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Abstract— Research in control design on the basis of identi-
fied models has lead to many iterative algorithms where perfor-
mance weights in a control objective function are determined
a-priori and remain fixed in order to evaluate performance
improvement during iterations. This paper considers the case
where performance weights are adjusted in iterative identifi-
cation and control schemes where performance robustness is
maintained during each iteration to yield a cautious control
design. In order to adjust performance weights, a nominal
model along with uncertainty description obtained from a sys-
tem identification procedure are used to adjust the performance
weighting function conjointly with robust control synthesis. A
framework is developed for measuring performance comparison
between iterations which allows adjustment of the performance
weights during the iterative cautious control design.

I. I NTRODUCTION

Addressing the problem of approximate identification and
model-based control generally requires iterative schemes[1]
composed of separate model estimation and control design
steps. Many early model-based iterative schemes focus on
nominal H∞ performance enhancement of a closed-loop
transfer function, denoted byT (P,C) indicating dependance
on a plant modelP and controllerC, while subsequent
degradation of achieved performance of the controllerC
applied to the plantP0 is evaluated via the triangle inequality
[2]. A requirement that performance degradation should be
small places emphasis on a closed-loop relevant identification
error and implies the need for performance robustness in both
the identification and control design [3].

Model-based iterative schemes have been developed such
that evaluation of achieved performance is bounded by the
worst-case performance of a controllerC evaluated over a set
of modelsP. Performance robustness can then be monitored
at each stage of the iteration process such that a mono-
tonic decrease in worst-case performance is guaranteed [4].
Monitoring performance robustness however only entails per-
formance improvement if the closed-loop transfer function
T (P,C) is adjusted appropriately during iterations. One way
to incorporate appropriate adjustments is through the explicit
parametrization ofT (P,C,W ) as a function ofW , where
W reflects the general notion of a performance weighting
function. Obviously selecting a fixed weighting function
W allows a comparison between‖T (P0, Ci+1,W )‖∞ and
‖T (P0, Ci,W )‖∞ as a measure of performance [4], whereas
adjustment ofW during subsequent identification and control
design iterations would require a notion of performance
improvement dependent on the choice ofW .

Considering the limited knowledge available on the plant
dynamics at the beginning of an iterative identification and
control procedure, selecting a performance weightingW
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a-priori seems hardly realistic. Even for given model and
uncertainty description, maximizing performance robustness
by adjusting weights is considered standard in practice [5]
and has been used to compare controllers of different struc-
ture based on achieved closed-loop performance [6]. Several
concepts of weighing function adjustment have been used in
iterative identification and control design schemes, although
in a different way than proposed here. Under anH2 per-
formance measure, both model-based [3] and model-free [7]
controller tuning have been presented with consideration for
performance robustness. For considering performance robust-
ness with respect to modeling uncertainty in theH∞ criteria,
[8] proposed scalar weighting to influence the desired cross-
over frequency for improved nominal performance while
robust stability with respect coprime factor uncertainty was
maximized in control synthesis. Adjustable transfer function
performance weights were pursued in an iterativeH∞ loop-
shaping procedure [9] where accurate frequency response
measurements of the unknown plant are progressively shaped
for each iteration of control design.

This paper summarizes a methodology for adjusting the
performance weight toWi throughout an iterative identifi-
cation and control design procedure. Rather than focusing
on the specific design of performance weights, the proposed
methodology is first presented in a general way to allow
selection of the performance weightWi either by tuning
parameters in a selected weight characterization [10], [11]
or by advanced optimization methods [12], [13] alleviating
much of the need for engineering intuition. The measure
of performance is then specified in terms of parameters
of the current weighting functionWi. While maintaining
performance robustness, the weighting function is adjusted
to maximize the measure of performance enabling a cau-
tious control design for each iteration. Specifically, the task
during of each identification step is on control oriented
nominal model estimation and uncertainty overbounding in
a coprime factor framework such that for each iteration
the effects of model uncertainty have less impact on the
control performance [14]. The control design step considers
simultaneous performance weight adjustment and controller
synthesis such that performance robustness is maximized
for each iteration. Controller improvement is indicated by
the weighting function itself, i.e. the controller satisfying
the most aggressive performance weight has achieved better
performance.

