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Aeroservoelastic models provide a means for analyzing stability and performance, online

monitoring of aerodynamic instabilities, as well as for designing active structural control

systems. Of concern in the analysis and design of aeroservoelastic systems is reducing

the conservatism with which stability and performance is guaranteed without significantly

increasing the computational effort. Recent advances in control theory have lead to gener-

alizations that allow system properties, specified in the frequency domain, to be analyzed

via Linear Matrix Inequalities over specified finite frequency range. This paper presents

robust analysis conditions which incorporate a particular class of frequency dependent mul-

tipliers that can be used to specify performance requirements. The robust analysis results

are illustrated by an example that evaluates robust flutter margins for ASE systems.

I. Introduction

Modern aerosrtuctural modeling, identification and control design emphasize a progression toward light-

weight airframe structures resulting in active, flexible and multifunctional wing structures. A reduction

in structural weight increases the likelihood of dynamic instabilities24 and requires extensive and costly

flight-testing to safely explore the boundary of the flight envelope. In case aerodynamic instabilities are

experienced during flight-testing active structural servo control strategies can be used to stabilize and expand

the boundary of the flight envelope.2

Aeroservoelastic (ASE) models provide a means for designing active structural control systems in addi-

tion to allowing the possibility of online flight monitoring of aerodynamic instabilities. Stability margins

for ASE systems are a measure of distance from a reference flight condition to a condition that induces

flutter. Aeroservoelastic models can be formulated by considering a nominal (linear) model with unknown

but bounded perturbations. The nominal ASE model captures the inherent dynamic interaction between

structural elasticity and aerodynamic loads and contains the effects of actuator bandwidth, major struc-

tural modes and sensor locations. The unknown but bounded model perturbation is used to account for

uncertainties such as variations in flight conditions, unmodeled (high frequency) elastic modes and actuator

nonlinearity. Nominal flight behavior and perturbations can be estimated by identification of possibly non-

linear dynamics within a feedback control framework for an ASE system17 or derived from first principles

modeling.1

Computational methods for analysis of ASE models with associated uncertainty fits within robust control

framework by considering a linear fractional transformation (LFT) model set. Robust stability margins are

a measure of distance from a reference flight condition to a condition that could potentially induce flutter

taking into consideration all possible modeling errors. The problem of determining robust flutter margins

fits within the µ-analysis framework.5,16 Of concern in the analysis and design of aeroservoelastic systems is

reducing the conservatism with which stability and performance is guaranteed without significantly increasing

the computational effort. Recent advances in control theory have lead to generalizations that allow system
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properties, specified in the frequency domain, to be analyzed via Linear Matrix Inequalities (LMIs) over

specified finite frequency range.

In this paper we present conditions for robust analysis that are expressed as convex inequalities equivalent

to checking a frequency domain inequality over finite interval.10 These convex inequalities are generalizations

of the Kalman-Yakubovich-Popov (KYP) Lemma, which can be used to compute upper bounds for the

structured singular µ-analysis. The robust analysis conditions incorporate a particular class of frequency

dependent multipliers that can be used to specify performance requirements over finite frequency intervals.

An example in evaluating robust flutter margins is illustrated for a pitch plunge ASE system with modeling

uncertainty in structural stiffness and damping parameters.

II. Aeroservoelastic Modeling for Stability Analysis

Consider the low-order pitch plunge system illustrated in Figure 1. The system is modeled as a rigid

airfoil attached to a support structure composed of springs and cams that allow pitch and plunge motion.

The airfoil also has a trailing edge control surface (flap) that adds an extra degree of freedom for the system.

The equations of motion describing the pitch and plunge motion during aeroelastic response are derived from

force and moment equations12,16 and written in matrix form,

[

m mxαb

mxαb Iα

][

ÿ

α̈

]

+

[

cy 0

0 cα

][

ẏ

α̇

]

+

[

ky 0

0 kα

][

y

α

]

=

[

−L

M

]

, (1)

where y is plunge deflection and α is pitch angle. The other variables include the airfoil mass m, distance to

center of mass xα, moment of inertia Iα, chord length b, structural damping coefficients cy, cα, and spring

constants ky, kα. The above system description can also be extended to generalized second order equations

of motion relating structural dynamics and unsteady aerodynamics, however this discussion is beyond the

intended scope of this paper and the interested reader is referred to.16

Figure 1. Isometric view of the pitch-plunge mechanism for studying aeroservoelastic systems.

