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ABSTRACT
This paper presents a novel method of simultaneously track-

ing and rejecting time-varying sinusoids in the presence of ran-
dom noise by using feedback control. The technique extends the
internal model-principle by using an extended Kalman filter to
create time-varying gains and a time-varying internal model.
The state feedback gain, however, is not time-varying and is de-
signed using standard time-invariant LQR methods. This control
algorithm is applied to active noise cancelation and in simula-
tions is shown to converge quickly in the presence of noise. Meth-
ods of improving convergence of this algorithm are discussed.

NOMENCLATURE
A You may include nomenclature here.
α There are two arguments for each entry of the nomemclature

environment, the symbol and the definition.
Feedback Microphone Mic. used to measure and feedback

noise.
Noise canceling speaker
Acoustic Noise
Error path Feedback path
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Introduction
Many time-invariant systems are subjected to time-varying

disturbances. Moreover, the future values of the disturbances are
not typically known and therefore standard time-varying optimal
control cannot be applied and may not be the most appropriate
since the system itself is not time-varying. Examples of these
types of systems are acoustical, vibrational, and repetitive sys-
tems such as cooling systems with periodic fan noise, structures
subjected to earthquakes, and hard disk drives.

These class of systems have been studied and for a fixed fre-
quency it has been shown that an internal model based controller,
controller based upon the internal model principle [1], will com-
pletely reject the periodic disturbances even under parametric un-
certainty [2]. In this paper, we address the problem of extending
this work for rejecting a disturbance with a fixed and known fre-
quency to an unknown and possible time-varying frequency. To
study the proposed algorithm an acoustical system subjected to a
time-varying periodic disturbance is simulated.

Active noise cancelation [3] typically uses feedforward
based adaptive algorithms like the least-mean-square (LMS),
filtered-X LMS (FXLMS), adaptive notch filters, recursive least
squares (RLS), and variations of the aforementioned. In the case
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of acoustic feedback these method need modification to work
properly [4]. Designing feedback controllers based upon the in-
ternal model principle has produced good results in the area of
ANC, and the authors in [5] reported a 30− 40 dB reduction
in an acoustic duct. The internal model principle and convex
optimization was used to find a controller that rejects periodic
disturbances in [6]. The method contained therein requires that
the plant has no zeros in common with the poles of the distur-
bance and optimizes the closed loop system over the zeros of the
controller. In [7] a feedback controller was designed and imple-
mented that successfully eliminated the first four harmonic fre-
quencies of the disturbance. In this paper, we use an feedback
controller that adapts to the time-varying disturbances for active
noise cancelation.

Fan and Enclosure Acoustics

Description

The system we are considering is depicted in Fig. 1. The
acoustic noise from a cooling fan propagates down a cylindrical
duct with a feedback active noise cancelation system mounted
at the end. The feedback microphones are used to measure the
acoustic noise and the noise canceling speakers are used to cre-
ate anti-noise that will cancel the undesired acoustic noise from
the fan. The microphones are mounted inside acoustical foam to
help shield them from windage that causes a significant amount
of measurement errors. All of the speakers are actuated with the
same signal, so as to act like one larger speaker. The same for
the microphones, several are mounted around to opening and the
average of the signal is used for the feedback control. The aver-
aging process reduces the measurement noise.

The frequency response of the plant is shown in Fig. 2.
The input to the system is the signal sent to the noise canceling
speaker and the output is the signal measured by the feedback
microphone and therefore the system is dynamics of the speaker,
microphone, and the acoustics. The system was estimated using
standard system identification [8] techniques.

The acoustic noise of a typical cooling fan is shown in Fig. 3.
On the top the power spectral density PSD is shown and on the
bottom the a time series of a microphone signal is shown. From
both figures it should be clear that the fan noise contains some
broadband noise and harmonic noise. The harmonic noise, or
sinusoids with frequencies that are multiples of each other, is
due to the blade pass frequency of the cooling fan [9].
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Figure 2. Frequency response of acoustic system.
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Figure 3. Typical acoustic noise from a cooling fan.

