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This paper gives an overview of the main ideas behind a new estimation technique that
is able to deliver a consistent estimate of (poorly-damped) structural resonance modes
induced by aeroservoelastic interaction without user intervention. Instead of using broad-
band sinusoidal or sine-sweep excitation signals, the new estimation method proposed in
this paper uses simple step-based excitation signals that can be applied to any of the control
surfaces to formulate a model of the aerodynamically-induced structural vibration modes.
Simple step-based excitation signals address the issue of broadband excitation while allow-
ing a reasonable (short-time) excitation signal on the control surfaces.

The proposed estimation method has been tailored to find consistent model estimates on
the basis of step-based input signals. The estimation method uses a modified version of the
well-known realization algorithm that is extended to arbitrary input signals to formulate a
discrete-time model directly on the basis of step-based experiments. Since the numerical
implementation only requires a singular value decomposition and a standard least-squares
estimation, robust numerical algorithms can be put in place to formulate a dynamical
model with little or no user intervention. The procedure is illustrated on time-domain data
obtained from a high fidelity model of an F/A-18 to find a low-order model that captures
the structural parameters, such as damping and location of the first main resonance modes.

I. Introduction

The steady development of new sensors and weapons technology requires that engineers be able to inte-
grate new stores configurations for existing aircraft quickly and efficiently. For modern aircraft with expansive
flight envelopes, the introduction of new payloads can introduce unpredictable and undesirable changes in
an aircraft’s structural dynamics, and potentially dangerous resonance modes induced by aeroservoelastic
interaction must be dampened by flight controller augmentation.

With available sensor technology, poorly-damped structural resonance modes induced by aeroservoelastic
interaction can be monitored and modeled via data-based estimation techniques.1–3 Such estimation tech-
niques can use time-domain measurements of input-output behavior to formulate a dynamical model suitable
for control system design. Based on the information of structural parameters captured in a dynamical model,
a model-based feedback control design technique can be used to dampen the resonance modes using the flight
control surfaces4 or to predict flutter margins.5

A myriad of algorithms exist for the identification of models for a system that are suitable for control
system design. Most common are the prediction-error methods, unified in the work of Ljung6 and selectively
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applied to aerospace vehicles in Klein and Morelli7 and Jategaonkar.8 Alternatively, realization-based algo-
rithms construct state-space models by estimating a subspace that contains the relevant system dynamics
and then extracting system matrices from a basis of this subspace.

The most popular of these are the N4SID family of algorithms, which estimate the subspace spanned by
the system’s extended observability matrix by projecting the system output onto the nullspace of future input
signals. These are thoroughly presented in the work by Overschee and de Moor9, 10 and the contribution by
Katayama.11 A similar algorithm that replaces the projection step with a least-squares problem was applied
to the identification of aeroelastic modes in the work of Mehra and co-authors.12

Another realization-based identification algorithm commonly used for aerospace structures is the Eigen-
system Realization Algorithm,13 which uses either the impulse-response or the full frequency response of a
system to estimate the subspace spanned by the system Hankel matrix. Estimating the frequency response
or the system impulse response possibly via inverse Fourier transform typically requires broadband excitation
– something that is often impractical for in-flight testing. Alternative input signals for aircraft parameter
identification14 can potentially provide improved results,15 motivating the formulation of the estimation al-
gorithm in this paper that is tailored to specific (step-based) input signals. Moreover, the computational
algorithms of the estimation algorithm are based on stable numerical algorithms and require little or no user
intervention to formulate a state-space model of a given McMillan degree.

The algorithm presented in this paper estimates the subspace spanned by the system Hankel matrix
not by projecting out future input effects or estimating the impulse response directly but by analytically
isolating the system Hankel matrix based on the structure of the input signal and the assumption that the
system is initially at rest. The resulting algorithm provides high-quality state-space models from practical,
succinct data sets generated by step-based excitation signals on control surfaces of the aircraft, allowing the
estimation of possible flexible modes due to aero(servo)elastic interaction.