The aeroelastic system (1) becomes an ASE system by including active servo control via the control

surface. The control surface deflection angle β affect the lift L and moment M through the relation

L = 2q̃bclα

(

α+ 1.1
b

U
α̇+

1

U
ẏ

)

+ q̃b2clββ, (2)

M = 2q̃bcmy

(

α+ 1.1
b

U
α̇+

1

U
ẏ

)

+ q̃b2cmβ
β, (3)

where U is the nominal airspeed, clα , cmα
are lift and moment coefficients for pitch angle and clβ , cmβ

are

lift and moment coefficients for control surface angle. The airspeed U directly corresponds to a dynamic

pressure q̃ ∈ R, that represents a flight condition. The system equations relate rigid body and control surface
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displacement and velocities through rectangular matrices of the vibration and control modes. Combining

(1)-(3) the continuous-time state-space matrices for the equations of motion are given by
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=

[

0 I

−M−1K −M−1C

]











y

α

ẏ

α̇











+

[

0

M−1F

]

β, (4)

where

M =

[

m mxαb

mxαb Iα

]

, K =

[

ky q̃U2bclα

0 −q̃U2b2cmα
+ kα

]

,

C =

[

cy + q̃Ubclα 1.1q̃Ub2clα
q̃Ub2cmα

cα − 1.1q̃Ub3cmα

]

, F =

[

−Uq̃bclβ
U2q̃b2cmβ

]

.

Traditional aeroservoelastic stability analysis defines the nominal stability (flutter) margin as the largest

perturbation in the dynamic pressure such that the nominal aeroservoelastic model remains stable. Nominal

models however are subject to errors due to the accuracy of model parameters, neglected unmodeled dy-

namics, and nonlinear effects. A robust aeroservoelastic model can be generated by associating uncertainty

operators ∆ with the nominal model and include the parametrization along with a perturbation in dynamic

pressure. The robust flutter margin is the largest perturbation in dynamic pressure such that all possible

feedback connections with nominal model and perturbation ∆ ∈ ∆ are stable. Modeling uncertainties, both

parametric and dynamic in nature, can be incorporated into the aeroservoelastic stability analysis within

the µ-analysis framework to be discussed in Section III.

The choice of uncertainty structure plays an important role in determining realistic stability (flutter)

boundaries, however this discussion is beyond the scope of this paper. The aim here is to investigate the

tools presented in the control systems literature for application in aeroservoelastic stability analysis, and in

particular, model based stability analysis methods that include model uncertainty.

The aeroservoelastic model for nominal stability (flutter) analysis in the µ-analysis framework can be

formulated using the model (4) specified at some nominal dynamic pressure q̃0 with additional input and

output signals to introduce perturbations to the dynamic pressure. Thus, given a nominal flight condition

q̃0, consider perturbations to dynamic pressure δq̃ through a feedback relationship that is given by

q̃ = q̃0 +Wq̃δq̃, (5)

with ‖δq̃‖∞ ≤ 1. The norm bound restricts the search over dynamic pressure to perturbations of q̃ = q̃0 ± 1

with respect to the nominal dynamic pressure q̃0. Searching over larger range of dynamic pressure simply

requires introducing an appropriate weighting Wq̃ to the additive perturbation of q̃ in (5). Consider also

modeling uncertainties as perturbations to the structural spring constant kα and damping coefficient cy given

by

kα = kα0
+Wkα

δkα
, cy = cy0

(I +Wcy
δcy

),

with ‖δkα
‖∞ ≤ 1 and ‖δcy

‖∞ ≤ 1. Note the difference between the uncertainty descriptions corresponds to

additive and multiplicative uncertainty structures for the spring constant and damping coefficient respec-

tively. These model uncertainties are considered along with perturbations to dynamic pressure δq̃ through

the feedback relationship as in Figure 2 with structured uncertainty ∆ ∈ ∆̃,

∆̃ =

{

∆̃ : ∆̃ =

[

∆ 0

0 δq̃I

]

, ∆ ∈ diag(δcy
, δkα

), ‖∆‖∞ ≤ 1, ‖δq̃‖∞ ≤ 1

}

. (6)

The control law is given by negative feedback of the velocity measurement,

H =
[

0 −1
]

.
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Figure 2. Pitch plunge uncertainty block diagram. The nominal aeroelastic model and controller are given by

G and H respectively. The general aeroservoelastic plant model is denoted by P .