Model of System
The dynamics of the acoustic system or plant will be mod-

eled with the state space model

xp(k + 1) = Apxp(k)+ Buu(k)+ Bww(k)
yp(k) = Cpxp(k)+ Dyww(k)+ d(k)
z(k) = Czxp(K)+ Dzuu(k)

, (1)

where xp(k) ∈ R
np are the plant states, u(k) ∈ R

nu is the control
signal, w(k) ∈ R

nw is white noise, d(k) ∈ R
ny is the time-varying

periodic disturbance, yp(k) ∈ R
ny is the measurable output of the

plant, and z(k) ∈ R
nz is the performance channel. It will also be

assumed throughout the paper that DywDT
yw > 0, BwDyw = 0, and

DT
zuDzu > 0. Typically, the performance channel is a weighted

version of the output to reflect the various performance measures
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Figure 1. Active noise canceling system used to eliminate the unwanted noise from a cooling fan.

that one desires to reduce.
For the purposes of the control design, a model of the distur-

bance or internal model will be used and is given by

xm(k + 1) = Am(xm(k))xm(k)+ Bmum(k)
ym(k) = Cmxm(k) ,

where xm(k) ∈ R
nm are the internal model states, um(k) ∈ R

ny is
the input to the internal model, and ym(k) ∈ R

nym is the output of
the internal model.

The overall goal is to eliminate unwanted noise that appears
as a time-varying periodic signal and random noise due to mea-
surement errors and broadband noise. This can be achieved by
eliminating the periodic components and further reducing the
mean square pressure by using an LQG style of controller.

Controller Structure
It was shown in [10] that the LTI controller given by

C(q) =





Ap −LpCp −BuK 0 Lp
LmCp Am −Lm
−K Cm 0



 , (2)

is an internal model-based controllers and has an interpretation of
a learning controller when the appropriate internal model is cho-
sen. In this controller Am and Cm are given matrices that serve

as a model of the disturbance called the internal model and the
gains Lp, Lm, and K are designed to maintain stability and per-
formance. This controller is able to cancel periodic disturbances
that have a fixed, known frequency.

In this paper, we use this LTI controller as a starting point
to design an adaptive internal model-based controller that can
track and cancel time-varying periodic disturbances and simul-
taneously cope with the random disturbances in the system. To
accomplish this task, the internal model is parameterized as a
function of ω. This implies that the observer gains in Eq. (2)
necessarily will change as a function of ω.

Following the same methodology as [11] the controller is
parameterized with respect to ω this gives

C(q,ω) =




Ap −Lp(ω)Cp −BuK(ω) 0 Lp(ω)
Lm(ω)Cp Am(ω) −Lm(ω)
−K(ω) Cm 0



 ,
(3)

where the controller gains must be designed so that the closed
loop system is stable and has desirable properties.

With the controller given by Eq. (3) and the system given by
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Eq. (1) the closed loop system becomes







xp(k + 1)

x(1)
c (k + 1)

x(2)
c (k + 1)






=





Ap −BuK(ω) BuCm
Lp(ω)Cp Ap −Lp(ω)Cp −BuK(ω) 0
−Lm(ω)Cp Lm(ω)Cp Am(ω)











xp(k)
x(1)

c (k)
x(2)

c (k)







+





Bw
Lp(ω)Dyw
−Lm(ω)Dyw



w(k)+





0
Lp(ω)
−Lm(ω)



d(k)

z(k) =
[

Cz −DzuK(ω) DzuCm
]







xp(k)
x(1)

c (k)
x(2)

c (k)






,

where the controller states have been partitioned into x(1)
c (k) and

x(2)
c (k). Applying the similarity transformation T =





I −I 0
0 I 0
0 0 I





and rearranging the states gives the following equivalent realiza-
tion







x̄p(k + 1)

x̄(2)
c (k + 1)

x̄(1)
c (k + 1)






=





Ap −Lp(ω)Cp BuCm 0
−Lm(ω)Cp Am(ω) 0
Lp(ω)Cm 0 Ap −BuK(ω)











x̄p(k)
x̄(2)

c (k)
x̄(1)

c (k)







+





Bw −Lp(ω)Dyw
−Lm(ω)Dyw
Lp(ω)Dyw



w(k)+





−Lp(ω)
−Lm(ω)
Lp(ω)



d(k)

z(k) =
[

Cz DzuCm Cz −DzuK(ω)
]







x̄p(k)
x̄(2)

c (k)
x̄(1)

c (k)







where is it obvious that the design process becomes the design of
a state feedback gain for Eq. (1) and an observer gain for the se-
ries connection of the internal model and plant. The design of the
state feedback gain is straightforward with the use of LQR the-
ory and results in a discrete time Riccati equation. The observer
gain is slightly more complicated and an Extended Kalman Pre-
dictor is needed since the frequency of the disturbance is also
unknown. The following section describes how to find the gains
for the controller given in Eq. (3).