II. F/A-18AAW Model

II.A. Nonlinear 6-DOF Rigid-Body Flight Model of F/A-18AAW

For testing of the proposed identification methods presented in this paper, ZONA has developed a high-
fidelity, nonlinear 6-DOF rigid-body simulation model of the F/A-18AAW aircraft coupled to a linear aeroe-
lastic solver16 to generate data for the identification algorithms. Since the emphasis of the paper lies with
the actual identification algorithms, only a summary of the high fidelity model is given here.

The nonlinear 6-DOF rigid-body simulation model was developed for the Simulink environment using a
set of libraries from the Aerospace Blockset of Matlab simulink software.17 A general formulation of the
aircraft flight dynamics is implemented by considering the dynamics of the rigid-body vehicle and moving
component subsystems (control surfaces), subject to aerodynamic and gravitational forces.
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DIf TEF

DIf Ail

Dif Stab

Coll Rudder

Coll  LEF

Coll TEF

Coll Stab

Lateral Output

Long Output

F/A-18AAW Rigid 6 -DOF Plant Model
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F18 6dof_Rigid Body Dynamics
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In1

Figure 1. Open-Loop 6-DOF Nonlinear Simulation Plant Model.

The open-loop F/A-18AAW nonlinear Simulink model is depicted in Figure 1, with a selected set of input
and output variables that match the actual ones used in the F/A-18AAW aircraft. The developed open-loop
nonlinear model allows for fifteen longitudinal and fifteen lateral-directional dynamics output components,
while five differential and three collective control commands are also defined and are summarized in Tables
1, 2 and 3, respectively. This high-fidelity, rigid-body airframe model was developed using the following
elements:
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1. Six (6) Degrees-Of-Freedom solver using Euler angles subsystem.

2. Aerodynamic Forces and Moments subsystem using the set of non-dimensional stability and control
derivatives obtained through the set of AAW Parameter IDentification (PID) flight tests.

3. Airflow and Sensors subsystems.

Table 1. Control Input Components for the Nonlinear Simulation Model.

Lateral-Directional Effector Longitudinal Effector

Differential LEF [Dif LEF] - (deg) Collective LEF [Coll LEF] - (deg)

Differential TEF [Dif TEF] - (deg) Collective TEF [Coll TEF] - (deg)

Differential Ail [Dif AIL] - (deg) Collective Stab [Coll STAB] - (deg)

Differential Stab [Dif STAB] - (deg)

Collective Rudder [Coll RUDD] - (deg)

Table 2. Longitudinal Dynamics Output Components.

u Body axis linear velocity ft/s

q Body pitch rate deg/s

θ Body pitch attitude deg

α̇ Time rate of change of angle of attack deg/s

α Angle of attack deg

h Altitude ft

NZcg
Body normal acceleration at cg (+up) g

NZsens
Body normal acceleration at accelerometer (+ up) g

NXcg
Body axial acceleration (+ forward) g

NZplt
Body normal acceleration at cockpit (+ up) g

u̇ Time rate of change of body linear velocity ft/s2

q̇ Body pitch angular acceleration deg/s2

The open-loop nonlinear rigid-body 6-DOF flight dynamics model is integrated with a generic flight
control law synthesized for operating conditions of Mach = 0.9 and Altitude = 15K ft. Linear models and
controllers representative of the actual aircraft were used to test closed-loop simulation of the F/A18-AAW
Simulink model. The related gains and architecture for the flight control law were validated by comparing
closed-loop results from the F/A-18 AAW nonlinear model as well as from the linearized F/A-18 C/D model.
Closed-loop responses from our high-fidelity nonlinear F/A-18 AAW model were consistent with the ones
obtained from the F/A-18 C/D aircraft.

