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Abstract— Affine model parametrizations using orthonormal
basis functions hav e been widely used in system identification
and adaptiv e signal processing. The main adv antage of using
orthonormal basis functions in a (generalized) orthonormal
Finite Impulse Response (FIR) filter lies in the possibility of
incorporating prior knowledge of the system dynamics into
the filter design and approximation process. As a result, more
accurate and simplified models can be obtained with a limited
number of basis functions. In this paper the linear parameter
structure of a generalized FIR filter is used to formulate analytic
solutions for model matching problems. Sev eral construction
methods of orthonormal basis functions are discussed and a
case study using the generalized FIR filter to approximate the
dynamics of an optimal feed-forward filter is presented.

I. INT RO DUCT IO N

Using orthonormal basis functions to parametriz e and

estimate dynamic systems [1] is a reputable approach in

model estimation techniques [2], [3], frequency domain iden-

tification methods [4] or realiz ation algorithms [5], [6]. In the

development of orthonormal basis functions, L aguerre and

Kautz basis functions have been used successfully in system

identification and signal processing [7], [8]. A unifying

construction proposed in [9] generaliz ed both the L aguerre

and Kautz basis in the context of system identification and

generaliz ation of these results for arbitrary dynamical sys-

tems were also reported in [1]. T he generaliz ed orthonormal

basis and unifying construction can be used for systems with

wide range of dominant modes, i.e, both high frequency and

low frequency behavior [3].

In this paper, the use of a generaliz ed FIR filter F (z, θ ) is

considered to solve a model matching problem of the form

m in
θ

‖H0(z) − F (z, θ )G0(z)‖2 (1)

where H0(z) and G0(z) are models that are stable but not

necessarily have a stable inverse. T he model matching in (1)

occurs in many applications that require the computation of a

stable filter to approximate an unstable system. T he problem

(1) arises for example in Active Noise Control (ANC), there

H0(z) is primary noise path, G0(z) is second noise path, and

F (z, θ ) is a feedforward controller to be designed [10], [11].

T his paper provides analytic solutions to the optimization of

(1) in case F (z, θ ) is a generaliz ed FIR filter, parameteriz ed

using an orthonormal basis function.

Furthermore, it has been shown in [1] that if the dynamics

of the chosen orthonormal basis functions resembles the
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dynamics of the system to be approximated, the convergence

rate of the affine series expansion will increase. As a result,

the number of linear combinations of basis functions to

accurately approximate the system dynamics can be kept

relatively small. T herefore, the choice of the orthonormal

basis is an important issue in order to obtain accurate

models and in this paper a comparison is made between

the approximation results for different orthonormal basis

functions that use the same prior knowledge on the system

dynamics of H0(z) and G0(z).

II. ST RUCT URE O F O RT H O NO RM AL BASIS FUNCT IO NS

Considering a linear time invariant stable discrete time sys-

tem F0(z) and suppose the functions Vk(z), k = 0 , 1, 2, . . .

serve as a orthonormal basis {Vk(z)} for the set of systems

in H2. T hen there exists a unique expansion

F0(z) =

∞
∑

k= 0

LkVk(z) (2)

where Lk, k = 0 , 1, 2, . . . are the generaliz ed orthonormal

expansion coefficients for the basis {Vk(z)} [12]. Based

on this rationale, an approximate model of the dynamical

system F0(z) can be represented by a finite length N series

expansion

F (z, θ ) =

N−1
∑

k= 0

LkVk(z), θ = [LT
0
, · · · , LT

N−1
]. (3)

W hen the basis function {Vk(z)} are chosen as Vk(z) =
z−k, then (3) simplifies to the conventional Finite Impulse

Response (FIR) filter.

Generaliz ing the notion of a conventional FIR filter, the

finite length N series expansion in (3) is dubbed as a

generaliz ed FIR filter in the remainder of the paper. T he

orthornomal basis sequence {Vk(z)} can incorporate the

possible prior knowledge of the system to be approximated,

and the model F (z, θ ) can be more accurate for a smaller

finite number of coefficients N compared to a conventional

FIR model structure. O bviously, the accuracy of the model

F (z, θ ) depends on the choice of the basis {Vk(z)} used in

(3).