The state-space matrices of the general transfer matrix P for the uncertainty and feedback LFT config-

uration presented in Figure 2 is given by
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, (7)

where zl, zm, wl and wm are the input-output signals of the feedback connection with the dynamic pressure

perturbation and y, α correspond to pitch-plunge sensor measurements. Values for the elements within the

general transfer matrix are derived from M, C, K, and F.16

More complex model uncertainties can be considered by augmenting the outputs of the state-space system

with feedback perturbations. Additional model perturbations could include parametric uncertainty in the

aerodynamic models, structural modes and model properties, as well as dynamic uncertainty overbounding

responses measured from flight data.14,19 The µ-analysis framework discussed in the following sections is a

method for analyzing stability of uncertain feedback systems for which the pitch-plunge mechanism described

by the model in Figure 2 is a special case.

III. Robustness Analysis

It is common practice in systems and control to specify performance and robustness of dynamical systems

using the frequency domain. Frequency domain plots, such as Bode plots, Nyquist plots,7 or more recently

singular value plots,25 convey lots of information about the system under consideration and are popular

tools among the systems and control community. Various important properties in the systems and control

community can be characterized by a set of inequality constraints in the frequency domain. For instance,

specifications on the H∞-norm (largest singular value σ) of a transfer matrix P (s), such as ‖P‖∞ :=
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∆

P

Figure 3. Standard uncertain system connection.

σ(P (jω)) < β for all frequencies ω ∈ R, can be specified by FDI

[

P (jω)

I

]∗ [

I 0

0 −β2I

][

P (jω)

I

]

≺ 0, for all ω ∈ R. (8)

The challenge in working with performance specifications in Frequency Domain Inequality (FDI) form is of

course the infinite dimensionality of the problem, which must be specified for every frequency ω ∈ R. Indeed,

various engineering design problems can be formulated as model-based specifications expressed by inequality

constraints in the frequency domain. Conversion of such specifications into analytical conditions suitable to

numerically tractable optimization problems remains an important area of research for dynamical system

analysis and design.

Consider the standard setup for robustness and performance µ analysis i.e. the LFT feedback connection

of a nominal map P and an uncertainty or perturbation ∆ as depicted in Figure 3. The nominal map P (s)

is assumed to be a rational function of the complex variable s, being a proper and square matrix that is

analytic in the closed right-half plane. The unknown uncertainty is assumed to have the following structure

∆ :=
{

diag[δ1Is1
, · · · , δrIsr

, φ1Is1
, · · · , φcIsc

,∆1, · · · ,∆F ] : δi ∈ R, φi ∈ C,∆j ∈ C
mj×mj

}

.

Note that the aeroservoelastic modeling technique presented in the previous section fits within this general

setup, where Figure 2 is a special case of Figure 3 with structured uncertainty ∆ =
{

diag[δcy
, δkα

, δq̃]
}

.

Let T (∆) denote the set of all block diagonal and stable rational transfer function matrices that have block

structures such as ∆

T (∆) := {∆(·) ∈ RH∞ : ∆(s0) ∈ ∆ ∀ s0 ∈ C+}

The feedback connection of (P,∆) is well-posed and internally stable for all ∆ ∈ T (∆) with ‖∆‖∞ < 1 if

and only if25

sup
ω∈R

µ∆(P (jω)) ≤ 1, (9)

where µ∆ denotes the structured singular value of a matrix, which is defined as

µ∆(P ) :=

(

inf
∆∈∆

{‖∆‖ : det(I − P∆) = 0}

)−1

.

In case no ∆ ∈ ∆ makes (I − P∆) singular µ∆(P ) := 0.

