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Abstract As capacity demands for magnetic tape

storage systems grow, servo actuator design for track-

ing data on high density tape media presents new

modeling and control design challenges. In this paper a

frequency weighted subspace identification algorithm

is presented for control relevant model estimation of a

tape servo actuator. Common to other subspace iden-

tification methods, the proposed algorithm is based on

linear algebra techniques providing means for model

order selection and model computation. The proposed

subspace identification also allows for frequency

dependent weightings to emphasize frequency data

around the cross-over frequency to find models rele-

vant for control design. The algorithm is applied to

data obtained from a tape storage device, demon-

strating model order selection and the estimation of

servo actuator dynamics with control relevant model fit

criteria.

1 Introduction

Due to its enormous volumetric storage density, high

data rate and excellent archival capability, magnetic

tape storage is the primary choice for backup applica-

tions. However, as the cost/storage-capacity ratio for

hard disk drives keeps decreasing, tape drives can only

remain competitive when their volumetric storage

density increases as well. The latter can be accom-

plished by improving the track density, but results in

increased sensitivity to high frequency disturbances,

such as lateral tape motion. Since lateral cross-track

displacements between the data track and the read/

write head on the order of 10% of the track width

causes read/write errors, it is clear that high perfor-

mance control is crucial.

Reliable measurements of the frequency response of

the servo actuator can be obtained from a tape servo

system. Such measurements can be used to construct a

low order model of the tape servo system on the basis

of frequency domain subspace methods (De Schutter

2000; McKelvey et al. 1996; Viberg 1995). The main

advantage of a subspace method over a standard curve

fitting methodology is determined by the following

three facts. Firstly, a subspace method is based on

projection techniques that can be computed via stan-

dard linear algebra procedures and does not require a

non-linear or iterative optimization, as is required in

curve fitting (de Callafon et al. 1996; Ljung 1999).

Secondly, a subspace method does not require a spe-

cific parametrization in terms of the polynomial coef-

ficients of a transfer function, as a model is found

directly in terms of its state space realization. This is an

obvious advantage when estimating multivariable

(multi-input, multi-output models), as the subspace

method can be used without any modification, while a

curve fitting methodology would have to parametrize

the coefficients of a multivariable transfer function

explicitely (Gaikwad and Rivera 1997). Finally, a

subspace method can handle large order models, as

state space models are computed by numerically stable

linear algebra techniques. Estimating high order
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models in a polynomial or transfer function format

requires a specific polynomial parametrization (Rolain

et al. 1994; Schoukens and Pintelon 2001) to guarantee

numerical stability of the parameter estimates.

Based on well-established results for subspace

identification (McKelvey et al. 1996), a new procedure

for computing low-order models on the basis of fre-

quency domain data is presented in this paper. The

focus of this paper is an algorithm for which the fre-

quency response data is obtained by spectral analysis

and is equidistantly spaced along the frequency axis.

The computational procedure is shown to have a strong

resemblance to the conventional Ho-Kalman algo-

rithm (Ho and Kalman 1966) to compute low order

models using a singular value decomposition (SVD) of

a symmetric Hankel matrix. In addition, the procedure

allows for both input and output weighting functions to

emphasize the frequency range around the cross-over

frequency for the control relevant estimation of models

(Gevers 2002). The corresponding subspace identifi-

cation technique is applied to experimental data ob-

tained from a tape drive system to demonstrate the

usefulness of the method in control relevant estima-

tion.

2 Motivation and problem formulation

2.1 Motivation for control relevant estimation

Consider the measured frequency response data of a

tape servo actuator given in Fig. 1. This frequency

response data is obtained via spectral analysis of a

measurement of the position error signal (PES) from

the tape servo system, the servo actuator input and an

external reference signal. More details on these signals

and their underlying relations are given in Sect. 5.1.

The data in Fig. 1 is presented for motivational pur-

poses, where one can observe the characterizing dou-

ble integrator in the low and middle frequency area,

while the high frequency area is dominated by reso-

nance modes and noise.