Adaptive Controller Synthesis
Internal Model

In order for the frequency estimation and cancelation to
work properly it is important to construct an internal model that
captures the relevant properties of the unknown signal. In our
case, a model of a periodic signal with a time-varying frequency
is needed.

It was shown in [12] that a continuous time model that repre-
sents the periodic signal y(t) = cos(ωt + φ) with a time-varying
frequency is given by

[

ẋ1(t)
ẋ2(t)

]

=

[

0 1
−ωd(t)2 ω̇d(t) 1

ωd(t)

][

x1(t)
x2(t)

]

y(k) =
[

0 1
]

[

x1(t)
x2(t)

]

,

where ωd(t) = d
dt (ωt + φ) and another realization is

[

ẋ1(t)
ẋ2(t)

]

=

[

0 ωd(t)
−ωd(t) 0

][

x1(t)
x2(t)

]

y(k) =
[

0 1
]

[

x1(t)
x2(t)

]

.

(4)

Notice that one must be careful when choosing the realization,
since the normal LTI realizations are not always the same as the
time-varying realizations.

Applying a zero-order hold, with sample time ∆t, to Eq. (4)
gives

[

x1(k + 1)
x2(k + 1)

]

=

[

cos(ω∆t) sin(ω∆t)
−sin(ω∆t) cos(ω∆t)

][

x1(k)
x2(k)

]

y(k) =
[

0 1
]

[

x1(k)
x2(k)

] (5)

where ω := ωd(t)|t=k is held constant over the samping in-
terval. This model will be used as the building blocks of an inter-
nal model. The part that remains is chose how the input should
affect the states of the internal model. This choice is important
since the internal model will be inside the feedback loop and thus
will change the dynamics of the closed loop system.

Since the realization Eq. (5) does not have any zeros (it
doesn’t have an input), we will choose an internal model that
has an input but does not have any zeros. One such realization is
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given by

[

x1(k + 1)
x2(k + 1)

]

=

[

cos(ω∆t) sin(ω∆t)
−sin(ω∆t) cos(ω∆t)

][

x1(k)
x2(k)

]

+

[

1
0

]

u(k)

y(k) =
[

0 1
]

[

x1(k)
x2(k)

]

.

Since we require that the controller estimate the frequency of
the disturbance as well as reject it, ω will also be estimated. This
means that ω is a state and should be added to the internal model,
this gives





x1(k + 1)
x2(k + 1)
ω(k + 1)



 =





cos(ω(k)∆t) sin(ω(k)∆t) 0
−sin(ω(k)∆t) cos(ω(k)∆t) 0

0 0 1− ε









x1(k)
x2(k)
ω(k)





+





1
0
0



u(k)

y(k) =
[

0 1 0
]





x1(k)
x2(k)
ω(k)





where it was assumed that the frequency of the disturbance is
slowly varying. Notice that this is a nonlinear system since ω(k)
appears inside the cos(·) and sin(·) functions. For this reason an
Extended Kalman Predictor will be used. This realization has
also been used previously (see [13], for example) to track fre-
quencies and will be used for the remainder of the paper as a
subsystem for the internal model. The subsystems need to be
connected to accommodate disturbances that may contain more
than one sinusoid.

To build an internal model that can accommodate any distur-
bance signal that is a combination of N distinct sinusoids, define

A(ωi) =





cos(ωi(k)∆t) sin(ωi(k)∆t) 0
−sin(ωi(k)∆t) cos(ωi(k)∆t) 0

0 0 1− ε



 B(ωi) =





1
0
0





C(ωi) =
[

0 1 0
]

then connect the subsystems in series. The result is

Am =













A(ω1) B(ω1)C(ω2) 0 . . . 0
0 A(ω2) B(ω2)C(ω3) . . . 0
...

. . . . . . . . .
...