In general, the structured singular value µ∆ cannot be computed in polynomial time, being a problem for

which no algorithm exists (NP-hard).23 In practice, the introduction of appropriate scalings or multipliers

using duality theory is commonly used to provide computable upper bounds for µ∆. For instance, define

the set of scaling matrices

Z :=
{

diag[Z1, · · · , Zsr+sc
, z1Im1

, · · · , zF ImF
] : Zi ∈ C

si×si , Zi = Z∗

i > 0, zj ∈ R, zj > 0
}

, (10)

and

Y := {diag[Y1, · · · , Ysr
, 0, · · · , 0] : Yi = Y ∗

i ∈ C
si×si}. (11)
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Note that Z and Y commute with the matrices in ∆. Now define the matrix valued function

Γβ(P (jω), Z(ω), Y (ω)) :=

[

P (jω)

I

]∗ [

Z(ω) −jY (ω)

jY (ω) −β2Z(ω)

][

P (jω)

I

]

(12)

and the optimization problem

ρ∆(P ) := inf
β∈R,Z∈Z,Y ∈Y

sup
ω∈Ω

{β : Γβ(P (jω), Z(ω), Y (ω)) ≺ 0} . (13)

It follows from duality theory4 that

sup
ω∈Ω

µ∆(P (jω)) ≤ ρ∆(P ). (14)

The problem on the right hand side of the above inequality is, in some sense, simpler than the original

problem (9). Yet it cannot be easily solved as well. The following are commonly found strategies for

approaching this problem:

(i) Constant multipliers on Ω = R: When Ω = R and Z and Y are assumed to be constant, i.e.,

Z(ω) = Z and Y (ω) = Y ∀ω ∈ R, then problem (13) can be converted into an LMI using the KYP

Lemma. The particular case Z = I, Y = 0 reduces to the well known BRL (Bounded-Real Lemma).

This approach produces upper bounds for ρ∆.

(ii) Constant multipliers on Ω ⊂ R: When Ω = [ω1, ω2] ⊂ R and Z and Y are assumed to be constant,

i.e., Z(ω) = Z and Y (ω) = Y ∀ |ω| ∈ [ω1, ω2], then problem (13) can be converted into an LMI using

the Generalized KYP results.11 This approach produces upper bounds for ρ∆ with tight upper bounds

obtained by splitting Ω in N segments Ωi = [ωi, ωi+1], i = 1, . . . , N such that Ω = ∪iΩi.

(iii) Constant multipliers on Ω = {w1}: For a single frequency ω1, i.e., Ω = {ω1} problem (13) is an

LMI. Lower bounds for ρ∆ can be obtained by solving this LMI on a finite grid Ω = ∪i{ωi}. In most

cases, to achieve a reasonable approximation for ρ∆ a very dense grid must be used.

Recently, the authors developed a method for including frequency dependent multipliers.10

(iv) Affine multipliers on Ω ⊂ R: When Ω = [ω1, ω2] ⊂ R and Z(ω) and Y (ω) are affine functions of

the frequency variable ω. This will be discussed in detail in Section V.

IV. Robust Aeroservoelastic Analysis

Computation of robust aeroservoelastic stability (robust flutter) margins is considered in the µ-analysis

framework through an augmented generalized plant (7) and uncertainty structure (6).

Lemma 1 Let nominal plant P , derived for nominal dynamic pressure q̃0, be given and define the relation-

ship for perturbations to dynamic pressure δq̃ as in Figure 2(a). Let scaling Wq and uncertainty structure ∆

be also given such that ‖∆‖∞ < 1, for all ∆ ∈ ∆. Define the scaled plant P̃ as

P̃ = P

[

Wq̃ 0

0 I

]

. (15)

Then Wq is the robust aeroservoelastic stability (robust flutter) margin

Γrob = Wq̃

if and only if µ
∆̃

(P̃ (jω)) = 1, where µ∆(·) is defined in (9). Furthermore, q̃rob := q̃0 +Wq is the dynamic

pressure which is at the limit of stability.
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For a proof see [16, chapter 8]. The robust aeroservoelastic stability (robust flutter) margin is determined by

iterating over the scaling Wq̃ until the largest dynamic pressure q̃ given in (5) is found such that P̃ is robustly

stable with respect to the set of uncertainties ∆. At each iteration a solution to the µ-analysis problem is

required. As outlined in the previous section, µ∆ can be approximated by evaluating upper bounds via ρ∆

specified by the optimization problem (13).