The dynamic behavior of a mechanical system is

dominated by resonance modes present around the

feedback control bandwidth of the servo system and

modeling these resonance modes are most relevant for

control design. Control relevant estimation recognizes

the fact that a model inevitably will be an approxi-

mation of the frequency domain data. Motivated by

stability requirements of a closed-loop system, control

relevant estimation requires frequency dependent

weighting filters to emphasize the frequency range

around the cross-over frequency (Gevers 2002; Hjal-

marsson 2005; Van Den Hof and Schrama 1995) and a

model estimation procedure should support this fea-

ture.

The objective of the modeling procedure presented

in this paper is to obtain a linear time invariant (LTI)

model in the form of a state-space realization through

frequency domain system identification techniques in

which the essential dynamics of the system for feed-

back control design purposes is modeled. For that

purpose we will employ subspace based estimation

techniques along with a flexible choice of frequency

domain input/output weightings to emphasize a fre-

quency range of interest.

2.2 Notation

Consider an nth order LTI model given by a state-

space representation

xtþ1 ¼ Axt þ But

yt ¼ Cxt þDut

where A 2 R
n�n;B 2 R

n�m; C 2 R
p�n and D 2 R

p�m:
Although the state-space realization is not unique, all

realizations are related through similarity

transformation of the state variable x ¼ Tx such that

xtþ1 ¼ T�1ATxt þ T�1But

yt ¼ CTxt þDut

where T is a non-singular matrix. The Markov

parameters Mk are defined via series expansion of

the state-space model
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Fig. 1 Bode plot (amplitude: top, phase: bottom) of the
frequency response measurements of a tape servo actuator
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GðqÞ ¼ CðqI �AÞ�1
BþD

¼
X

1

k¼1

Mkq
�k þD : Mk ¼ CAk�1B

where q–1 is the backward time shift operator

(q–1xt = xt-1). Note that Markov parameters Mk are

invariant to a similarity transformation. Important

matrices associated to the state-space realization are

the extended observability and controllability matrices

OrðC;AÞ ¼ CT ½CA�T . . . ½CAr�1�T
h iT

2 R
rp�n;

CrðA;BÞ ¼ B AB . . . Ar�1B
� �

2 R
n�rm

that have full rank n for r ‡ n if the pairs (C, A) and (A,

B) are observable and controllable respectively

(Skelton 1988). Moreover, the product of OrðC;AÞ
and CrðA;BÞ can be related to the Markov parameters

Mk via the Hankel matrix

HqrðMkÞ¼OqðC;AÞCrðA;BÞ¼

M1 M2 . . . Mr

M2 M3 . . . Mrþ1

.

.

.
.
.
.

.
.

.
.
.
.

Mq Mqþ1 . . . Mqþr�1

2

6

6

6

4

3

7

7

7

5

ð1Þ

and the rank of Hqr is n, provided that (C,A), (A,B) is

observable and controllable, and q,r ‡ n. Finally, the

Markov parameters Mk can be related to the frequency

response G(ejx) = C (ejxI–A)–1B + D over an

equidistantly spaced frequency grid via the (inverse)

discrete-time Fourier transform

Mk ¼
1

2p

Z

2p

0

GðejxÞejxk dx

GðejxÞ ¼
X

1

k¼0

Mke
�jxk

2.3 Problem statement

Consider (noisy) equidistantly spaced frequency do-

main measurements Gk ¼ GðejxkÞ þ nk for xk ¼ pk=N;

k ¼ 0; . . . ;N; of a nth order LTI system. Equidistantly

spaced frequency measurements can be obtained from

standard Fourier or spectral analysis or by linear

interpolation of non-equidistantly spaced frequency

domain data. Let the measurements Gk be converted

to Markov parameter estimates gk via an inverse dis-

crete Fourier transform (IDFT) and consider the

Hankel matrix Hqr(gk) constructed from these Markov

parameter estimates as in (1). It should be noted that in

general the Hankel matrix Hqr(gk) will have full rank

max(q,r) ‡ n, due to noise nk on the frequency domain

measurements.