II. L IMITING IDENTIFICATION AND CONTROL VIA

PERFORMANCEROBUSTNESS

At iteration i consider a set of modelsPi parametrized
by a nominal modelP̂i along with an upper bound on the



modeling errorUi

Pi(P̂i, Ui) =
{

P | P = F (P̂i,∆), with ‖∆Ui‖∞ < 1
}

such that P0 ∈ Pi (1)

where P0 represents the unknown plant andF denotes a
particular parametrization of the model setPi. Common
choices for the parametrization ofPi with nominal model
and norm bounded uncertainty include additive, multiplica-
tive and comprime uncertainty descriptions [15].

Consider an initial controllerCi that internally stabilizes
all P ∈ Pi, then we can define a stable closed-loop
transfer functionT (P,Ci,W ) where W is a stable and
stably invertable weighting filter such that‖T (P,Ci,W )‖∞
is bounded. For a given controllerCi and weighting function
W the performance for allP ∈ Pi is defined by

J(P,Ci,W ) = ‖T (P,Ci,W )‖∞. (2)

Consequently, a weighting filterWi can be chosen such that

sup
P∈Pi

J(P,Ci,Wi) ≤ 1 (3)

and constitutes a robust performance condition.
For a given pair(Ci,Wi), the condition (1) and (3)

constitute a modeling or identification problem in which a
set of modelsPi needs to be found that satisfies

P0 ∈ Pi and sup
P∈Pi

J(P,Ci,Wi) ≤ 1 (4)

refering to the estimation of an uncertainty set that satisfies a
performance robustness condition. Once a set of modelsPi is
found, the pair(Ci,Wi) can be updated via a cautious control
design that emphasizes performance robustness improve-
ment. Since bothCi and Wi will change to(Ci+1,Wi+1)
the value of the norm functionJ(P0, Ci+1,Wi+1) does not
suffice in characterizing performance robustness improve-
ment. Instead the (normalized) evaluation of the performance
robustness

sup
P∈Pi

J(P,Ci+1,Wi+1) ≤ 1 (5)

indicates that performance robustness has been satisfied for
the pair (Ci+1,Wi+1) while the adjustment of the weight-
ing function Wi+1 (with respect toWi) now provides an
indication of the performance improvement.

III. I TERATIVE WEIGHT ADJUSTMENT

A. Evaluating performance weight improvement

In model-based control design, performance robustness is
specified by the required bound (3) in whichWi plays an
important role in the computation of an optimal (robust)
controller. To quantify performance in terms of weighting
functions, the improvement ofWi during iterations need to
be monitored. For monitoring performance weights at each
iteration consider the following definition [16].

Definition 1: A pseudometric on a setX is a function
{Γ(·, ·) : X × X → [0,∞)} such that

Γ(x, y) ≥ 0 ∀ x, y ∈ X
Γ(x, y) = Γ(y, x) ∀ x, y ∈ X
Γ(x, z) ≤ Γ(x, y) + Γ(y, z) ∀ x, y, z ∈ X.

(6)

A pseudometricΓ(x, y) can be interpreted as the distance
from x to y, with a common example being any norm. When
evaluating performance weights in an iterative identification
and control framework, the second argumenty in (6) can
be fixed through all iterations. Denote the functionJpw(W )
as a pseudometric that acts on stable transfer functions (on
RH∞) to produce a positive real number

{Jpw(W ) : RH∞ → [0,∞)} (7)

where the second argument is the originJpw(W ) = Γ(W, 0)
or some fixed desired performance weightJpw(W ) =
Γ(W,W∗). Since weighting functions are chosen to reflect
design objectives, the evaluation criteriaJpw should support
this choice and emphasize desired properties in the perfor-
mance of the closed-loop system, for example bandwidth
and disturbance rejection. Thus this framework, although
general, still requires some level of engineering intuition to
initialize the characterization of performance improvement in
Jpw which allows the performance weight to be progressively
tuned and monitored between iterations. For example

Jpw(Wi+1) ≥ Jpw(Wi) (8)

provides an ordering of the performance weighting functions
in an iterative scheme in which both the controllerC and the
weighting functionW are adjusted.

B. General procedure

To address the trade-off between performance objectives
and a tolerance to uncertainties while utilizing availabletools
for robust performance control design, the control objective
function J(P,C,W ) is restricted to being anH∞-norm
computation. A method for determining a controller that
maximizes performance according to a weighted objective
function but subject to robust performance constraints is
formulated as follows.