II.B. Linear Aeroelastic Solver

To provide a unified formulation for the aeroelastic interaction between a flexible structure and its airflow,
a model for a flexible aircraft is defined with respect to a body-fixed reference system and driven by aerody-
namic, thrust, elastic and gravity (g) forces and moments. The model was also developed and implemented
in the Matlab/Simulink simulation environment where the nonlinear flight dynamics are defined as:

m
[

V̇b + Ωb × Vb − Rbg(E) [0, 0, g]T
]

= FA + Fδ + FT + ∆F

JΩ̇b + Ωb × JΩb = MA + Mδ + MT + ∆M

where m and J are the air vehicle mass and inertia tensor, and Rbg(E) is the rotation mapping from inertial
to body-axes, (E = [ φ, θ, ψ ]). The dynamics described above are driven by the forces and moments on the
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Table 3. Lateral-Directional Dynamics Output Components.

β Sideslip angle rad

p Body axis roll rate rad/s

r Body axis yaw rate rad/s

φ Body roll attitude rad

ψ Body yaw attitude rad

NYcg
Body lateral acceleration at cg g

NYsens
Body lateral acceleration at accelerometer g

psens Body axis roll rate rad/s

rsens Body axis yaw rate rad/s

β̇ Time rate of change of sideslip angle rad/s

ṗ Body axis roll angular acceleration rad/s2

ṙ Body axis yaw angular acceleration rad/s2

right-hand side. Here, FA and MA are the external aerodynamic forces and moments on the air vehicle. They
are a function of the aerodynamic flight states, Mach number, body angular rates (Ωb) and control surface
deflections and are usually obtained by CFD computations, wind-tunnel data, or flight tests. Fδ and Mδ

are the aerodynamic forces and moments from the control surfaces commanded by the flight control system
and pilot inputs while FT and MT includes the thrust loads. ∆F and ∆M are the aeroelastic incremental
loads due to the structural oscillation and are computed by an incremental aeroelastic forces and moments
solver.16

This incremental aeroelastic forces and moments solver is a state space equation whose state are the
modal coordinates of the elastic modes, defined here as ηe, and the aerodynamic lags. The input of the
incremental aeroelastic forces and moments solver is the incremental airframe state and the incremental
control input provided by the rigid-body 6-DOF flight dynamic model and the output is the incremental
forces and moments due to the aeroelastic effects, ∆F and ∆M , that are added to the 6-DOF equation of
motion. In addition, the incremental aeroelastic forces and moments solver compute the effects of structure
dynamics at the sensor locations. These effects are added to the sensor output of the rigid-body motion.
Note that the aerodynamic lags are introduced by the rational function approximation of the frequency
domain unsteady aerodynamics computed by the unsteady aerodynamic methods.18

The linear aeroelastic solver was built into the Simulink block diagram depicted in Figure 2. It can be seen
that the Incremental Aeroelastic Forces and Moments Solver is interconnected with the F/A-18AAW

Rigid 6-DOF subsystem throughout the input vectors denoted as Effectors and Airframe States and output
vectors denoted as ∆F , ∆M , and ηe.

III. Preliminaries

Consider a discrete, linear, time-invariant system described in state-space form as

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) + v(t)
(1)

with state vector x ∈ R
n, input vector u ∈ R

m, output vector y ∈ R
p, and system matrices A ∈ R

n×n,
B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m. The vector v ∈ R
p is a zero-mean, possibly-colored noise signal with

constant variance that is uncorrelated with the input u. We restrict ourselves to systems that are both
controllable and observable.

The input-output map can alternatively be described by the convolution operation

y(t) =

∞
∑

k=0

g(k)u(t − k) + v(t) (2)
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Figure 2. Addition of the Incremental Aeroelastic Forces and Moments Solver to the Nonlinear Rigid-Body 6-DOF
Subsystem.

involving the system Markov parameters g(k) defined as

g(k) =







D k = 0

CAk−1B k > 0
. (3)

When applied to sequences of input-output data, (2) may be expressed with two matrices mapping past and
future input sequences, up and uf respectively, onto a future output sequence yf , as

yf = Hup + Tuf + v (4)

in which

up =
[

u(0) u(−1) u(−2) · · ·
]T

,

uf =
[

u(1) u(2) u(3) · · ·
]T

,

yf =
[

y(1) y(2) y(3) · · ·
]T

,

v =
[

v(1) v(2) v(3) · · ·
]T

,

and

H =









g(1) g(2) · · ·

g(2) g(3) · · ·
...