Given the (full rank) Hankel matrixHqr(gk) and using

Xk k2 to indicate the induced 2-norm of a matrix X:

Xk k2¼ sup
y6¼0

Xyk k2
yk k2

¼ �rðXÞ

where �rðXÞ is the largest singular value of X, the

modeling problem considered in this paper is to find

the order n̂ and a realization ðÂ; B̂; ĈÞ from a rank n̂

matrix Ĥqr defined by

Ĥqr ¼ arg min
H

HqrðgkÞ �Hk k2 ð2Þ

It should be noted that (2) aims at finding the best rank

n̂ matrix Ĥqr of size compatible to the full rank

max(q,r) Hankel matrix Hqr(gk). In case the frequency

domain data Gk was generated by a nth order system,

n̂ ¼ n would be a consistent estimate of the model

order.

As indicated in the motivation for control relevant

model estimation, the modeling procedure should

facilitate the estimation of a low order model n̂\n;

emphasizing certain features in the frequency re-

sponse. To accomplish this task, we will consider the

weighted version of (2) given by

Ĥqr ¼ argmin
H

C
q
y HqrðgkÞ �Hð ÞC

r

u

�

�

�

�

�

�

2
ð3Þ

to find a order n̂ and a realization ðÂ; B̂; ĈÞ of a

model that approximates the measured frequency

response data represented by the Markov parameter

gk in the (full rank) Hankel Hqr(gk). To anticipate

the results mentioned in this paper, C
q
y and C

r

u in

(3) are yet to be determined weighting matrices,

obtained from a user specified output/input frequency

weighting.

3 Frequency domain subspace identification

3.1 Model order determination

The given frequency response data Gk measured on [0,

p] can be symmetrically extended on the interval [p,

2p] by taking the complex conjugate

GNþk ¼ G�
N�k k ¼ 1; . . . ;N � 1

Taking the IDFT of the extended frequency response

gives the estimates gk of the Markov parameters Mk of

the system
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gk ¼
1

2N

X

2N�1

s¼0

Gse
j2pks=2N k ¼ 0; . . . ; 2N � 1

Note that for a system with well-damped poles, as

the number of frequency points N tend to infinity,

the estimates gk will converge to the true system

Markov parameters Mk, making Hqr(gk) a rank n

matrix. Using the fact that the complex exponential

functions are orthogonal, it was shown in McKelvey

(1995) that the estimated Markov parameters gk
satisfy

gk ¼ CAk�1
X

1

m¼0

A2mN

 !

B ¼ CAk�1 I �A2N
� ��1

B

in the noise-free case. Moreover,
P1

m¼0 A
2mN ¼

I �A2N
� ��1

holds in case maxi|ki(A)| < 1. where

ki(A) denotes the ith eigenvalue of A. As a result,

the Hankel matrix Hqr(gk) can be factorized as

HqrðgkÞ ¼ Oq I �A2N
� ��1

Cr ð4Þ

under the assumption that the underlying model is

discrete-time stable. With a minimal state space reali-

zation (A,B,C) it can be seen that a noise-free esti-

mated Hankel matrix Hqr(gk) is also of rank n, despite

the fact it was based on only a finite number N of

frequency domain measurements.

As indicated before, the gk are found via an IDFT of

noisy frequency domain measurements Gk and the

Hankel matrixHqr(gk) will be full rank max(q,r). Using

the shorthand notation Hqr(gk) = Hqr, the minimiza-

tion in (2) approximates Hqr by a matrix Ĥqr of the

same size asHqr with rank n̂\max ðq; rÞ by minimizing

�rðHqr � ĤqrÞ; where �rðHÞ denotes the maximum sin-

gular value of a matrix H. This minimization problem

can be solved using a SVD, where dominant singular

values of the system are separated from less important

ones (Zeiger and McEwen 1974). A lower rank

approximate Hankel matrix Ĥqr can be extracted by

performing a SVD on Hqr

Hqr ¼ Un̂ Uo½ �
Rn̂ 0
0 Ro

� �

VT
n̂

VT
o

� �

and partitioning the result by the n̂ largest singular

values into Rn̂ to construct

Ĥqr ¼ Un̂Rn̂V
T
n̂ ð5Þ

Considering the (unweighted) minimization problem in

(2), it can be seen that the solution Ĥqr given in (5)

satisfies Hqr � Ĥqr ¼ UoRoV
T
o and �rfHqr � Ĥqrg ¼

rn̂þ1fH
qrg is minimized.