Let the scaled plant (15) be described by state space matrices [A,B,C,D] of appropriate dimension. The

matrix valued function Γβ(P̃ (jω), Z(ω), Y (ω)) defined in (12) with frequency response given by

P̃ (jω) = C (jωI −A)
−1
B +D

can be written as

Γβ(P̃ (jω), Z(ω), Y (ω)) =

[

(jωI −A)−1B

I

]∗ [

C D

0 I

]∗ [

Z(ω) −jY (ω)

jY (ω) −β2Z(ω)

][

C D

0 I

][

(jωI −A)−1B

I

]

.

(16)

Then the robust ASE stability margin can be evaluated via the optimization problem (13) written as

ρ∆(P̃ ) = inf
β∈R,Z∈Z,Y ∈Y

sup
ω∈Ω

{

β :

[

(jωI −A)−1B

I

]∗

Θ(ω)

[

(jωI −A)−1B

I

]

≺ 0

}

, (17)

where

Θ(ω) =

[

C D

0 I

]∗ [

Z(ω) −jY (ω)

jY (ω) −β2Z(ω)

] [

C D

0 I

]

. (18)

There are several methods available for evaluating ρ∆ that are characterized a choice for the form of scaling

matrices Z and Y as well as the frequency interval Ω that is considered. The following section outlines recent

developments of the authors10 for computing frequency affine scaling matrices.

V. Robust Analysis with Affine Scaling Matrices

In the last decades, thanks mostly to the result known as Kalman-Yakubovich-Popov (KYP) Lemma,20

FDIs became a major tool in the analysis of dynamic systems. The KYP Lemma establishes the equivalence

between the FDI
[

(jωI −A)−1B

I

]∗

Θ

[

(jωI −A)−1B

I

]

≺ 0, for all ω ∈ R, (19)

where matrices A, B and the Hermitian matrix Θ of appropriate finite dimensions are given, and the Linear

Matrix Inequality (LMI)

[

A B

I 0

]∗[

0 X

X 0

][

A B

I 0

]

+ Θ ≺ 0, (20)

which should hold for some Hermitian matrix P . The main role of the KYP Lemma is to convert the

infinite dimensional inequality (19) into the finite dimensional inequality (20) where appropriate choices

for Θ represent the analysis of various system properties. The LMI formulation of the KYP Lemma (20)

provides a constant multiplier relaxation for the FDI, see21,22 over the entire frequency axis ω ∈ R, that is

Θ is constant over the frequency axis. Particular choice of structure for the coefficient matrix Θ in the KYP

Lemma specifies a µ-analysis over bound problem (12) using constant scaling matrices

Θ =

[

C D

0 I

]∗ [

Z −jY

jY −β2Z

][

C D

0 I

]

. (21)
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Equivalent LMI conditions (20) characterizing FDIs (19) over the entire frequency range can be conservative

in most practical applications where specifications of interest are considered only over finite frequency ranges.

Including appropriate weighting functions in FDIs has demonstrated usefulness in practice for incorporating

requirements over finite frequency intervals. However the process of selecting weights is non-trivial espe-

cially when considering the trade off between complexity and accuracy in capturing desired specifications.13

Searching simultaneously for a frequency-dependent multiplier while satisfying the FDI over all frequencies

has revealed to be a hard problem, for example the challenges of robust analysis via µ-analysis4,18 leading

to the often used method of reducing the search domain by finite but sufficiently dense frequency grid. For

some problems this technique is adequate, while for others it is unreliable, particularly in highly flexible

aeroservoelastic systems with narrow and high peaks in the frequency domain plot since it becomes possible

to miss the critical frequency and thus under-evaluate the system response.6

The above LMI presents a case where the scaling matrix Θ is constant. This case can be extended to

incorporate a particular class of frequency-dependent Θ over finite frequency intervals. From a practical

perspective, this allows for posing and checking frequency domain specifications within a certain frequency

range which might be the most relevant to a specific application. Furthermore, by combining ranges one

can pose frequency specifications in different ranges without augmenting the plant with frequency dependent

scalings or weights. In particular we consider frequency-dependent multipliers of the form

Θ(ω) :=
ω2 − ω

ω2 − ω1
Θ1 +

ω − ω1

ω2 − ω1
Θ2. (22)