A unifying construction of orthonormal basis functions

Vk(z) has been presented in [9] and given by

Vk(z) =

(

√

1 − |ξk|2

z − ξk

)

k−1
∏

i= 0

(

1 − ξ̄iz

z − ξi

)

(4)

where {ξi}i= 0,1,2, · · · ,N−1 is a set of chosen pole locations for

the basis {Vk(z)}. T he advantage of using the basis functions

Vk(z) in (4) lies in the possibility to include knowledge
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of multiple pole locations in the parametrization of the

generalized FIR filter F (z, θ). While the orthonormality of

basis {Vk(z)} is preserved, the multiple pole locations in

Vk(z) allow approximation of F0(z) using the generalized

FIR filter structure F (z, θ) depicted in Fig. 1.
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Fig. 1. Illustration of the filter y(t) = F (g , θ )x(t), where F (q , θ ) is
param etriz ed via unified construc tion of the basis {Vk(z)} in (4).

T he set of (generaliz ed) orthonorm al basis func tions ini-

tially published in [1] provides an alternative way to con-

struc t an orthonorm al basis with all-pass func tions. For m ore

details on the construc tion of the generaliz ed basis func tions

Vk(z) one is referred to [3]. T he following result shows the

existence and construc tion of the inner func tion which is

c ruc ial to c reate the orthonorm al basis {Vk(z)}.

Proposition 1: L et (A, B) be the state m atrix and input

m atrix of an input balanced realiz ation of a disc rete tim e

transfer func tion H ∈ R H p×m
2

( R H p×m
2

indicates the set

of real rational p × m m atrix func tions) with a McMillan

degree n > 0f and with r ank (B) = m. T hen

(a) T here exist m atric es C, D such that (A, B, C, D)
is a m inim al balanced realiz ation of a square inner

func tion P .

(b) A realiz ation (A, B, C, D) has the property m en-

tioned in (a) if and only if

C = UBT (In + AT )−1(In + A)
D = U [BT (In + AT )−1B − Im]

(5)

where U ∈ R
m×m is any unitary m atrix, and where

In is n×n identity m atrix, and Im is m×m identity

m atrix.

Proof: For the proof, one is referred to [3].

Proposition 1 yields a square m×m inner transfer func tion

P (z) = D + C(zI − A)−1B, where (A, B, C, D) is a

m inim al balanced realiz ation. W ith the inform ation obtained

in Proposition 1, the orthonorm al basis func tions can be

c reated with following proposition.

Proposition 2: L et P (z) is a square inner func tion with

McMillan degree n > 0 and (A, B, C, D) is a m inim al

balanced realiz ation of P (z). D efine the input to state

transfer func tion V0(z) := (zI − A)−1B and

Vk(z) = (zI − A)−1BP k(z)
= V0(z)P k(z)

(6)

then the set of func tions {Vk(z)}k= 0,1,2,... are orthonorm al

basis func tions which have the following property

1

2π j

∮

Vi(z)V T
j (1/ z)

dz

z
=

{

I i = j
0 i �= j

(7)

Proof: For the proof, one is referred to [3].

Proposition 1 and Proposition 2 show how to use an

inner func tion to construc t the orthonorm al basis func tion

Vk(z). If an orthonorm al basis {Vk(z)} with poles at ξi,

i = 0, 1, 2, · · · , N −1 is desired, then from Proposition 1 an

inner func tion P (z) with these poles can be c reated. A s a

result, a balanced realiz ation (A, B, C, D) of inner func tion

P (z) c an be found to form the orthonorm al basis {Vk(z)}
as in (6). In com parison with the filter struc ture depic ted in

Fig. 1, the filter F (q , θ ) based on the basis func tions Vk(z)
of (6) is given in Fig. 2.
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Fig. 2. Filering y(t) = F (q , θ )x(t), where F (q , θ ) in (3) is param etriz ed
by the basis functions Vk(z) in (6).

T he structure in Fig. 1 is equivalent to Fig. 2 if the

set of n poles are repeated indefinitely. By the choice

of basis functions Vz(z) in (6), the poles of F (q, θ ) will

be restricted to a finite (m ultiple) set {ξ0, · · · , ξn−1}. T he

unified construction of basis functions Vk(z) in (4) allows the

set of poles of F (q, θ ) to be infinitely large. A m ore general

orthonorm al basis {Vk(z)} sim ilar as in (6) can incorporate

an infinite num ber of pole locations:

Proposition 3: Consider a sequence of inner function

Pi(z), i = 0 , 1, 2, · · · , each Pi(z) having a corresponding

balanced realiz ation (Ai, Bi, C i, D i) and defining Φi(z) =
(zI − Ai)

−1Bi. T hen the set of functions {Vi(z)}i= 0,1,2, · · ·

with
V0(z) = Φ0(z),

Vi(z) = Φi(z)P0(z)P1(z) · · · Pi−1(z)
(8)

is m utually orthonorm al.