Typically the McMillan degree (order) n of a system

is not known and the SVD can provide insight into the

order of the system as follows. In the noise-free case n̂

can be chosen such that �rfRog ¼ 0 making n̂ ¼ n: In

the case of noisy frequency response measurements,

plotting all non-zero singular values allows one to

make a distinction between n̂ large and n̂�max ðq; rÞ

small singular values. One can determine the model

order n̂ by deciding on a level of the Hankel singular

values that is significantly different from 0. The level is

up to the user but should be determined by the value of

the higher singular values that determine So. In addi-

tion, emphasizing frequency data around the cross-

over frequency to find models relevant for control

design allows one to choose a value n̂\n\max ðq; rÞ

in order to find a low order approximation. Once the

SVD and n̂ have been determined, the realization of

the state-space model is relatively straightforward and

various model orders can be compared easily.

3.2 State-space realization from Ĥqr

Following the Ho-Kalman algorithm (Ho and Kalman

1966), a state-space system representation can be de-

rived from (1) by recognizing that the Hankel matrix

Hqr has the same column space as the extended

observability matrix Oq: Although there are several

methods for extracting a state-space realization

ðÂ; B̂; ĈÞ; a straightforward method uses the rank n̂

approximation Ĥqr and a shifted version H
qr

of the

Hankel matrix Hqr defined by

H
qr
¼

g2 g3 . . . grþ1

g3 g4 . . . grþ2

.

.

.
.
.
.

.
.

.
.
.
.

gqþ1 gqþ2 . . . gqþr

2

6

6

6

6

4

3

7

7

7

7

5

The matrix Hqr (based on noisy data) can be written in

a factorization

Hqr ¼ H1H2 þ E ¼ Un̂Rn̂V
T
n̂ þUoRoV

T
o

¼ Ĥqr þUoRoV
T
o ð6Þ

where E indicates an error matrix due to the noisy

frequency domain measurements. Using gk = CAk-1B,

it is straightforward to see that

H
qr
¼ H1AH2 þ �E ð7Þ

where �E is a shifted version of the same error matrix E.

With the choice n̂ � n; an estimate Â of size n · n can

be computed via a least squares (LS) solution
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Â ¼ H
y
1H

qr
H

y
2 ¼ R

�1=2
n̂ UT

n̂ H
qr
Vn̂R

�1=2
n̂

where the non-singularity of Rn̂ is guaranteed as n̂ � n:
Finally it can be observed from (4) that the Hankel

matrix Hqr can be written as the decomposition

Hqr ¼ Oq I �A2N
� ��1

Cr þ E

in which the extended observability and controllability

Gramians of the (unknown) state space realization

(A,B,C) appear. Using the same decomposition for the

rank n̂matrix Ĥqr ¼ Un̂Rn̂V
T
n̂ allows Ĥqr to be written as

Ĥqr ¼ Ôq I � Â2N
� 	�1

Ĉr þ Ê ð8Þ

where Ôq and Ĉr are the extended observability and

controllability Gramians

Ôq ¼ ĈT ½ĈÂ�T . . . ½ĈÂq�1�T
h iT

Ĉr ¼ B̂ ÂB̂ . . . Âr�1B̂
h i

of the to be computed state space realization ðÂ; B̂; ĈÞ:
The error matrix Ê ¼ 0 in case Ĥqr obeys a Hankel

