustic noise. To

reduce vibrations and turbulent noise, the microphones are mounted in acoustical

foam. Additionally, for simplicity, the microphone signals are summed together and

used as a single signal for feedback. Similarly, the same signal is sent to the speakers

so that we are dealing with a single-input-single-output (SISO) system.

Enclosure

Fans

Speakers

Feedback Microphones

~

R

�

�

Y

I �

Fig. 2 Custom fan housing with active noise canceling speakers and feedback microphones.

The fans create two types of noise: broadband and narrowband noise. The nar-

rowband noise is due to the blade pass frequency (BPF) of each fan and is comprised

of a fundamental frequency and several harmonics. The broadband noise is due to

turbulence. Both types of noise are dependent upon the speed of the fans. When

the RPM of a cooling fan is increased the BPF increases causing the fundamental

frequency to increase. Likewise, when the RPM increases, the turbulence increases

and therefore the broadband noise level will increase.

The goal of the active noise control system is to reduce the narrowband acoustic

noise without a priori knowledge of the fan speeds and with the presence of mod-

eling errors. The REACT algorithm described in Sec. 2.3 is used to this end. The

identification of a nominal model for the REACT algorithm is presented in Sec. 5.2

and the experimental results of applying REACT to the ANC system are presented

in Sec. 5.3.
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5.2 Identification of Plant Model

The nominal plant model Gx is found via standard system identification techniques

[21]. To generate data that can be used for the identification, a white noise signal

was sent into the speakers and the resulting signal was recorded with the feedback

microphones. Recall that the microphone signals are averaged and the speakers are

sent the same signal so that a SISO system results, and note that the acoustic sys-

tem is comprised of the speaker amplifier, the speakers, that acoustic between the

speaker and microphone, the microphone, and the microphone filter.

At steady state, if ‖∆C∆G‖∞ < 1 then the closed loop system is stable by the

small gain theorem [26]. In addition, the internal model principle requires that

DC( jωk)−Nx( jωk)∆C( jωk) = 0, k = 1,2, ...,nd for complete regulation, where ωk

is the frequency of the disturbances. Since we are dealing with a SISO, open-loop

stable system we can choose Nx = Gx, Dx = 1, NC = 0, and DC = 1. Let Go denote

the “true” system then the requirements for stability and performance are given by

the following:

1. |Go(e
jω )−Gx(e

jω)|= |∆Go(e
jω )|< 1/|∆C(e jω)| for all ω .

2. Gx(e
jωo) = 1/∆C(e jωk ) where ωo is the unknown frequency of the disturbance.

Hence, these requirements can be satisfied if |∆Go(e
jω )| < |Gx(e

jω )| holds over

the frequency range that the disturbance is expected. A nominal model that satisfies

this bound is deemed acceptable.

After several iterations a suitable model was chosen by the above design method.

Using an ARX model structure [21] and a Steiglitz-Mcbride iteration a 25th order

model of the acoustic system was found. The frequency response of the model Gx

and the true system Go is shown in Fig. 3. It can be seen that the model neglects some

low and high frequency dynamics and is a close approximation of the frequency

response measurements in the middle frequencies. The nominal controller is chosen

as C = 0 since the model is open-loop stable.

The magnitude of the uncertainty |∆Go | is also shown in Fig. 3. In this figure, it

can be seen that regulation is possible from 300 to 5000 Hz. However, the ∆C that is

found must satisfy |∆Go(e
jω)| < 1/|∆C(e jω)| for all ω and one must be careful not

to violate this bound while tuning the controller.

5.3 Experimental Results

The REACT algorithm described in Sec. 2.3 is applied to the ANC system described

in Sec. 5.1. The results of the controller tuning are shown in Fig. 4. In this figure, the

A-weighted1 output y(t) and control u(t) signals are shown. On the left, the signals

are shown for a duration of 6.4 sec. The first 3.2 sec. are without controller tuning.

The last 3.2 sec. are the signals after the convergence of REACT. On the right, the

1 A-weighting is used to reflect the sensitivity of human hearing [1].
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Fig. 3 Frequency response
data of Go (dotted), bode
plot the nominal system Gx

(solid) found with system
identification techniques [21],
and the magnitude of the
additive uncertainty |∆Go

|
(dashed). This figure is used
to evaluate the quality of
the nominal model Gx. For
complete regulation in the
presence of uncertainty, it is
required that |∆Go

(e jω )| <
|Gx(e

jω )| for the frequency
range of interest.
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signals are shown for the first and last 0.0195 sec. In the plots on the left, it is clear

that the level of the output signal is reduced when the controller tuning is switched

on. The removal of the narrowband disturbances can be seen clearly in the plots on

the right.
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Fig. 4 The A-weighted output y(t) and input u(t) of the plant before and after tuning of the nominal
controller. On the left is the entire 6.4 sec of data. On the right is the output and input for the first
and last 0.0195 sec. The tuning algorithm reduces the output variance by 79%, or a 6.7 dB drop in
SPL, by eliminating narrowband disturbances.

The A-weighted sample variance of the signal is reduced by 79%, which is a

6.7dB drop in the A-weighted sound pressure level (SPL)2. The A-weighted spec-

trum of the output y(t) before and after tuning is shown in Fig. 5. In this figure, it

can be seen that largest harmonics are reduced. The reduction of these harmonics

2 SPL is defined as SPL := 10log10(P
2/P2

0 ) where P2 is the sample variance of the microphone

signal and P2
0 is the reference level. If weighting is applied then the signal is filtered before the

calculation of the sample variance.
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can also be seen in Fig. 4. Note that both fans are running at similar speeds and

therefore two harmonics from each fan, for a total of 4 harmonics, are reduced by

tuning the controller.

Fig. 5 A-weighted spectrum
of the plant output y(t) (the
microphone signal) before
(dashed) and after (solid)
controller tuning. The tuning
of the controller reduces the
most prominent harmonics
of both cooling fans. The
result is a reduction in the
A-weighted output variance
by 79%, or a 6.7 dB drop in
A-weighted SPL.
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6 Conclusions

We have shown how to tune a given nominal controller in realtime to reject distur-

bances and to preserve robust stability. The uncertain system was assumed to belong

to a set of systems described with the dual-Youla parameterization. To facilitate the

tuning of the controller, the Youla parameterization was used along with a real-

time optimization that utilizes signals from the closed loop system and information

regarding the nominal system. The magnitude and velocity of the controller pertur-

bation parameters are constrained to preserve robustness, and to guarantee that the

optimization converges the controller in the feedback system is changed gradually.

An application to active noise control was used to demonstrate the power of the

proposed tuning algorithm. In the experimental results, it was shown how the har-

monic noise of cooling fans can be reduced in the presence of modeling errors and

measurement noise without a priori knowledge of the harmonic noise frequency.
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