Problem 1: Let a plantP0 form a stable feedback con-
nection with the currently implemented controllerCi. From
data collected in closed-loop, estimate a set of modelsPi

whereP0 ∈ Pi and choose weighting functionWi such that

sup
P∈Pi

J(P,Ci,Wi) ≤ 1 (9)

Subsequently evaluate the following iterative procedure.
(a) Given a set of modelsPi design performance weight

Wi+1 and robust controllerCi+1 to satisfy

(Ci+1,Wi+1) = max
W

Jpw(W ) such that

sup
P∈Pi

J(P,Ci+1,Wi+1) ≤ 1, (10)

where

Ci+1 = arg min
C

sup
P∈Pi

J(P,C,Wi+1). (11)

(b) If the performance weight has improved, that is

Jpw(Wi+1) > Jpw(Wi), (12)

then implement the controllerCi+1 and collect (new)
data from a closed-loop experiment. Estimate a set of



modelsPi+1 such thatP0 ∈ Pi+1 and

sup
P∈Pi+1

J(P,Ci+1,Wi+1) < sup
P∈Pi

J(P,Ci+1,Wi+1).

(13)
The iterations are terminated when the performance weight
can not be improved via control design, that is when (12) is
not satisfied, or when newly collected data does not provide
information that enables reduction in model uncertainty(b).

In case the set of modelsP is characterized with a
nominal modelP̂ and upper bound on the model uncer-
tainty U such thatP0 ∈ P, the formulation of Problem 1
generates an iterative sequence between simultaneous model-
based control and performance weight synthesis(C,W ) and
model set identification(P̂ , U). For the model-based control
design of step(a), the conditionJpw(Wi+1) ≥ Jpw(Wi)
in (10) enforces performance improvement imposed by the
metric acting on the performance weighting function, while
supP∈Pi

J(P,Ci+1,Wi+1) ≤ 1 is a performance robustness
condition that guaranteesJ(P0, Ci+1,Wi+1) ≤ 1. Solving
the argument forCi+1 in (11) is a robust control design prob-
lem. For the model set identification of step(b), condition
(13) considers closed-loop relevant identification ofPi+1

such thatP0 ∈ P and where the information contained in
the new model set improves the robust performance measure
under the weightingWi+1 and the new controllerCi+1.

The proposed iterative method in Problem 1 readily lends
itself to the subset of objectives, uncertainty sets and per-
formance weights that are numerically tractable for which
standard tools are available [15]. The following sections
provide an example that discusses the characterization of the
model set as well as the simultaneous performance weight
and control design which illustrates benefits in progressively
adjusting performance weights while maintaining perfor-
mance robustness.

IV. CHARACTERIZATION OF MODEL SET

For evaluating performance robustness, a choice is made
for the characterization of the model setP constructed from
a nominal modelP̂ along with an upper boundU on the
mismatch between̂P and the actual plantP0. The theory
of fractional representations [17] is used to characterize
the model set by representing (possibly unstable) transfer
functions as a ratio of two stable transfer functions because
provides a framework for identifying a control relevant
nominal model [18] and uncertainty description [14]. Any
systemP has aright coprime factorization(rcf ) (N,D) over
RH∞ if there existX,Y,N,D ∈ RH∞ such thatP (z) =
N(z)D−1(z); XN +Y D = I. Normalized coprime factors
are defined such thatNT (z−1)N(z) + DT (z−1)D(z) = I.
Consider the dual-Youla model set representation of all
systemsP parametrized by a nominal model̂Pi with rcf
(N̂i, D̂i) that are internally stabilized by controllerCi with
rcf (Nc,i,Dc,i).