structure similar as in (1). Since Ĥqr is computed via a

SVD of a Hankel matrix Hqr; �rfÊg ¼ 0 in case

�rfHqr � Ĥqrg ¼ rn̂þ1fH
qrg ¼ 0: As indicated before,

the (unweighted) minimization problem in (2) solved

by a SVD minimizes �rfHqr � Ĥqrg; resulting in a small

error matrix Ê: This allows the computation of the

extended observability and controllability matrices via

Ôq ¼ Un̂R
1=2
n̂ I � Â2N
� 	1=2

Ĉr ¼ I � Â2N
� 	1=2

R
1=2
n̂ VT

n̂

The matrices Ĉ and B̂ can now be extracted from the

first p rows and m columns of Ôq and Ĉr via Ĉ ¼ JCÔ
q

and B̂ ¼ ĈrJB; where

JC ¼ Ip 0p�ðq�1Þp

� �

; JB ¼ Im 0ðr�1Þm�m

� �T
ð9Þ

and Ii denotes the i · i identity matrix, 0k · l the k · l

zero matrix.

4 Frequency weighted subspace identification

4.1 Frequency weighted balanced truncation

Frequency dependent weightings in a model identifi-

cation algorithm allows one to place emphasis on

frequency data (amplitude and phase) around the

cross-over frequency of the servo system to find models

relevant for control design. In subspace identification,

the frequency weighted balanced truncation technique

introduced by Enns (1984), and further developed in

Van Overschee and De Moor (1993), can be used to

achieve control-relevant weighting of the identified

models and the weighted subspace formulation was

given by the minimization posed in (3).

Consider the cascaded system consisting of an input

weighting filter Fu, the plantG and an output weighting

filter Fy. The weighting filters are user specified, and

without loss of generality, should be stable and stable

invertible. The input of the filter Fu is u 2 R
m; the input

of the plant is given by the signal w 2 R
m; the output of

the plant is y 2 R
p and the output of the weighting

filter is designated as z 2 R
p (Fig. 2).

It is shown in Claes (2006) that an input/output

frequency domain weighting in a subspace technique

based on equidistantly spaced frequency domain data

simply requires a weighted SVD of the matrix

C
q
yH

qr
C
r

u: Similar as in the unweighted case, the matrix

Hqr is the Hankel matrix built from the (noisy) esti-

mates of the Markov parameters of the system. The

matrices C
q
y and C

r

u are Toeplitz matrices that can be

computed from the Markov parameters of the input/

output weightings.

Let (Ay,By,Cy,Dy) denote the state space realization

of the output-filter Fy and let (Au,Bu,Cu,Du) be the

state space realization of the input-filter Fu, then the

Toeplitz matrices Cq
y and C

r

u are given by

C
q
y ¼

Dy 0 . . . 0

CyBy Dy . . . 0

.

.

.
.
.
.

.
.

.
.
.
.

CyA
q�2
y By CyA

q�3
y By . . . Dy

2

6

6

6

6

6

4

3

7

7

7

7

7

5

C
r

u ¼

Du CuBu . . . CuA
r�2
u Bu

0 Du . . . CuA
r�3
u Bu

.

.

.
.
.
.

.
.

.
.
.
.

0 0 . . . Du

2

6

6

6

6

4

3

7

7

7

7

5

It can be seen that C
q
y is a lower triangular Toeplitz

matrix constructed from the Markov parameters of the

output filter and C
r

u is an upper triangular Toeplitz

matrix that contains the Markov parameters of the input

weighting filter. Since the weighting filters are stable and

stable invertible, the matrices C
q
y and C

r

u will be

invertible and have full rank. In case the state-space

Fig. 2 Input filter–plant–output filter cascaded system

Microsyst Technol (2007) 13:1439–1447 1443

123



realizations of the weighting filters are unknown, the

Markov parameters of the filters can be constructed

from the frequency response data of the filters by IDFT.