0 . . . . . .
. . . A(ωN)













Bm =











0
0
...

B(ωN)











Cm =
[

C(ω1) 0 . . . 0
]

for the state space matrices that define the internal model. Or,
connect them in parallel to get

Am =













A(ω1) 0 0 . . . 0
0 A(ω2) 0 . . . 0
...

. . . . . . . . .
...

0 . . . . . .
. . . A(ωN)













Bm =











B(ω1)
B(ω2)

...
B(ωN)











Cm =
[

C(ω1) C(ω2) . . . C(ωN)
]

.

There are many options for the connection of the subsystems as
well as internal model and the user must choose the appropriate
method for the application.

State Feedback Gain
In this section the state feedback gain is found using some

results from LQR theory. The goal is to find a state feedback
gain that stabilizes the plant Eq. (1) while minimizing the energy
of the output channel z(k). To design the gain K consider the
following optimization problem:

min
u(0),u(1),...

∞

∑
k=0

xp(k)TCT
z Czxp(k)+ u(k)T DT

zuDzuu(k) s.t. (6)

xp(k + 1) = Apxp(k)+ Buu(k) (7)

If (Ap,Bu) is controllable, (Ap,Cz) is observable, CT
z Cz ≥ 0, and

DT
zuDzu > 0 then the optimal solution is given by

u = Kxp(k)

K∗ = (BT
u PcBu + DT

zuDzu)
−1BT

u PcAp
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where Pc satisfies

Pc = AT
p PcAP −AT

pPcBu(BT
u PcBu + DT

zuDzu)
−1BT

u PcAp +CT
z Cz.

(8)

Designing the state feedback gain in this manner acheives two
goals. First it guarantees that AP −BuK is stable which is im-
portant since the eigenvalues of the closed loop system contain
the eigenvalues of Ap −BuK. Secondly, if the observer error is
zero then the energy of the output is minimized. Of course, the
observer error will not be zero, but if it is small then the con-
troller is expected to perform well. The design of the observer
becomes crucial for the performance and stability of the system
and is discussed in the following sections.

Extended Kalman Filter

Before applying the Extended Kalman Filter (EKF) [14] to
the control scheme we are considering, a short review of this
nonlinear filtering technique is given. Consider the nonlinear dis-
crete time system given by

x(k + 1) = f (x(k),u(k),w(k)) (9)
y(k) = h(x(k),u(k),v(k)), (10)

where x(k) are the states, u(k) are deterministic inputs, and w(k)
and v(k) are zero mean, gaussian white noise sequences satisfy-
ing

E{w(k)w(k)T } = Q(k) (11)

E{v(k)v(k)T } = R(k). (12)

The EKF is given by the following:

Algorithm 1 (Extended Kalman Filter).

Initialize:

P(0|0) = cov(x(0)) x̂(0|0) = E{x(0)}

For k=0,1,2,...

Predict:

x̂(k + 1|k) = f (x̂(k|k),u(k),0)

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k)

where

F(k) :=
∂
∂x

f (x,u,w)

∣

∣

∣

∣ x = x̂(k|k)
u = u(k)

w = 0

Update:

S(k + 1) = (H(k + 1)P(k + 1|k)H(k + 1)T + R(k))

K(k + 1) = P(k + 1|k)H(k + 1)TS(k + 1)−1

P(k + 1|k + 1) = (I−K(k + 1)H(k + 1))P(k + 1|k)
x̂(k + 1|k + 1) = x̂(k + 1|k)+ K(k + 1)(y(k + 1)− h(x̂(k + 1|k),0))

where

H(k + 1) :=
∂
∂x

h(x,u,v)
∣

∣

∣

∣ x = x̂(k + 1|k)
u = u(k)

w = 0

There are several variations of this algorithm, but the above ver-
sion will be used for this paper.