Pi :=
{

P |P = (N̂i + Dc,i∆R)(D̂i − Nc,i∆R)−1

with ∆R ∈ RH∞ and ‖∆R‖∞ < 1} (14)

To apply standard results for robust analysis and control
design, the uncertainty description (14) is written in the linear
fractional transformation (LFT) framework [15]. Consider

the input/output signalsu, y for any modelP ∈ Pi de-
scribed by (14), then perturbations on the nominal model can
represented by a feedback connection with norm bounded
uncertainty∆ ∈ RH∞ as an upper LFT

Fu(Q,∆) := Q22 + Q21∆(I − Q11∆)−1Q12 (15)

and depicted in Figure 1. The LFT representation for the set
Pi is obtained by defining∆ = ∆RU−1 and considering the
map fromcol(d, u) to col(z, y),

Pi = {P |P = Fu(Q,∆) with ∆ ∈ RH∞ , ‖∆‖∞ < 1,

where Q =

[

UiD̂
−1
i Nc,i UiD̂

−1
i

Dc,i + P̂iNc,i P̂i

]}

. (16)

y(t)u(t)

z(t)d(t)

∆

Q

Fig. 1. Linear fractional transformation diagram for robustperformance
analysis/synthesis.

Model set identification, for initializing and performing
subsequent iterations of steps(b) in Problem 1, consists in
estimating the setP to reduce the effects of uncertainty on
the control design. Low-order models can be approximated
by separate estimation of a nominal modelP̂i and an upper
bound on the uncertainty∆ characterized by filterUi.

A. Estimation of nominal model and uncertainty

Methods for identifying control-relevant nominal model
and uncertainty over bound from closed-loop experiments
have been proposed in [18], [4] and are briefly reviewed
here for completeness. Consider the mapping from reference
signalscol(r0, r1) onto input/outputcol(y, u) given by the
transfer matrixT (P,C)

T (P,C) =

[

P
I

]

(I + CP )
−1 [

C I
]

(17)

where signals from the achieved closed-loop system ofP0

in feedback with currently implemented controllerCi satisfy
[

y
u

]

= T (P0, Ci)

[

r0

r1

]

+

[

I
−Ci

]

(I + P0Ci)
−1

v. (18)

For identification purposes, it is presumed that the signals
u, y are measured and thatr0, r1 are uncorrelated with the
noisev. Access to both (normalized)rcf and an uncertainty
characterization can be obtained by considering the auxiliary
signals

x := (D̂x + CiN̂x)−1
[

Ci I
]

[

y
u

]

z := (Dc,i + P̂xNc,i)
−1

[

I −P̂x

]

[

y
u

] (19)

where the notation̂Px with (normalized)rcf (N̂x, D̂x) will
be used to denote either an accurate auxiliary model or the



nominal model used in control design,x = i. For estimating
a nominal model, the input/output signals of the feedback
connectionT (P0, Ci) from the auxiliary signalx are written

[

y
u

]

=

[

N0,F

D0,F

]

x +

[

Sout

−CiSout

]

v (20)

where
[

N0,F

D0,F

]

=

[

P0(I + CiP0)
−1(I + CiP̂x)D̂x

(I + CiP0)
−1(I + CiP̂x)D̂x

]

, (21)

Sout = (I + P0Ci).

Approximately normalizedrcf estimates(N̂i, D̂i) for (21)
are obtained from multivariable output error [18] or even
constrained ARX [19] prediction error optimization algo-
rithms [20].

The uncertainty weightUi in (16) is used to bound∆R in
(14) by estimating a frequency dependent upper bound for
∆R such thatP0 ∈ Pi. Frequency dependent uncertainty
bounds can be determined using a model error modeling
approach based on prediction error framework [21]. Consider
auxiliary signalsx, z in (19) generated using the estimated
nominal model from (21),̂Px = P̂i, then identify a consistent
model R̂i for the dual-Youla uncertainty∆R,i via

z = ∆R,ix + Dc,i(I + P0Ci)
−1v. (22)

Confidence intervals on the model error modelR̂i provide a
frequency dependent upper bound with specified probability.
Spectral overbounding methods such as [22] can be used to
estimate low-order stable and stably invertible uncertainty
weight Ui.

V. DESIGN FOR ROBUST PERFORMANCE

To develope a robust controller, a specific choice for
J(P,C,W ) must be made. The performance objective func-
tion used in this paper is taken to be a weighted-sensitivity

J(P,C,W ) = ‖WSin‖∞ , Sin = (1 + CP )−1. (23)

This is a specific case for the widely applicable weighted
four-block problem, i.e. a weighted version of (17), and is
used particularly for developing intuition behind adjusting
weighting functions in an iterative identification and control
design scheme.

A. Weighted sensitivity robust performance

The dual-Youla uncertainty structure (14) allows any
∆R ∈ RH∞ while preserving internal stability of the current
feedback system, with controllerCi operating. To analyze
the performance robustness for a new controllerC applied
to any modelP ∈ Pi, the closed loop system is written in
the LFT framework.