As the matrices Cq
y and C

r

u have full rank, the rank

properties of the Hankel matrix are preserved. As a

result, rank C
q
yH

qr
C
r

u

� 	

¼ rank Hqrð Þ and taking the

SVD of C
q
yH

qr
C
r

u yields a weighted low rank matrix

approximation C
q
yĤ

qr
C
r

u given by

C
q
yĤ

qr
C
r

u ¼ Un̂Rn̂V
T
n̂ ; with

C
q
yH

qr
C
r

u ¼ Un̂ Uo½ �
Rn̂ 0

0 Ro

� �

VT
n̂

VT
o

� �

Using a computational procedure analogous to (6) and

(7) allows the Â matrix to be computed from

Â ¼ R
�1=2
n̂ UT

n̂ C
q
yH

qr
C
r

uVn̂R
�1=2
n̂

Furthermore, writing an equivalent expression as (8)

for the matrix C
q
yĤ

qr
C
r

u yields

C
q
yĤ

qr
C
r

u¼Un̂Rn̂V
T
n̂ ¼C

q
yÔ

q I�Â2N
� 	�1

ĈrC
r

uþ Ê ð10Þ

As in the unweighted case, if Ê¼0 then Ĥqr obeys a

Hankel structure and the extended observability and

controllability matrices can be found from (10). With a

small error matrix Ê; the matrices Ĉ and B̂ can be

computed via

Ĉ ¼ JC C
q
y

� 	�1

Un̂R
1=2
n̂ I � Â2N
� 	1=2

B̂ ¼ I � Â2N
� 	1=2

R
1=2
n̂ VT

n̂ C
r

u

� ��1
JB

with the operators JC and JB defined in (9).

The method described here can also be used when

there is only input weighting or only output weighting.

Respectively the matrix C
q
y or C

r

u is then set equal to

the identity matrix and the remainder of the procedure

is the same as above. If in a SISO identification prob-

lem an input weighting filter is applied (with no output

weighting) and then the same filter is used as output

weighting (but without input weighting), the algorithm

will return the same input-output model in both cases.

4.2 Summary of weighted equidistant frequency

data subspace algorithm

To summarize the computational procedure for the

weighted frequency domain subspace method pro-

posed in this paper, consider complex valued frequency

response measurements Gk of a plant and frequency

domain points Fyk ;Fuk respectively of an output and

input weighting filter given at k = 0,..., N equidistantly

spaced frequency points xk ¼ pk=N: The algorithm for

finding a minimal state-space realization of the plant is

then given by the following steps:

1. Extend the frequency response samples to the full

unit circle:

GNþk ¼ G�
N�k

FyNþk
¼ F�

yN�k
; k ¼ 1; . . . ;N � 1

FuNþk
¼ F�

uN�k

8

<

:

2. Let gi; gyi and gui be defined by the 2N-point IDFT:

gi ¼
1
2N

X

2N�1

k¼0

Gke
j2pik=2N

gyi ¼
1
2N

X

2N�1

k¼0

Fyke
j2pik=2N ; i ¼ 0; . . . ; qþ r � 1

gui ¼
1
2N

X

2N�1

k¼0

Fuke
j2pik=2N

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

3. Then the block Hankel matrix Hqr 2 R
qp�rm and

shifted block Hankel matrix H
qr
2 R

qp�rm are

defined as:

Hqr ¼

g1 g2 . . . gr

g2 g3 . . . grþ1

.

.

.
.
.
.

.
.

.
.
.
.

gq gqþ1 . . . gqþr�1

2

6

6

6

6

4

3

7

7

7

7

5

;

H
qr
¼

g2 g3 . . . grþ1

g3 g4 . . . grþ2

.

.

.
.
.
.

.
.

.
.
.
.

gqþ1 gqþ2 . . . gqþr

2

6

6

6

6

4

3

7

7

7

7

5

and the Toeplitz matrices corresponding to the

filters (C
r

u 2 R
rm�rm and C

q
y 2 R

qp�qp):

C
r

u¼

gu0 gu1 . . . gur�1

0 gu0 . . . gur�2

.

.

.
.
.
.

.
.

.
.
.
.