Extended Kalman Predictor for State and Frequency
Estimation

In this section we apply the EKF to our control problem to
create a nonlinear estimator that tracks the states and the periodic
disturbances in the presence of random noise. Since we want to
implement our algorithm in discrete time it is required that the
control signal is a function of past outputs and therefore we ar-
rive at a predictor. Recall, that the control design is composed of
two sub-problems: an observer design and a state feedback de-
sign. To embed the internal model into the controller the observer
design is done for the series connection of the internal model and
plant. Additionally, the internal model states contain an estimate
of the disturbance frequency so we will be able to estimate the
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frequency and states simultaneously.
To design the estimator, we will assume that the input into

the internal model is white noise by setting um(k) = w(k). The
series connection of the nonlinear internal model and the linear
time invariant plant is given by

[

xp(k + 1)
xm(k + 1)

]

=

[

Ap BuCm
0 Am(xm(k))

][

xp(k)
xm(k)

]

+

[

0
Bm

]

um(k)+

[

Bw
0

]

w(k)

yp(k) =
[

Cp 0
]

[

xp(k)
xm(k)

]

+ Dyww(k)

(13)

which can be expressed as

x(k + 1) = A (x(k))x(k)+Bww(k)

yp(k) = C px(k)+ Dyww(k)
(14)

or as

x(k + 1) = f (x(k),w(k))

yp(k) = h(x(k),w(k)).
(15)

In the form given in Eq. (14) we will apply the EKF to find the
predictor gains. For notational convenience define

Q(k) := BwB
T
w

R(k) := DywDT
yw

and assume BwDT
yw = 0. If we apply Algorithm 1 to the system

in Eq. (14) we arrive at the following:

Initialize:
P(0|0) = cov(x(0)) x̂(0|0) = E{x(0)}

For k=0,1,2,...

Predict:
x̂(k + 1|k) = A (x̂(k|k))x̂(k|k)

= (A (x̂(k|k))−L (k)C p)x̂(k|k− 1)+L (k)y(k)

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k)

where
L (k) = A (x̂(k|k))K(k)

F(k) :=
∂
∂x

(A (x)x)
∣

∣

∣

∣

x = x̂(k|k)

Update:

K(k + 1) = P(k + 1|k)C T
p (C pP(k + 1|k)C T

p + R(k))−1

x̂(k + 1|k + 1) = x̂(k + 1|k)+ K(k + 1)(y(k + 1)−C px̂(k + 1|k))
P(k + 1|k + 1) = (I −K(k + 1)C p)P(k + 1|k)

Notice that the filtering gain L (k) is a function of y(k), but for
implementation it is required that the gains be a function of past
outputs. Therefore we will replace x̂(k|k) with x̂(k|k− 1) so that
the algorithm is easy to implement and denote this algorithm the
Extended Kalman Predictor EKP. Additionally, if the update and
prediction error covariances are combined the simplified EKP
Algorithm for Frequency Tracking is obtained and shown on the
right.

This algorithm is used to update the values of the controller.
Specifically the gains

[

Lp(k)
−Lm(k)

]

= L (k),

and the internal model Am(k) = Am(x̂(k|k − 1)) are updated to
stabilize the system and simultaneously track the unknown and
possibly time-varying frequency of the disturbance.

Convergence
For a linear system P(k|k− 1) is defined as the covariance

of the error given all of the previous information or

P(k|k− 1) = E{(x̂(k)− x(k))(x̂(k)− x(k))T |Yk−1}

Yk−1 = {um(0),yp(0),um(1),yp(1), . . . ,um(k− 1),yp(k− 1)}

and Q(k) has the interpretation of the amount of noise or un-
certainty on the states and is given by E{w(k)w(k)T }. If Q(k) is
large (meaning in comparison to R(k)) then the states will change
more rapidly. If Q(k) is small then more averaging will occur to
smooth out the measurement noise described by R(k). Therefore
if the estimated frequency ω is far from the true frequency ω0
then setting the appropriate entry of Q(k), the entry that would
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Algorithm 2 (EKP for Frequency Tracking).

Initialize:

P(1|0) = F(0)cov(x(0))F(0)+ Q(0) x̂(0|0) = E{x(0)}

x̂(1|0) = f (x̂(0|0),0,0)

where

F(0) :=
∂
∂x

(A (x)x)
∣

∣

∣

∣

x = x̂(0|0)

For k=1,2,...