Proof: T he proof is sim ilar to the proof for Proposi-

tion 2.

Because the set of basis functions Vi(z), i = 0 , 1, 2, · · ·
are m utually orthonorm al, {Vi(z)} constitues an orthonorm al

basis. T o distinguish the construction of this set of basis

functions from the unified construction defined in (4) and

the general basis functions defined in (6), the basis functions

Vi(q) given in Proposition 3 are nam ed (generaliz ed) m utual

orthonorm al basis functions throughout the rem ainder of the

paper. W ith Vi(z) in place, the approxim ation F (z, θ ) of a

dynam ical system F0(z) can be represented as

F (z, θ ) =

N−1∑

k= 0

LkΦk(z)P0(z)P1(z) · · · Pk−1(z) (9)

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB04.1

5348

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 24, 2009 at 00:04 from IEEE Xplore.  Restrictions apply. 



If P (z) = P0(z) = P1(z) = · · · = PN−2(z), then (8) can be

simplified to (6) and therefore the construction of the basis

functions in (8) is the generalization of the construction of

basis functions in (6).

III. MO DE L MATCH ING WITH GE NE R ALIZ E D FIR FILTE R S

Given the parametrization of a filter F (z, θ) based on

generalized mutual orthonormal basis functions, the model

matching problem defined earlier in (1) will be solved. The

model matching in (1) occurs in many applications that

require the computation of a stable filter to approximate

an unstable system and arises for example in feedforward

algorithms for Active Noise Control [10], [11].

For the model matching problem (1), let the dynamical

systems H0(z) and G0(z) be given by the state space

realizations (Ah, Bh, Ch, Dh) and (Ag, Bg, Cg, Dg), where

H0(z) is stable and stable invertible, and G0(z) is stable but

not stably invertible. As a result, the optimal filter F (z, θ)
can not be computed via a trivial solution H0(z)G−1

0
(z), as

this would results in an unstable and/or non-causal filter. The

objective is to find a stable filter F (z, θ) such that

‖H0(z) − F (z, θ)G0(z)‖2 (10)

is minimized, where F (z, θ) is parametrized via a linear

combination of basis functions Vk(z) given in (8). It is

straightforward to show that the minimization of (10) is

equivalent to minimizing

‖H(z, θ)‖2, H(z, θ) := H0(z) − F (z, θ)G0(z)

where H(z, θ) is parametrized by a state-space representa-

tion (A, B, C(θ), D(θ)) in which the output matrix C(θ)
and the feedthrough matrix D(θ) depends affinely on the

parameter θ. To formulate an analytic solution to (1), first an

expression for the state space realization (A, B, C(θ), D(θ))
is derived in case F (z, θ) is parametrized using generalized

mutual orthonormal basis functions.

Proposition 4: Consider a square inner transfer function

P (z) with a minimal balanced realization (Ab, Bb, Cb, Db)
and a state dimension nb > 0. Then for any k > 1 the

realization (Ak, Bk, Ck, Dk) of P (z)k can be computed with

the recursive formulas

Ak =

[

Ak−1 0
BbCk−1 Ab

]

Bk =

[

Bk−1

BbDk−1

]

Ck =
[

Dk−1Cb Ck−1

]

Dk = DbDk−1

(11)

and is a minimal balanced realization of P (z)k with state

dimension n · k.

Proof: For the proof, one is referred to [1].

Proposition 5: Given a filter F (z, θ) parametrized in the

form of

F (z, θ) = Df +

n
∑

k=1

Lk−1Vk−1(z), θ = [Df , LT
0
, · · · , LT

n−1
]

where Vk−1(z) are obtained from (6). Let the inner

function P (z)n−1 has a minimal balanced realization

(An−1, Bn−1, Cn−1, Dn−1), then (An−1, Bn−1, Cf , Df ) is

a realization of F (z, θ), where Cf = [LT
0
, LT

1
, · · · , LT

n−1
].

Proof: Follows from standard linear algebra.

