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Model Matching and Filter Design using Orthonormal Basis Functions

Jie Zeng and Raymond de Callafon

Abstract— Affine model parametrizations using orthonormal
basis functions have been widely used in system identification
and adaptive signal processing. The main advantage of using
orthonormal basis functions in a (generalized) orthonormal
Finite Impulse Response (FIR) filter lies in the possibility of
incorporating prior knowledge of the system dynamics into
the filter design and approximation process. As a result, more
accurate and simplified models can be obtained with a limited
number of basis functions. In this paper the linear parameter
structure of a generalized FIR filter is used to formulate analytic
solutions for model matching problems. Several construction
methods of orthonormal basis functions are discussed and a
case study using the generalized FIR filter to approximate the
dynamics of an optimal feed-forward filter is presented.

I. INTRODUCTION

Using orthonormal basis functions to parametrize and
estimate dynamic systems [1] is a reputable approach in
model estimation techniques [2], [3], frequency domain iden-
tification methods [4] or realization algorithms [5], [6]. In the
development of orthonormal basis functions, Laguerre and
Kautz basis functions have been used successfully in system
identification and signal processing [7], [8]. A unifying
construction proposed in [9] generalized both the Laguerre
and Kautz basis in the context of system identification and
generalization of these results for arbitrary dynamical sys-
tems were also reported in [1]. The generalized orthonormal
basis and unifying construction can be used for systems with
wide range of dominant modes, i.e, both high frequency and
low frequency behavior [3].

In this paper, the use of a generalized FIR filter F'(z,0) is
considered to solve a model matching problem of the form

min || Ho(z) — F(2,0)Go(2)]2 ey

where Hy(z) and Go(z) are models that are stable but not
necessarily have a stable inverse. The model matching in (1)
occurs in many applications that require the computation of a
stable filter to approximate an unstable system. The problem
(1) arises for example in Active Noise Control (ANC), there
Hy(z) is primary noise path, Gy (z) is second noise path, and
F(z,0) is a feedforward controller to be designed [10], [11].
This paper provides analytic solutions to the optimization of
(1) in case F'(z,0) is a generalized FIR filter, parameterized
using an orthonormal basis function.

Furthermore, it has been shown in [1] that if the dynamics
of the chosen orthonormal basis functions resembles the
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dynamics of the system to be approximated, the convergence
rate of the affine series expansion will increase. As a result,
the number of linear combinations of basis functions to
accurately approximate the system dynamics can be kept
relatively small. Therefore, the choice of the orthonormal
basis is an important issue in order to obtain accurate
models and in this paper a comparison is made between
the approximation results for different orthonormal basis
functions that use the same prior knowledge on the system
dynamics of Hy(z) and Go(z).

II. STRUCTURE OF ORTHONORMAL BASIS FUNCTIONS

Considering a linear time invariant stable discrete time sys-
tem Fy(z) and suppose the functions Vj,(2), £k =0,1,2,...
serve as a orthonormal basis {V},(z)} for the set of systems
in Ho. Then there exists a unique expansion

Fo(z) = ZLka(Z) 2)
k=0

where Ly, k = 0,1,2,... are the generalized orthonormal
expansion coefficients for the basis {Vj(z)} [12]. Based
on this rationale, an approximate model of the dynamical
system Fy(z) can be represented by a finite length N series
expansion

N—-1
F(2,0) =Y LiVi(2), 0=[L5,--- ., Ly_4]. (3
k=0

When the basis function {Vj(z)} are chosen as Vj(z) =
27", then (3) simplifies to the conventional Finite Impulse
Response (FIR) filter.

Generalizing the notion of a conventional FIR filter, the
finite length N series expansion in (3) is dubbed as a
generalized FIR filter in the remainder of the paper. The
orthornomal basis sequence {Vj(z)} can incorporate the
possible prior knowledge of the system to be approximated,
and the model F(z,0) can be more accurate for a smaller
finite number of coefficients N compared to a conventional
FIR model structure. Obviously, the accuracy of the model
F(z,0) depends on the choice of the basis {V4(z)} used in
(3).