Lemma 1:Consider the setPi defined in (14) and a
controller C such that the transfer matrixT (P,C) is well-
posed for allP ∈ Pi. Then

Pi = {P |T (P,C,W ) = Fu(M,∆R)

with ∆R ∈ RH∞, ‖∆R‖∞ < 1} (24)

where the entries ofM are given by

M =

[

−Ui(D̂i + CN̂i)
−1(C − Ci)Dc,i Ui(D̂i + CN̂i)

−1
C

W (I + P̂iC)−1(I + P̂iCi)Dc,i W (I + P̂iC)−1

]

.

(25)

Proof: Create a feedback connection ofQ in (16) with
a controllerC whereu = r1 +C(r0 − y). Consider the map
from col(d, v) onto col(z, y), which can be verified from
Figure 2.

y(t)u(t)

v(t)

d(t)

z(t)

r1(t)

r0(t) _+

Nc,i Dc,i

D̂
−1

i
N̂i

C

Ui

W

Fig. 2. Diagram for robust analysis/synthesis for dual-Youla uncertainty
structure and weighted sensitivity performance.

Provided thatM is internally stable, robust performance
of a controllerC applied to all modelsP ∈ Pi is defined
as ‖Fu(M,∆R)‖∞ ≤ 1 for all ∆R such that‖∆R‖∞ < 1
for all ∆R such that‖∆R‖∞ < 1 and evaluated by com-
puting structured singular valueµ with respect to structured
uncertainty∆.

Definition 2: For M ∈ C
n×n, µ∆(M) is defined as

µ∆(M) :=

(

min
∆∈∆

{σ(∆) : det(I − M∆) = 0}
)−1

(26)

unless no∆ ∈ ∆ makes(I − M(jω)∆(jω)) singular, in
which caseµ∆ := 0.
Consider an uncertainty structure∆ compatible with the
transfer matrixM with a fictitious full block uncertainty
∆S representing theH∞ performance specification at the
weighted sensitivity channel,

∆ = {diag(∆S ,∆R), ∆S ,∆R ∈ RH∞

‖∆S‖∞ < 1, ‖∆R‖∞ < 1}. (27)

The feedback systemFu(M,∆) with ∆ ∈ ∆, ‖∆‖∞ < 1
satisfies performance robustness if and only if [15]

sup
ω∈R

µ∆(M(jω)) ≤ 1. (28)

Generally µ∆ is approximated by computing an upper
bound over finite frequency grid which results in convex
optimization over a set of positive scaling matricesD,

µ∆(M) ≤ inf
D∈D

σ(DMD−1), (29)

whereD = {D | D∆ = ∆D}. For the uncertainty structure
(27) containing two full blocks(∆S ,∆R) the computation of
µ∆ in (29) is exact. This formulation allows the possibility
to evaluate the (worst-case) performance of a controllerC
applied to a set of modelsP in a non-conservative way.
Note that in caseC = Ci, robust stability with respect to
the dual-Youla uncertainty structure (14) is trivially satisfied
since



B. µ-synthesis

The robust performance control design of step(a) in
Problem 1 can be formulated in theµ-synthesis framework
as

Ci+1 =

{

C | max
(W )

Jpw(W ) s.t. arg min
C

µ∆(M) ≤ 1

}

(30)
such that the worst-case performance of (23) for allP ∈ Pi

characterized by (14) is optimized. For application of stan-
dardµ-synthesis results the transfer matrixM is represented
as a lower LFT feedback connection with the controller
M = Fu (Fl(G,C),diag(∆S ,∆R)) where

G =





Wi 0 0
0 Ui 0
0 0 −1









1 (Dc,i + P̂iNc,i) P̂i

0 D̂−1
i Nc,i D̂−1

i

1 (Dc,i + P̂iNc,i) P̂i



 . (31)

The µ-synthesis problem is typically evaluated using the
upper bound (29) and solving theH∞ problem

min
C

inf
D∈D

∥

∥DGD−1
∥

∥

∞
(32)

iteratively for the scaling matrixD and controllerC, a pro-
cess known as the D-K iteration for which standard solutions
exist [15]. Performance weight adjustment and robust control
design are implemented in the following problem to obtain
the pair(Ci+1,Wi+1).