It can be noted here that the state space realization of

F (z, θ) can be found via a similar procedure as described in

Proposition 4 and Proposition 5, even if the basis functions

Vk(z) are constructed via (8). With the state space realization

of H0(z), G0(z) and F (z, θ), the state space realization

(A, B, C(θ), D(θ)) of H0(z) − F (z, θ)G0(z) is given by

A =





Ah 0 0
0 Ag 0
0 Bn−1Cg An−1



 B =





Bh

Bg

Bn−1Dg





C(θ) =
[

Ch −DfCg −Cf

]

D(θ) = [DfDg]

(12)

With these results, the minimization of ‖H(z, θ)‖2 can be

computed as an affine function of θ = [Df , LT
0
, · · · , LT

n−1
]

and the result is summarized in the following theorem.

Theorem 1: Consider the discrete-time system H(z, θ),
Minimization of ‖H(z, θ)‖2

2
is equivalent to

m in
θ

{tr
[

D(θ)D(θ)T + C(θ)QC(θ)T
]

} (13)

where Q is the solution to the Lyapunov (Stein) equation

AQAT − Q + BBT = 0

The optimization in (13) can be solved via a SemiDefinite

Programming (SDP) problem

m in
γ ,X1,X2,θ

γ such that

γ − tr{X1} − tr{X2} > 0,

[

X1 C(θ)
C(θ)T Q−1

]

> 0,
[

X2 D(θ)
D(θ)T I

]

> 0

(14)

where γ is a positive real number.

Proof: Since C(θ) and D(θ) depend affinely on the

parameter θ, the condition

tr{D(θ)D(θ)T } + tr{C(θ)QC(θ)T } ≤ γ

can be recasted as a Linear Matrix Inequality (LMI). The

LMI will be of the form

tr{X1} + tr{X2} < γ,

[

X1 C(θ)
C(θ)T Q−1

]

> 0,
[

X2 D(θ)
D(θ)T I

]

> 0

where X1 = XT
1

and X2 = XT
2

are two new (slack)

variables of appropriate dimension needed to formulate the

convex constraints. As a result, the SDP problem

m in
γ ,X1,X2,θ

γ such that

γ − tr{X1} − tr{X2} > 0,

[

X1 C(θ)
C(θ)T Q−1

]

> 0,
[

X2 D(θ)
D(θ)T I

]

> 0
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can be used to find the value of the parameter θ that

minimizes ‖H(z, θ)‖2 =
√

γ.

A more efficient algorithm to compute θ is by exploiting

the structure of C(θ) and D(θ). Since H(z, θ) is defined as

H0(z)−F (z, θ)G0(z), it follows that C(θ) = [Ch −DfCg −
Cf ] and D(θ) = Dh − DfDg where the pairs (Ch, Dh),
(Cg, Dg) and (Cf , Df ) are the output matrices of H0(z),
G0(z) and F (z, θ) respectively. Defining the parameter θ as

θ = [Df Cf ], allows the minimization of ‖H(z, θ)‖2 to be

written as a weighted Least Squares problem. The result is

summarized in the following corollary.

Corollary 1: The analytic solution for the minimization

min
θ

{tr
[

D(θ)D(θ)T + C(θ)QC(θ)T
]

} (15)

is given by

θ = [Y X T ][X X T ]−1 (16)

where

Y =
[

Dh Ch 0 0
]

H, X =
[

D C
]

H

C =

[

0 Cg 0
0 0 I

]

, D =

[

Dg

0

]

and H is found by a Cholesky fa c toriza tion of the positive

definite ma trix Q̄ =

[

I 0
0 Q

]

.

Proof: Matric es C(θ) and D(θ) in (12) c an be rewritten

a s

C(θ) =
[

Ch 0 0
]

− θC, D(θ) = Dh − θD,

C :=

[

0 Cg 0
0 0 I

]

, D :=

[

Dg

0

]

D efine

E =
[

Dh Ch 0 0
]

− θ
[

D C
]

, Q̄ =

[

I 0
0 Q

]

then (15) c an be rewritten a s

‖H(z, θ)‖2
2 = tr{EQ̄E}

where H is found by a Cholesky fa c toriza tion Q̄ = HHT

of the positive definite ma trix Q̄. W ith the definition of

Y =
[

Dh Ch 0 0
]

H, X =
[

D C
]

H

E is defined as E = Y − θX and the minimiza tion of

tr{EQ̄E} for Q̄ > 0 is a standa rd weighted lea st squa res

optimiza tion problem for which the ana lytic solution c an be

computed via (16).