Note that Θ(ω) is not a proper rational function of ω which means that Θ(ω) cannot be realized as a proper

rational transfer function of ω. The affine function Θ(ω) is restricted to a single frequency interval only for

simplicity of the exposition and can be extended to more general piecewise affine functions.9

Theorem 2 Let matrices A ∈ C
n×n with no eigenvalues on the imaginary axis, B ∈ C

n×m and Θi = Θ∗

i ∈
C

(n+m)×(n+m) for i = {1, 2} be given. If the LMI

[

A B

I 0

]∗ [

I

jωiI

] [

F

E

]∗

+

[

F

E

][

I

jωiI

]∗ [

A B

I 0

]

+ Θi ≺ 0, i = {1, 2} (23)

has feasible solution for some F ∈ C
n×n and E ∈ C

m×n, then the FDI

[

(jωI −A)−1B

I

]∗

Θ(ω)

[

(jωI −A)−1B

I

]

≺ 0, for all ω1 ≤ ω ≤ ω2, (24)

holds with Θ(ω) given in (22).

Sufficiency for the pair of inequalities (23) introduces concepts from the analysis of polytopic systems3

in treating the frequency an real uncertain parameter. To show sufficiency8 a convex combination of (23) is

formed with the use of the parameter

λ(ω) :=
ω2 − ω

ω2 − ω1
, ω1 ≤ ω ≤ ω2. (25)

Indeed λ(ω) ∈ [0, 1] for all ω1 ≤ ω ≤ ω2, which forms the basis for the frequency-dependent matrix Θ

Θ(ω) = λ(ω)Θ1 + (1 − λ(ω))Θ2,

where Θ1,Θ2 ∈ HC
n+m. The convex combination is formed by taking the sum of (23) for i = 1 multiplied

by λ(ω) and (23) for i = 2 multiplied by (1 − λ(ω)), which results in the feasible FDI

[

A B

I 0

]∗ [

I

jωI

][

F

E

]∗

+

[

F

E

] [

I

jωI

]∗ [

A B

I 0

]

+ Θ(ω) ≺ 0, for all ω1 ≤ ω ≤ ω2.
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Define the matrix

N (ω) :=

[

(jωI −A)−1B

I

]

and multiply the above inequality by N (ω) on the right and by its conjugate transpose on the left to obtain

N (ω)∗Θ(ω)N (ω) =

[

(jωI −A)−1B

I

]∗

Θ(ω)

[

(jωI −A)−1B

I

]

≺ 0.

Theorem 2 can be used to produce upper bounds to ρ∆ which has as its main advantage the fact that

the scaling matrices Z and Y are allowed to be affine functions of frequency ω. That is

Z(ω) =
ω2 − ω

ω2 − ω1
Z1 +

ω − ω1

ω2 − ω1
Z2,

Y (ω) =
ω2 − ω

ω2 − ω1
Y1 +

ω − ω1

ω2 − ω1
Y2.

The scaling matrices Z1, Z2 and Y1, Y2 appear linearly in the coefficient matrices Θ1, Θ2 as well as in

the LMI conditions of Theorem 2 maintaining a convex optimization for computing upper bounds to ρ∆

in (13). Furthermore, allowing for frequency dependent coefficient matrices Θ(ω) can significantly reduce

conservatism particularly in applications that include searching over variables in Θ.

Necessity of the pair of LMI (23) with Θ constant, that is Θ1 = Θ2 = Θ, can be established10 using

results on the generalized KYP Lemma.11 In this case, if the FDI (19) holds for ω1 ≤ ω ≤ ω2 then there

exists a particular choice of F and E which is guaranteed to satisfy the above inequalities.