Problem 2: Robust performance control design (11) is
achieved forPi characterized by (14) and objective function
(23) via the following optimization.

(Ci+1,Wi+1) = max
W

Jpw(W )

s.t. min
C

inf
D∈D

∥

∥DGD−1
∥

∥

∞
≤ 1. (33)

The above problem was explored in [12], [13] using
frequency domain and state-space oprtimization methods to
iteratively find performance weights and controllers. One can
also use parametrized functionsJpw in order to maximize
performance with respect to variables that characterize sys-
tem level performance.

C. Performance weight selection

Generally intuition and experience connect properties of
control objective weights with desired performance of the
closed-loop system. For a class of control design problems in
which low frequency disturbance rejection is desired, band-
width and disturbance amplification around the bandwidth
are important considerations. For the weighted sensitivity
objective function (23), properties such as bandwidth and
maximum disturbance amplification are available through a
standard performance weight of the form

W =

(

s/ k
√

Ms + ωb

s + ωb
k
√

ǫ

)k

, for k ≥ 1 (34)

wherek indicates the desired slope of the transition between
low-frequency and high-frequency performance andǫ > 0
determines the level of steady-state error rejection such
that W has no imaginary axis poles for straight forward
incorporation in the robust control design framework [15].
In this standard form there exist methods for adjusting the
weighting function according to increased bandwidthωb

and reduced maximum peak sensitivityMs parameters [5].
An intuitive indication of performance improvement through
iterative identification and control designs is given in terms
of these parameters.

Proposition 1: For evaluating the performance weight im-
provement of (34) in terms of bandwidthωb and maximum
peak sensitivityMs consider the following function.

Jpw(W ) = |ξωb + (1 − ξ)M−1
s | for ξ ∈ [0, 1] (35)

where ξ remains fixed for all iterations and indicates the
relative emphasis between bandwidth requirementsωb and
maximum absolute valueMs.

Proof: The evaluation criteria (35) satisfies conditions
for pseudometric functions (6) withJpw(W ) = Γ(W, 0).

Improved performance under the criteria (23), correspond-
ing to closed-loop low-frequent disturbance rejection, typi-
cally results from high bandwidthωb and low peak sensitivity
Ms. Iteratively increasingωb and decreasingMs provides an
indication that performance has improved if larger values of
the evaluation criteria (35) are achieved for each iteration.
The optimization problem becomes [10], [11]

max
ωb,Ms

Jpw(W ) s.t. µ∆(M) ≤ 1, (36)

whereW is given by (34). If in (35) the parameterξ = 1,
performance of the iterative identification and control designs
are compared based on the maximum achievable closed-loop
bandwidth implemented as an outer-loop aroundµ-synthesis
such thatµ∆ < 1 [5].

VI. EXAMPLE

To illustrate the benefits for adjusting the performance
weight through iterative identification and control design,
the proposed algorithm of Problem 1 is initialized through
the first iteration for a plant with double integrator, small
resonance modes around the cross-over frequency and two
large resonance modes at higher frequencies. The model set
P is composed of a6th order nominal model constructed
from estimated normalized coprime factors as well as the
associated modeling error characterized by the dual-Youla
uncertainty with3rd order uncertainty over bound filterU .
The results are shown in Figure 3.

Given nominal model and uncertainty over bound, the
optimal performance weight [13] is computed, shown in
Figure 4. Of course to use the optimal weight for control
synthesis requires a high-order fit resulting in a highly
complex, possibly unstable controller which stabilizes the
closed-loop withµ∆ = 1. However, a3rd order over bound
of the form (34) is designed such that the resulting controller
is stable and guarantees robust performance.

Adjusting the weighting function around aµ-synthesis
control design allows for increased bandwidth subject to
robust performance constraints, demonstrated in Figure 5.
The performance evaluation criteriaJpw in (35) with ξ = 0.9
increased over30% from the beginning performance weight
to the final.

VII. C ONCLUSIONS

The framework presented in this paper provides perfor-
mance robustness improvement for cautious control designs
based on iterative identification and control procedures. A
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performance weighting function is adjusted in conjunction
with control synthesis to maximize performance robustness.
Since both controller and weighting function change during
the iterative procedure, the achieved performance is com-
pared between iterations on the basis of the performance
weight while the performance robustness is monitored.
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