Predict:

x̂(k + 1|k) = (A (x̂(k|k− 1))−L (k)C p)x̂(k|k− 1)+L (k)y(k)

P(k + 1|k) = F(k)P(k|k− 1)F(k)T

−F(k)P(k|k− 1)C pT (C p)
−1
C pP(k|k− 1)F(k)T

+ Q(k)

where

L (k) = A (x̂(k|k− 1))

K(k) = P(k|k− 1)C T
p (C pP(k|k− 1)C T

p + R(k))−1

F(k) :=
∂
∂x

(A (x)x)
∣

∣

∣

∣

x = x̂(k|k− 1)

represent the error on ω, to be large will cause faster conver-
gence. When ω is near ω0 then the entry of Q(k) should be small.
Furthermore it was noted in [13] that the error on the remaining
internal model states should be small since they are not unknown.

This can be accomplished by setting

Q(k) = A1(1− ε)(k−m)+ A2

with A1 large,A2 small, and m = 0 at intialization. If the error
between the estimated and true frequency grows then a trigger
can be used to reset Q(k). A potential trigger is

if
n

∑
l=0

|y(k− l)| > β

then m = k.

(16)

Simulation
The disturbance that is used in this simulation is given by

d(t) = A1 sin(α(t))+ A2 sin(2 ∗α(t)),

where the frequency is ω0(t) = d
dt α(t). The internal model is













x1(k +1)
x2(k +1)
x3(k +1)
x4(k +1)
ω(k +1)













=













cos(ω(k)∆t) sin(ω(k)∆t) 0 0 0
−sin(ω(k)∆t) cos(ω(k)∆t) 0 0 0

0 0 cos(2ω(k)∆t) sin(2ω(k)∆t) 0
0 0 −sin(2ω(k)∆t) cos(2ω(k)∆t) 0
0 0 0 0 1− ε













×













x1(k)
x2(k)
x3(k)
x4(k)
ω(k)













+













1
0
1
0
0













u(k)

y(k) =
[

0 1 0 1 0
]













x1(k)
x2(k)
x3(k)
x4(k)
ω(k)













where the initial estimate of the frequency ω is set to
1000 rad/sec and Q(k) is given by

Q(k) = A1(1− ε)(k−m)+ A2 (17)

A1 =

[

I 0
0 1000

]

A2 =

[

I 0
0 1

]

(18)

where m is determined by the trigger given in Eq. (16).
In order to model two sinusoids, 4 states are required. In ad-

dition the frequency of the sinusoids needs to be estimated and in
this case that means an additional state. In general there would be
an additional state for each sinusoid, but since this method allows
the user to parameterize the internal model to match the distur-
bance only one frequency needs to be estimated when tracking a
base frequency and its harmonics.

In Fig. 5 the convergence of the estimated frequency to the
true frequency is shown. The dashed line is the true frequency
and the solid line is the estimated frequency ω. This algorithm
is able to converge to the true frequency very quickly. The re-
sults of applying the controller Eq. (2) to the plant is shown in
Fig. 4. In this figure, the output of the plant before and after
control are shown, dotted and solid respectively. Notice that the
only the random noise is left in the output of the plant after the
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control is applied. From both of these figures it can be seen that
the algorithm has difficulty tracking the ramp part of the true fre-
quency. This is due to the dynamics of the estimator and could
be changed if desired. However, the estimator tracks constant
frequencies very well as designed.
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Figure 5. Convergence of estimated frequency. The true frequency is
dashed and the estimate is solid.

If the entry of Q(k), the last column and row,. that represents
the error on ω is denoted by q(k) then the size of this uncertainty
as a function of time is shown in Fig. 6. The sudden jumps are
due to the trigger. The estimate error grows, then the controller
doesn’t suppress the sinusoids in the output, this triggers the q(k)
and the estimator converges again. Notice that the jumps in q(k)
correspond to quick changes in frequency as seen in Fig. 5.

Conclusions
In this paper a new algorithm is presented that uses an

Extended Kalman Predictor in combination with an internal
model-based controller to simultaneously track and reject a time-
varying periodic disturbance. The control algorithm was applied
to active noise control where the periodic disturbance is a sum of
sinusoids whose frequencies are multiples of each other. The de-
sign of the controller is achieved in two steps by relying upon the
well-known separation principle. One step is a state feedback de-
sign where the state feedback gain is not time-varying. The other
step is the Extended Kalman Predictor and the resulting predictor
gain and internal model are time-varying so that the frequency of
the disturbance is rejected.
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100

200
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Figure 6. Size of convergence parameter q(k).
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