0 0 . . . gu0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; C
q
y ¼

gy0 0 . . . 0

gy1 gy0 . . . 0

.

.

.
.
.
.

.
.

.
.
.
.

gyq�1
gyq�2

. . . gy0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

where qþ 1[n̂; r � n̂ and q + r + 1 £ 2N.

4. Calculate the SVD of Cq
yH

qr
C
r

u; determine the order

n̂ of the plant by inspecting the singular values and

partition the SVD so that Rn̂ ¼ diagfr1; . . . ; rn̂g
contains the n̂ largest singular values:

C
q
yH

qr
C
r

u ¼ Un̂ Uo½ �
Rn̂ 0
0 Ro

� �

VT
n̂

VT
o

" #
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5. Determine the state-space matrices Â; Ĉ and B̂ as:

Â ¼ R
�1=2
n̂ UT

n̂ C
q
yH

qr
C
r

uVn̂R
�1=2
n̂

Ĉ ¼ JC C
q
y

� 	�1

Un̂R
1=2
n̂ I � Â2N
� 	1=2

B̂ ¼ I � Â2N
� 	1=2

R
1=2
n̂ VT

n̂ C
r

u

� ��1
JB

ð11Þ

where:

JC ¼ Ip 0p�ðq�1Þp

� �

JB ¼
Im

0ðr�1Þm�m

" #

and Ii denotes the i · i identity matrix and 0k · l the

k · l zero matrix.

6. In case the discrete-time model has no time-delay,

an additional feedthrough matrix D̂ 6¼ 0 has to be

estimated. The weighted LS problem

D̂¼ arg min
D2Rp�m

�
X

N

k¼0

Fyk Gk�D� Ĉ ejxkI� Â
� 	�1

B̂


 �

Fuk

�

�

�

�

�

�

�

�

2

F

ð12Þ

where Xk k2F¼
P

k

P

s xksj j2 is the Frobenius norm,

can be used to compute the unique minimizing

argument D̂:
7. The resulting estimated frequency response of the

input–output model on the basis of the matrices

ðÂ; B̂; Ĉ; D̂Þ is given by:

P̂ðejxÞ ¼ Ĉ ejxI � Â
� 	�1

B̂þ D̂ ð13Þ

5 Application to tape servo system

5.1 Experimental set-up

Consider the schematic diagram given in Fig. 3 of a

linear tape open (LTO) tape drive where modifications

were made to allow for injection of a reference signal R

into the closed loop system. The PES of the read/write

head from the desired position on the track is fed

back as input to the servo controller C. The controller

provides a control signal U as the input to the servo

actuator dynamics P. When the reference signal R is

sufficiently exciting, frequency domain measurements

of various closed-loop transfer functions can be esti-

mated via spectral analysis (Ljung 1999). For nota-

tional purposes we define the spectral estimates

Qk ¼
/PES;RðxkÞ

/RðxkÞ
; Sk ¼

/U;RðxÞ

/RðxÞ
ð14Þ

where uPES,R(xk) and uU,R(x) indicated the cross

spectral estimates between PES, control signal U and

reference signal R. The spectral estimate Sk denotes

the frequency domain measurements of the (discrete

time) error rejection or sensitivity function S(ejx) =

(1 + P(ejx)C(ejx))–1 that characterizes the perfor-

mance of the servo system.

Taking the ratio of the closed-loop transfer function

estimates in (14) yields the frequency domain mea-

surements Gk = Qk/Sk of the open-loop (uncontrolled)

servo actuator P. Motivated by stability requirements

of the servo system, control relevant estimation of a

model P̂ requires frequency dependent weighting filters

to emphasize the frequency range around the cross-

over frequency (Gevers 2002; Hjalmarsson 2005; Van

Den Hof and Schrama 1995). For a disturbance rejec-

tion performance criteria, an appropriate control rele-

vant frequency weighting filter F can be computed by

1

1þ CP
�

1

1þ CP̂
¼ F½P� P̂�; F ¼

C

ð1þ CPÞð1þ CP̂Þ

In case P̂ is a good model of the servo actuator

dynamics P, the filter F can be approximated by the

frequency domain data of the (output) filter

Fyk ¼ CkS
2
k ð15Þ

using the knowledge of the currently implemented

servo controller C and the measurements of Sk ob-

tained via the spectral analysis in (14). The frequency

domain data Fyk will be used as an output weighting in

the frequency weighted subspace method.