A unifying construction of orthonormal basis functions
Vi:(2) has been presented in [9] and given by

Vile) = <@> ny) e

where {{;}i=0,1,2,...,n—1 is a set of chosen pole locations for
the basis {V}(z) }. The advantage of using the basis functions
Vi(2z) in (4) lies in the possibility to include knowledge
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of multiple pole locations in the parametrization of the
generalized FIR filter F'(z,0). While the orthonormality of
basis {Vj;(z)} is preserved, the multiple pole locations in
Vi(z) allow approximation of Fy(z) using the generalized
FIR filter structure F'(z,6) depicted in Fig. 1.
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Fig. 1. Illustration of the filter y(t) = F(g,0)x(t), where F(q,0) is
parametrized via unified construction of the basis {Vj(z)} in (4).

The set of (generalized) orthonormal basis functions ini-
tially published in [1] provides an alternative way to con-
struct an orthonormal basis with all-pass functions. For more
details on the construction of the generalized basis functions
Vi(2) one is referred to [3]. The following result shows the
existence and construction of the inner function which is
crucial to create the orthonormal basis {V}(z)}.

Proposition 1: Let (A, B) be the state matrix and input
matrix of an input balanced realization of a discrete time
transfer function H € RHL*™ (RHL*™ indicates the set
of real rational p x m matrix functions) with a McMillan
degree n > Of and with rank(B) = m. Then

(a)  There exist matrices C, D such that (A, B,C, D)
is a minimal balanced realization of a square inner
function P.

(b) A realization (A, B,C, D) has the property men-
tioned in (a) if and only if

C
D

UBT(I,, + AT)"Y(I,, + A) 5
UBT(I, + AT)"'B—-1,] ©

where U € R™*™ is any unitary matrix, and where
I,, is n xn identity matrix, and I,, is m X m identity
matrix.

Proof: For the proof, one is referred to [3]. |

Proposition 1 yields a square m xm inner transfer function
P(z) = D+ C(zI — A)™'B, where (A,B,C,D) is a
minimal balanced realization. With the information obtained
in Proposition 1, the orthonormal basis functions can be
created with following proposition.

Proposition 2: Let P(z) is a square inner function with
McMillan degree n > 0 and (A, B,C,D) is a minimal
balanced realization of P(z). Define the input to state
transfer function Vy(z) := (2 — A)~'B and

Vi(z) = (2 — A)7'BP*(2)

Vo(2) P¥(2) ©
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then the set of functions {Vj(2)}x=0,1,2,.. are orthonormal
basis functions which have the following property
1=17

; @)

2;fwwwnmf={éi¢j

Proof: For the proof, one is referred to [3]. [ ]
Proposition 1 and Proposition 2 show how to use an
inner function to construct the orthonormal basis function
Vi(z). If an orthonormal basis {Vi(z)} with poles at &,
1=0,1,2,--- , N —1is desired, then from Proposition 1 an
inner function P(z) with these poles can be created. As a
result, a balanced realization (A, B, C, D) of inner function
P(z) can be found to form the orthonormal basis {Vj(z)}
as in (6). In comparison with the filter structure depicted in
Fig. 1, the filter F'(q, ) based on the basis functions Vi(2)
of (6) is given in Fig._ig.

+ t
+ +
Lo Ly Ln-1

Vo

Fig. 2. Filering y(t) = F(q,0)z(t), where F(q, 0) in (3) is parametrized
by the basis functions Vi (2) in (6).