IV . MO D E L E RRO R B O U ND S

W ith full knowledge of the dynamic s of H0(z) and G0(z),
the modeling ma tching problem in (1) c an be seen as an H2-

optima l control or filtering problem. In c a se no restric tions on

the pa rametriza tion of F (z, θ) a re imposed, the minimiza tion

‖H0(z) − F (z, θ)G0(z)‖2 c an be solved with standa rd H2

optima l control solutions [13]. Inc luding a requirement on

the pa rametriza tion of F (z, θ) in the form of a linea r

combina tion of orthonorma l ba sis func tions only enables the

model F (z, θ) to approa ch the optima l solution Fopt(z).

However, the linea r pa rametriza tion c an be exploited in

recursive computa tiona l tools to adjust for changes in the

noise filter H0(z) a s seen for example in Ac tive Noise

Control problems.

T o formula te error bounds for the model error between

F (z, θ) and Fopt(z), the model error is quantified by the

2-norm

‖H0(z) − F (z, θ)G0(z)‖2 (17)

and the optima l solution Fopt(z) gives a lower bound

‖H0(z) − Fopt(z)G0(z)‖2 for the model error in (17). An

upper bound for (17) c an be formula ted by considering the

poles loc a tions ξi of the basis func tions Vk(q) used for the

a ffine pa rametriza tion of F (z, θ). T he result is summarized

in the following proposition.

Proposition 6: L et {κi} be the set of stable poles of

H0(z) and stable zeros of G0(z), let {σi} be the set of

unstable zeros of G0(z) and let the a ll-pa ss transfer func tion

P (z) used for the construc tion of the orthonorma l ba sis

func tions have poles ρj , j = 1, · · · , n p. D efine

λ := m a x
i

np
∏

j= 1

∣

∣

∣

∣

νi − ρj

1 − νiρj

∣

∣

∣

∣

, νi = κi ∪ σ−1

i

and denote

F (z, θ) = Df +
n

∑

k= 1

Lk−1Vk−1(z), θ = [LT
0 , · · · , LT

n−1].

T hen there exists a finite constant c ∈ R and any η ∈ R,

λ < η < 1 such tha t

‖H0(z) − F (z, θ)G0(z)‖2 ≤ c
ηn+ 1

√

1 − η2

Proof: L et Fopt(z) be the solution to (17), where

Fopt(z) is freely pa rametrized, e.g. Fopt is not restric ted to

be an a ffine orthonorma l FIR. T hen it is stra ightforwa rd to

show tha t (17) is an LQG control problem tha t minimizes

∞
∑

t= 1

zT (t)z(t), z(t) = H0(q)d(t) + u(t),

u(t) = Fopt(q)G0(q)d(t)

in which only the va riance of the control signa l u(t) is being

pena lized. For such a minimum variance controller it was

shown in [14] the zeros of G0(q) a re mapped into the unit

c irc le in order to obta in a stable minimum variance controller.

As a result, the poles of Fopt(z) will inc lude a ll stable poles

of H0(z), a ll stable zeros of G0(z), and a ll unstable zeros of

G0(z) which a re mapped into the unit c irc le, e.g. νi = κi ∪
σ−1

i . T herefore, m inθ ‖H0(z)−F (z, θ)G0(z)‖2 is equiva lent

to m inθ ‖Fopt(z)−F (z, θ)‖2. For computa tion of the upper

bound of model error ‖Fopt − F (z, θ)‖2, one is referred to

the work of [15].

T he above proposition shows tha t if the poles {ρj} of

P (z) approa ch the poles {νi}, then λ = 0 and the upper

bound of model error ‖H0(z)−F (z, θ)G0(z)‖2 will dec rea se

dra stic a lly. T herefore, from Proposition 6 it c an be observed

tha t an appropria te selec tion of the poles of the a ll-pa ss

func tion will have an important contribution to the reduc tion

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB04.1

5350

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 24, 2009 at 00:04 from IEEE Xplore.  Restrictions apply. 



of the model error ‖H0(z)−F (z, θ)G0(z)‖2. This is due to

the improvement in the convergence rate of the coefficient

Lk−1 for k = 1, . . . , n in the affine parametrization of the

filter F (q, θ).