5.2 Subspace identification results

Measurements were taken using a Siglab data acqui-

sition system, which allows for easy post-processing in

Matlab. Excitation was done with a chirp signal up to

the Nyquist frequency of 4 kHz to obtain frequency

domain measurements of Qk and Sk in (14) and used

to compute the frequency domain data Gk = Qk/Sk
of the open-loop (uncontrolled) tape servo actuator.

Fig. 3 Schematic of the tape servo system and relevant signals
for identification purposes
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Applying the control relevant filter (15) as output

weighting and computation of the weighted SVD of the

Hankel matrix returns the singular value plot depicted

in Fig. 4.

As shown in Sect. 3.1, one of the advantages of

subspace identification techniques is the selection of

the model order. From the singular values of the

Hankel matrix one can determine the model order

such that the estimated model captures most of the

relevant dynamics present in the frequency response

data. One can determine the model order by drawing a

line, that indicates a level of the Hankel singular values

that is significantly different from 0. The level of this

line is up to the user but should be determined by the

value of the tail of the higher singular values in the

Hankel Singular Value plot as drawn in Fig. 4.

Drawing a level line around the value of 1 in Fig. 4,

indicates that 11 Hankel singular values are signifi-

cantly different from 0. This results in the choice of an

11th order model that should be able to capture the

main dynamic phenomena represented in the weighted

frequency response. Selection of n̂ ¼ 11 and computing

a state space realization via (11) followed by a weigh-

ted LS estimation (12) yields a Bode plot of the model

(13) that is given in Fig. 5.

It can be observed from Fig. 5 that the 11th order

subspace model fits the data closely around the current

servo bandwidth of 500 Hz, as both amplitude and

phase Bode plots of the estimated model follow the

measured frequency response data. A verification of

the accuracy of the model for servo system design is the

comparison of the measured frequency response Sk of

the current sensitivity function or error rejection

function S(ejx) and the sensitivity function

ŜðejxkÞ ¼
1

ð1þ P̂ðejxkÞCðejxkÞÞ

as predicted by the estimated model P̂ðejxÞ in (13). This

comparison has been depicted in Fig. 6 where it can be

seen that both the measured closed-loop frequency

domain data Sk and the modeled closed-loop behavior

ŜðejxkÞ on the basis of the 11th order model captures all

the main resonance modes in the closed-loop error

rejection function.

6 Conclusion

Subspace system identification algorithms rely on lin-

ear algebra results for realizing consistent model esti-

mates. A frequency weighted balanced realization

technique was presented for determining lower order

approximations for system dynamics. While preserving

the beneficial computational properties associated with

standard realization algorithms, the formulation allows

for the use of user-specified frequency dependent

weightings to emphasize frequency data around the

cross-over frequency to find models relevant for con-

trol design.

The algorithm is applied to closed-loop frequency

domain measurements obtained from a tape storage

device. A SVD on a frequency weighted Hankel matrix

is used to determine appropriate model order for

closed-loop model estimates as well as for the servo

actuator model estimates. Low-order control relevant

models were realized through frequency weighted

subspace identification techniques. The frequency
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Fig. 4 Logarithmic distribution of singular values found by the
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Fig. 5 Bode plot comparison of frequency domain data Gk

(dashed) with frequency response P̂ðejwÞ of the estimated 11th

order subspace model (solid)
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weighted subspace identification algorithm could be

used in alleviating or reducing the computational bur-

den associated with the non-linear optimizations in-

volved in standard frequency domain curve fitting

techniques and can easily be extended to identification

of multivariable models in case of dual-stage actuation

of a tape servo system.
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