...
. . .









, T =









g(0) 0

g(1) g(0)
...

...
. . .









.

T is a block-Toeplitz matrix of Markov parameters, which maps all future input data {u(t)|t ≥ 1} onto
future output data {y(t)|t ≥ 1}, and H is a block-Hankel matrix of system Markov parameters, which maps
all past input {u(t)|t < 1} onto future output. The state of the system at time t = 1 is thus determined by
the term Hup.

Examining (4), the linearity and time-invariance of the system leads to the following observations:
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• Sequences of data generated by the system can be expressed as linear combinations of other sequences
of data generated by the same system.

• A sufficient number of linearly-independent data sequences of a given length will contain a basis for
the subspace containing all sequences of the same length that can be generated by the system.

The goal of realization-based identification algorithms is to find a system realization from a factorization of
this basis.

IV. Impulse-Based Realization

The objective of the impulse-based deterministic realization problem is to find the system order n and
a state-space model (1) with respect to an arbitrary state basis given a finite number of system Markov
parameters (2). A celebrated algorithm given by19 uses the following two facts to obtain the system matrices
(A, B, C) from the Hankel matrix H filled with Markov parameters:

1. H is the product of the extended observability matrix Γ and the extended controllability matrix Ω:

H = ΓΩ =
[

C CA CA2 · · ·
]T [

B AB A2B · · ·
]

.

2. H exhibits a shift-invariant property such that should H be shifted up by p rows or to the left by m

rows, the result is a block-Hankel matrix
−→
H with the property

−→
H = ΓAΩ.

A controllable and observable system implies that Γ and Ω respectively have full column and full row

rank n, making H a rank-n matrix. Thus, given a finite-dimensional pair H ∈ R
N1×N2 and

−→
H ∈ R

N1×N2

H =













g(1) g(2) · · · g(n2)

g(2) g(3) · · · g(n2 + 1)
...

...
. . .

...

g(n1) g(n1 + 1) · · · g(n1 + n2 − 1)













(5)

−→
H =













g(2) g(3) · · · g(n2 + 1)

g(3) g(4) · · · g(n2 + 2)
...

...
. . .

...

g(n1 + 1) g(n1 + 2) · · · g(n1 + n2)













in which N1 = n1 · p ≥ n and N2 = n2 · m ≥ n, for any factorization of H

H = ΓΩ

=
[

C CA · · · CAn1−1

]T [

B AB · · · An2−1B
]

there exist a left inverse Γ† of Γ and a right inverse Ω† of Ω such that A may be solved for as

A = Γ†−→HΩ†. (6)

(·)† denotes the Moore-Penrose psuedoinverse. C is subsequently taken as the first p rows of Γ and B from
the first m columns of Ω. With D taken from g(0), a complete, irreducible, state-space realization of (1) is
obtained.

Although the use of impulse-based signals on control surfaces provide broadband excitation for identifi-
cation purposes, the usage of such signals is highly unrealistic. In the following we show how such broadband
excitation signals can be avoided and replaced by more realistic step-based excitation signals.
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V. Step-Based Realization

V.A. Data-Matrix Equations

To formulate similar realization-based algorithms on the basis of step-based excitation signals is to first
quantify a basis for the subspace that allows us to reconstruct a state-space model. To stay with the familiar
realization algorithm as defined above, it will be the subspace spanned by the system Hankel matrix H .
For a persistently exciting input signal, linear-indepence of data sequences can be attained by windowing
a single, longer data sequence and organizing the smaller sequences into a Hankel matrix.10 By forming a
Hankel matrix of future output data

Yf =













y(1) y(2) · · · y(n2)

y(2) y(3) · · · y(n2 + 1)
...

...
. . .

...

y(n1) y(n1 + 1) · · · y(n1 + n2 − 1)













, (7)

a Hankel matrix of future input data

Uf =













u(1) u(2) · · · u(n2)

u(2) u(3) · · · u(n2 + 1)
...