V. CASE STUDY

To illustrate the approximation results using the minimiza-

tion (13) for model matching, consider a fourth order system

H0(z) and a second order system G0(z) given by

H0(z) =
z2 − 1.2z + 0.4

z2 − 1.8z + 0.8
·

z2 − z + 0.5

z2 − z + 0.89
,

with poles at 0.9 ± 0.3i, 0.5 ± 0.8i

G0(z) =
z2 − 1z + 1.94

z2 − z + 0.74
,

with poles at 0.5 ± 0.7i, zeros at 0.5 ± 1.3i

(18)

The objective is to find a filter F (q, θ) parametrized via a

orthonormal basis function expansion

F (z, θ) = Df +
∑n

k=1
Lk−1Vk−1(z),

θ = [LT
0 , · · · , LT

n−1]
(19)

with a limited number n of parameters, such that

‖H0(z) − F (z, θ)G0(z)‖2 (20)

is being minimized. Using H2 optimal control design tech-

nique, an optimal Fopt(z) can be obtained as

Fopt(z) =
b5z

5 + b4z
4 + b3z

3 + b2z
2 + b1z + b0

z6 + a5z5 + a4z4 + a3z3 + a2z2 + a1z + a0

where b0 = −0.086 46 , b1 = 0.2046 , b2 = −0.2522,

b3 = 0.1443, b4 = −0.026 7, b5 = 0.004005. a0 = 0.4129,

a1 = −1.7032, a2 = 3.941, a3 = −5.796 , a4 = 5.549,

a5 = −3.315. The poles of Fopt(z) are z1, z̄1 = 0.9 ± 0.3i,

z2, z̄2 = 0.5 ± 0.8i and z3, z̄3 = 0.2577 ± 0.6 701i. With

Fopt(z) in place, the lower bound of model error can be

computed as ‖H0(z) − Fopt(z)G0(z)‖2 = 1.2243. Since

Fopt(q) is computed with a feed-through matrix Df = 0, the

feed-through term Df in (19) also be set to 0 for comparison

purposes.

For the sake of illustration in this case study, it is assumed

only the first two (conjugate) poles {z1, z̄1, z2, z̄2} of the

model Fopt(z) are known for the construction of basis

functions Vk(z). Actually, these poles are also the poles

of H0(z). Obviously, if all pole locations of Fopt(z) were

known beforehand, n can be set to n = 1 as only one unique

coefficient L0 will be able to represent Fopt(z). However,

in this case incomplete knowledge of the pole locations of

Fopt(z) is assumed, requiring theoretically an infinite number

of parameters for an accurate representation of Fopt(z),
increasing the McMillan degree of F (z). To make a fair

comparison between the usage of different basis functions,

n is limited such that Fopt(z) will have a McMillan degree

that is less than or equal to 20.

The quality of the approximation measured by (20) is

compared for different sets of basis functions. The first set

of basis functions Vk(z) are constructed via Proposition 2

and are based on a single all-pass function P (z) that uses

the knowledge of the two (conjugate) poles z1, z̄1 and z2, z̄2

of Fopt(z). Since P (z) is a fourth order all-pass function,

the parametrization of the first filter F1(z) is given by

F1(z) =

5
∑

k= 1

Lk−1Vk−1(z), Vk−1(z) = Φ0(z)P (z)k−1
(21)

where Φ0(z) = (zI−A)−1B in which (A, B) are computed

from an input balanced state-space realization of P (z). With

the fourth order all-pass function P (z), it can be seen from

(21) that n has been limited to n = 5 to ensure that F (z)
has a McMillan degree that is less than or equal to 20.

Instead of a single basis function Vk(z), an alternative

approach would be to create mutually orthonormal basis

functions on the basis of the two all-pass functions P1(z)
and P2(z) that separate the knowledge of the (conjugate)

poles location at z1, z̄1 and z2, z̄2. On the basis of the

parametrization given in Proposition 3, the following filters

Fm(z) are considered:

Fm(z) =

10
∑

k= 1

Lk−1Vk−1(z) where

Vk−1(z) =







Φ1(z)P1(z)k−1, k = 1 , . . . , m

Φ2(z)P1(z)mP2(z)k−m−1, k = 1 + m , . . . , 1 0
(22)

where Φ1(z) = (zI − A1)
−1B1 in which (A1, B1) are

computed from an input balanced state-space realization of

P1(z) and Φ2(z) = (zI − A2)
−1B2 in which (A2, B2) are

computed from an input balanced state-space realization of

P2(z).
In case the orthonomal basis functions are simply set to

Vk(z) = z−k to obtain a 20th order FIR model Ffir (q, θ),
then the model error becomes ‖H0(z) − Ffir G0(z)‖2 =
1.2586 . With the 4th order all-pass function P (z) and the

construction of the orthonormal basis functions in (21), the

computations of 5 coefficients Li for the 20th order filter

F1(z) reduces the model error to ‖H0(z)−F1(z)G0(z)‖2 =
1.2257. This illustrates that a generalized FIR filter can pro-

vide much better approximation results than a conventional

FIR filter.