Note that Theorem 2 has the difficulty of handling infinite frequency intervals, for instance in case

ω2 → ∞. This difficulty can overcome through a change of variables on the frequency ω via the bilinear

transformation. Consider the transformation of the frequency variable

ψ =
ω − z

1 + ω − z
, (26)

which maps the semi-infinite segment of the real axis ω ∈ [z,∞) onto the finite segment of the real axis

ψ ∈ [0, 1). The following is an extension of Theorem 2 where the transformed frequency variable (26) has

been substituted into the LMI conditions.10

Theorem 3 Let matrices A ∈ C
n×n with no eigenvalues on the imaginary axis, B ∈ C

n×m and Θi = Θ∗

i ∈
C

(n+m)×(n+m) for i = {1, 2} be given. If the LMI

[

A B

I 0

]∗ [

(1 − ψi)I

j[z + ψi(1 − z)]

]

[

F E

]

+

[

F

E

]

[

(1 − ψi)I −j[z + ψi(1 − z)]
]

[

A B

I 0

]

+ Θi ≺ 0, (27)

with ψ1 = 0, ψ2 = 1 has feasible solution for some F ∈ C
n×n and E ∈ C

m×n, then the FDI

[

(jωI −A)−1B

I

]∗

Θ

(

ω − z

1 + ω − z

)

[

(jωI −A)−1B

I

]

≺ 0, for all z ≤ ω <∞, (28)

holds with Θ(·) given in (22).

The above theorem can handle the case ω2 → ∞ by making ψ2 → 1. Furthermore, for real-valued

matrices [A,B,C,D] with appropriate dimension, the above theorem can handle the case ω ∈ R by setting

z = 0.10 Note that Theorems 2 and 3 are not completely equivalent and may produce different results for

the same frequency interval since the coefficient matrix in Theorem 3 is an affine function of the transformed

frequency variable ψ. The LMI conditions (27) are finite in ψ despite the infinite dimension of the FDI in ω.
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VI. Evaluating Robust Aeroservoelastic Stability Margins

The robust aeroservoelastic stability margin uses µ-analysis tools to give worst case stability parameters.

Safe and efficient expansion of the flight envelope can be performed using on-line implementation of the

above analysis algorithm. Since computing the upper bound is a convex optimization, it does not introduce

excessive computational burden. The predictive nature of model based analysis methods, such as the µ-

method allow for so called flutterometer tools to be developed for tracking flutter margin during flight

tests.15

The generalized plant is scaled such that the peak structured singular value plot is approximately, but

not over, unity as shown in Figure 4. That is the system is robustly stable, with respect to the model

uncertainty and scaled perturbation in dynamic pressure. The maximum lower bound for ρ∆ evaluated on

the frequency grid is ρ∆ = 0.982 at a frequency ω = 1.4 × 10−6Hz. Using either Theorem 2 with ω ∈ [0, 1]

or Theorem 3 with ω ∈ R provides an upper bound ρ∆ = 0.995.

For this feedback control configuration however, the singular value plot approaches the robust stability

limit at frequencies much lower than the predominant dynamics of the system. This is not realistic since

these dynamics occur at a frequency of approximately every 8 days. Furthermore, analysis performed using

conventional techniques that hold for all frequencies ω ∈ R, such as the original KYP Lemma conditions (20),

give an upper bound ρ∆ = 5.2 where the stability margin would have been greatly underestimated due to the

conservativeness introduced by the numerical computations. Analysis performed on a finite frequency range

above 10−4Hz provides a less conservative stability margin. The maximum lower bound for ρ∆ evalauted

on the frequency grid above 1Hz is ρ∆ = 0.601. Using either Theorem 2 with ω ∈ [1, 100] or Theorem 3

with 1 ≤ ω ≤ ∞ provides an upper bound ρ∆ = 0.602.

10
−6

10
−4

10
−2

10
0

10
2

10
−1

10
0

10
1

Frequency [Hz]

ρ
∆

Real µ Analysis

Theorem 2 (0 ≤ ω ≤ 1) = Theorem 3 (ω ∈ R)

Theorem 2 (1 ≤ ω ≤ 100) = Theorem 3 (1 ≤ ω ≤ ∞)

KYP Lemma (20) (ω ∈ R)

Figure 4. Robust flutter analysis with velocity feedback controller. The curved line is the greatest lower bound

for ρ∆ with dots located at the frequency grid. Other lines are labeled according to the method and frequency

range used to compute them.
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VII. Conclusions

A model based ASE stability analysis method is presented as a standard robust analysis problem from

the robust control theory framework. A computationally efficient method is then presented for robustness

analysis over finite frequency intervals. The simple pitch plunge ASE system example illustrates the useful-

ness of the results presented in previous sections for practical problems in which performance and robustness

are considered.
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