...
. . .

...

u(n1 + 1) u(n1 + 2) · · · u(n1 + n2)













,

and a Hankel matrix of noise data

V =













v(1) v(2) · · · v(n2)

v(2) v(3) · · · v(n2 + 1)
...

...
. . .

...

v(n1) v(n1 + 1) · · · v(n1 + n2 − 1)













,

the data can be expressed in a matrix form as

Yf = HUp + TUf + V (8)

in which the matrix Up is a Toeplitz matrix of past input values. If the system is initially at rest, this matrix
is square and of finite dimensions:

Up =













u(0) u(1) · · · u(n2 − 1)

0 u(0) · · · u(n2 − 2)
...

...
. . .

...

0 0 · · · u(0)













.

The shift-invariance of the Hankel matrices in (5) can be extended to the measured output matrix Yf .

Defining
−→
Y f as Yf shifted by a single column to the left, thus now including y(N) (N = n1 + n2) yields

−→
Y f =













y(2) y(3) · · · y(n2 + 1)

y(3) y(4) · · · y(n2 + 2)
...

...
...

...

y(n1 + 1) y(n1 + 2) · · · y(n1 + n2)













.

and the resulting column-wise shift allows one to write a shifted data equation

−→
Y f =

−→
HUp +

−→
T Uf +

−→
V (9)
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where
−→
H is given in (5) and

−→
T =













g(1) g(0) 0 · · · 0

g(2) g(1) g(0) · · · 0
...

...
...

...
...

g(N1) g(N1 − 1) · · · g(1) g(0)













,
−→
Γ =









CA
...

CAn1









.

The data equation given in (8) and the shifted data equation in (9) form the basis of the step-based identi-
fication algorithm.

V.B. Identification from Step-Based Experiments

Instead of applying a unit-pulse excitation signal, consider the more practical situation of applying a unit-
step input with initial state x0 = 0. The matrix Up is then an upper-triangular unity matrix, and the matrix
product TUf is given by

TUf =













g(0) g(0) · · · g(0)

g(0) + g(1) g(0) + g(1) · · · g(0) + g(1)
...

...
...

∑L
i=0 g(i)

∑L
i=0 g(i) · · ·

∑L
i=0 g(i)













which is equivalent to the noise-free step response data

TUf =













y(0) y(0) · · · y(0)

y(1) y(1) · · · y(1)
...

...
...

y(L) y(L) · · · y(L)













(10)

In the deterministic case, the weighted Hankel matrix R = HUp can be computed from (8) via

R = HUp = Yf − TUf

where Yf is simply a Hankel matrix (7) with step output response measurements and the product TUf given
in (10) is a matrix with identical columns filled with step output response measurements. A similar shifted

version
−→
R can be computed from (9).20 The following results hold for R and

−→
R in the deterministic case:

• If u(0) �= 0, the square N2 × N2 matrix Up has full rank. Consequently, rank(R) = rank(H) = n, and
R has a decomposition R = R1R2 in which R1 and R2 have respectively full column rank n and full
row rank n. In the case of noise-corrupted observations, a rank-n approximation of R can be found
via its SVD.

• Since R = HUp is a post-multiplication of H , R exhibits the same shift-invariant property as H , and

therefore
−→
R = R1AR2 can be used to recover A via left and right inverses taken from the decomposition

R = R1R2.

The above observations imply that a realization algorithm similar to Kung’s can be formulated using
R instead of H . Given the output y(t) of a unit-step response, applying the realization algorithm to R =
Yf −TUf will yield significantly better results than applying the algorithm to an estimate of H obtained by
differentiating the step response measurements, as doing so would amplify high-frequency noise and increase
the variance of the estimated parameters.