Different combinations m of basis functions in the mutual

orthonormal basis functions in (22) to construct Fm(z, θ)
will give different model error results. As a final compar-

ison for this case study, the modeling error of ‖H0(z) −
Fm(z, θ)G0(z)‖2 is calculated and shown in Fig. 3. From

Fig. 3, the following observations can be made. Firstly,

if only the 2nd order P1(z), m = 10 or P2(z), m =
0 all-pass functions are used to create orthonormal basis

functions Vk(z), the approximation result is worse compared

to choosing a 4th order basis function P (z) or any linear

combination of P1(z) and P2(z) as all-pass functions. Hence,

higher order basis functions Vk(z) that include more poles

of the dynamic system to be approximated is preferable to

reach an improvement in model approximation.

Secondly, the smallest model error is obtained when m =
1. This implies that the quality of the approximation is not

only related to the location of the poles of the basis function,
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Fig. 3. Comparison of model error for 20th order filter Fm(q, θ) with
different combinations m of mutual orthonormal basis functions in (22).

but is also determined by the number of coefficients used for

building the series expansion on the basis of a specific basis

function. In this case study, only two poles of Fopt are used

to create an orthonormal basis. A possible explanation for

the approximation results lies in the location of the poles, as

indicated by Proposition 6. Since the poles z3, z̄3 are closer

to z2, z̄2 than to z1, z̄1 less coefficients (m = 1 ) are needed

to obtain a better approximation.

VI. H∞ NORM MODE L MATCHING PROBL E M

Next to the H2-norm based model matching, the linear

parametrization of the filter F (q , θ) in terms of basis func-

tions can also be used to minimize an H∞-norm based model

matching. Since F (q , θ) ∈ RH2 implies F (q , θ) ∈ RH∞

for a discrete-time filter, a stable filter F (z, θ) ∈ RH∞ can

be parametrized via a linear combination of basis functions

Vk(z) given in (8), provided the basis functions Vk(z) have

no poles on the unity circle. Given the state space realization

(A, B, C(θ), D(θ)) of H0(z) − F (z, θ)G0(z) in (12), the

minimization of ‖H0(z)−F (z, θ)G0(z)‖∞ can be computed

by using L inear Matrix Inequalities (L MIs), which is given

in the following proposition.

Proposition 7: Given the system matrix

[

A B

C(θ) D(θ)

]

of a discrete time system H̄(z, θ) := H0(z)−F (z, θ)G0(z),
‖H̄(z, θ)‖∞ < γ is equivalent to the existence of a positive

definite symmetric matrix P > 0, such that





AT PA − P AT PB C(θ)T

BT PA BT PB − γ2I D(θ)T

C(θ) D(θ) I



 < 0 (23)

where C(θ) and D(θ) can be written as

C(θ) =
[

Ch 0 0
]

− θC, D(θ) = Dh − θD,

C :=

[

0 Cg 0
0 0 I

]

, D :=

[

Dg

0

]

, θ =
[

Df Cf

]

Proof: The bounded-real L emma states equivalence

between ‖H̄(q , θ)‖∞ < γ and the existence of a positive

definite matrix P such that

AT PA − P + CT C − (AT PB + CT D)
(BT PB + DT D − γ2I)−1(BT PA + DT C) < 0

(24)

Via Schur complement on (24) one obtains (23).

VII. CONCL USIONS

In this paper an analytic solution for both H2- and H∞-

norm based model matching problem is formulated on the

basis of an affine model structure parametrized by gener-

alized orthonormal basis functions. The analytic solution is

formulated in terms of Semidefinite Programming problem

and the solution to model matching is typically found in

problems associated to feedforward active noise control.

A model error bound for the model approximation is

formulated and using the analytic solution, different or-

thonormal basis functions for the construction of generalized

FIR filter are compared in a case study. The results show that

during the construction of the orthornomal basis functions, a

high order orthonormal basis function with a small number of

coefficients is preferred over a low order orthonormal basis

functions with a larger number of parameters.
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