V.C. Realization from Noise-Corrupted Measurements

If imperfect measurements of the step response in the Hankel matrix R are used to create a noise-perturbed
matrix R̂, non-deterministic effects will likely cause R̂ to have full rank regardless of its dimensions. This
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would imply that the system has infinite order, making a state-space realization impossible. To address this,
the dimension of the subspace is reduced via a model-reduction problem so that only the most significant
parts of R̂ are retained. As in,21 both the system order n and a rank-n estimate of the Hankel matrix R can
be computed from the singular-value decomposition (SVD) of R̂:

R̂ =
[

Un Us

]

[

Σn 0

0 Σs

][

V T
n

V T
s

]

in which Σn and Σs are diagonal matrices containing the singular values ordered from largest to smallest,
such that the first n singular values of Ĥ are contained in Σn and the remaining in Σs.

In the deterministic case, R̂ = R, rank(R̂) = n, and Σs = 0. In the non-deterministic case, a “large” R̂
will exhibit a relatively large difference in the value between the nth and the (n + 1)th singular value. An
estimate of n may be determined by choosing a threshold at which the singular values decrease significantly,
and a rank-n approximation of R̂ is then given by

R̂n = UnΣnV T
n . (11)

The decomposition of R̂n in (11) also provides a convenient means of factoring the controllability and
observability matrices as

Γ = UnΣ1/2
n , Ω = Σ1/2

n V T
n ,

with the expressions for the left inverse Γ† and right inverse Ω† in (6) simplifying to

Γ† = Σ−1/2
n UT

n , Ω† = VnΣ−1/2
n .

allowing the A-matrix of the state space realization to be estimated via

Â = Γ†−→HΩ†

An estimate B̂ of the input matrix B is subsequently taken as the first m columns of Ω. With the estimates
Â and B̂ known, the state vector x(t) may be reconstructed via the recursive formula

x̂(t + 1) = Âx̂(t) + B̂u(t), x(0) = 0

for t = 0, 1, . . . , N . With the reconstructed state vector x̂(t), the realization algorithm that is used to
compute the Â and B̂ matrices, can be followed by a standard least-squares optimization problem to compute
an estimate Ĉ of the output matrix C and an estimate D̂ of the (possible) feedthrough matrix D.

Using the reconstructed state x̂(t), a least-squares problem can be used to estimate (any of) the state
matrices by rewriting (1) into

Y (t) = ΘU(t) + V (t), t = 1, . . . , N

where

Y (t) =

[

x̂(t + 1)

y(t)

]

, Θ =

[

Â B̂

Ĉ D̂

]

, U(t) =

[

x̂(t)

u(t)

]

and

V (t) =

[

w(t)

w(t)

]

indicates possible noise w(t) due to the reconstruction of the state vector x(t) and the similar additive noise
v(t) on the measured step response output y(t). Combining all data for t = 1, . . . , N in a single matrix
representation

Y = ΘU + V, Y =
[

Y (0) Y (1) · · · Y (N)
]

, U =
[

U(0) U(1) · · · U(N)
]

(12)

shows that the state space matrices in Θ can be updated via a standard least-squares solution

Θ̂N
LS =

1

N
YUT [

1

N
UUT ]−1 (13)
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provided U has full row rank. The condition of a full row rank U is related to the level of excitation the
input signal {u(t)} and is trivially satisfied for pulse or broadband excitation input signals.

It should be noted that the parameter estimate Θ̂N
LS in (13) can be used to re-estimate all the state space

matrices. Obviously, with Â, B̂ and Ĉ already available from the realization algorithm, one can simply
compute the matrix D̂ only, by choosing

Y (t) =
[

y(t) − Ĉx̂(t)
]

, Θ =
[

D̂
]

, U(t) =
[

u(t)
]

and combining all data for t = 1, . . . , N in same matrix representation as given in (12). If the system G(q)
is known to have at least one step time delay, the matrix D = 0 and the additional computation of D̂ can
be avoided by setting D̂ = 0. However, it is more advantageous to remove any delays from the input/output
data and estimate a state space realization with a non-zero D̂ to avoid the additional estimation of poles at
zero in Â due to any (known) time delays in the system G(q).6

The additional least-squares estimation makes the estimation of the feedthrough matrix D̂ less sensitive
to noise. Let

ȳ(t) = C(qI − A)−1Bu(t) and ŷ(t) = Ĉ(qI − Â)−1B̂u(t)

and assume a consistent estimate of the state matrices (up to a singularity transformation), making

lim
N→∞

ŷ(t) = ȳ(t) w.p. 1

then in case

lim
N→∞

1

N
VUT = 0 (14)

a consistent estimate of the feedthrough matrix D is obtained

lim
N→∞

D̂ = D w.p. 1

in the presence of a colored noise V. The condition (14) is equivalent to the condition that the input u(t)
is uncorrelated with the noise v(t) on the on the output y(t). This condition can be satisfied asymptotically
as N → ∞ provided experiments are done in a way such that the input excitation is uncorrelated with
measurement noise.

VI. Application to F/A-18AAW Model Aeroelastic Model

To illustrate the power of this realization method, the procedure is used to model the (poorly) damped
resonance modes in the F/A-18 AAW aeroelastic model at a speed of Mach 0.90 and altitude of 15kft. The
application of a step u(t) on the Collective Leading Edge Flaperon was simulated and 1000 data points
sampled at 200Hz (5 seconds of data) of the yi(t) = NZKM023R(t) (body normal acceleration at the right
wing) were used to construct the 499×500 matrix R for the realization algorithm.

For the Mach 0.9 and 15kft condition, the singular value decomposition gives rise to a simple 9th-order
model, R̂(q), for the map from u(t) to yi(t). Although the 9th-order model is a simplication of the actual
non-linear aeroelastic model used to generate the data, such simple linear models based on experimental
data can accurately predict the main resonance modes and damping of the structure in the presense of
small perturbations.22 The measured step response (simulated with the F/A-18AAW aeroelastic model) and
simulated step response (with the 9th order closed-loop model) show excellent agreement in Figure 3(a).
The estimation of the poorly-damped resonance modes is also confirmed by the Bode plot of the 9th order
model R̂i(q) depicted in Figure 3(b).

To illustrate that the proposed step-based identification method also performs well in the presense of a
poor signal-to-noise ratio, step-based simulation were performed on the F/A-18 AAW aeroelastic model in
the presence of (random) gust disturbances.23 Simulating the model at the same flight condition of Mach
0.90 and altitude of 15kft and in the presense of gust disturbances, the identification algorithm still captures
the main resonance modes of the structure based on step-response excitation of the Collective Leading Edge
Flaperon and measurements of the body normal acceleration at the right wing. The results of the measured
signals and simulated response by the 9th-order linear model has been depicted in Figure 4. Again, the
estimation of the poorly-damped resonance modes is also confirmed by the Bode plot of the 9th-order model
R̂(q) depicted in Figure 4(b).
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(b) Bode Plot of 9th order model R̂(q)

Figure 3. Result of step-based identification method on non-linear F/A-18AAW Model at M=0.90, H= 15Kft.

VII. Conclusions

Using simple step-based excitation signals that can be applied to any of the control surfaces, this pa-
per formulates an realization-based identification method that allows one to model aerodynamic induced
structural vibration modes with little user intervention. The proposed method is a modified version of the
well-known realization algorithm that is extended to arbitrary input signals to formulate a discrete-time
model directly on the basis of step-based experiments. Since the numerical implementation only requires a
singular value decomposition and a standard least-quares estimation, robust numerical algorithms can be
put in place to formulate a dynamical model with little or no user intervention.

The procedure is illustrated on time-domain data obtained from a high fidelity 6-DOF rigid-body simu-
lation model of the F/A-18AAW aircraft coupled to an linear aeroelastic solver. Even in the presence of a
significantly small signal-to-noise ratio due to possible gust disturbances, the porposed step-based realization
algorithm is able to find the location of the main resonance modes and damping ratios of the aeroelastic
system and model them into a relatively low-order linear state-space model. The model can be used to tune
an aerservoelastic controller to dampen structural vibrations via the control surfaces or impose limitations
on the flight envelope based on the estimated structural vibrations.
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