The structure in Fig. 1 is equivalent to Fig. 2 if the
set of n poles are repeated indefinitely. By the choice
of basis functions V,(z) in (6), the poles of F'(q,6) will
be restricted to a finite (multiple) set {&, - ,&n—1}. The
unified construction of basis functions Vi (z) in (4) allows the
set of poles of F'(q, ) to be infinitely large. A more general
orthonormal basis {V}(z)} similar as in (6) can incorporate
an infinite number of pole locations:

Proposition 3: Consider a sequence of inner function
Pi(z), i = 0,1,2,---, each P;(z) having a corresponding
balanced realization (A;, B;, C;, D;) and defining ®;(z) =
(21 — A;)~'B;. Then the set of functions {V;(2)}iz0,1,2,..
with

Vo(z) = @o(2),
Vi(z) = @i(2)Po(2) P1(2) - - Pia(2)

is mutually orthonormal.
Proof: The proof is similar to the proof for Proposi-
tion 2. [ ]
Because the set of basis functions V;(z), i = 0,1,2,---
are mutually orthonormal, {V;(z)} constitues an orthonormal
basis. To distinguish the construction of this set of basis
functions from the unified construction defined in (4) and
the general basis functions defined in (6), the basis functions
V:(q) given in Proposition 3 are named (generalized) mutual
orthonormal basis functions throughout the remainder of the
paper. With V;(z) in place, the approximation F'(z,0) of a
dynamical system Fj(z) can be represented as

()

N-1
F(z,0) = > Li®k(2)Po(2)Pi(2) -+ Proa(2)  (9)
k=0
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If P(2) = Py(2) = Pi1(z) = -+ = Py_2(2), then (8) can be
simplified to (6) and therefore the construction of the basis
functions in (8) is the generalization of the construction of
basis functions in (6).

III. MODEL MATCHING WITH GENERALIZED FIR FILTERS

Given the parametrization of a filter F(z,6) based on
generalized mutual orthonormal basis functions, the model
matching problem defined earlier in (1) will be solved. The
model matching in (1) occurs in many applications that
require the computation of a stable filter to approximate
an unstable system and arises for example in feedforward
algorithms for Active Noise Control [10], [11].

For the model matching problem (1), let the dynamical
systems Hg(z) and Go(z) be given by the state space
realizations (Ap, By, Ch, Dy) and (A4, By, Cy, D), where
Hy(#) is stable and stable invertible, and G(z) is stable but
not stably invertible. As a result, the optimal filter F'(z,0)
can not be computed via a trivial solution Hy(2)Gy*(z), as
this would results in an unstable and/or non-causal filter. The
objective is to find a stable filter F'(z, ) such that

[Ho(2) = F(2,0)Go(2)]|2 (10)

is minimized, where F(z,0) is parametrized via a linear
combination of basis functions Vi (z) given in (8). It is
straightforward to show that the minimization of (10) is
equivalent to minimizing

HH(Zae)HQ’ H(Z,Q) = Hy(z) — F(Z,@)GO(Z)

where H(z,0) is parametrized by a state-space representa-
tion (A4, B,C(0),D(0)) in which the output matrix C(0)
and the feedthrough matrix D(6) depends affinely on the
parameter . To formulate an analytic solution to (1), first an
expression for the state space realization (A4, B, C(6), D(9))
is derived in case F'(z,0) is parametrized using generalized
mutual orthonormal basis functions.

Proposition 4: Consider a square inner transfer function
P(z) with a minimal balanced realization (A, By, C, D)
and a state dimension n, > 0. Then for any k¥ > 1 the
realization (A, By, C,, Dy.) of P(2)* can be computed with
the recursive formulas

Ap_q 0

A =

F [ ByCr—1 Ay }

B

B,y = 11

k {Bka1 } (11)
Cr = [ DraCy G |
Dy = Dy Dy

and is a minimal balanced realization of P(z)* with state
dimension n - k.
Proof: For the proof, one is referred to [1]. ]
Proposition 5: Given a filter F'(z,0) parametrized in the
form of
n
F(2,0) = Dy+Y  Li-1Vi-1(2), 0 = [Dy, L§ -+, L]
k=1
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where Vj_1(z) are obtained from (6). Let the inner
function P(z)"~! has a minimal balanced realization
(An,h Bn,17 Cnfl, anl), then (Anfl, anl, Cf, Df) is
a realization of F'(z,0), where Cy = [L, LT,--- [ LT_|].
Proof: Follows from standard linear algebra. [ ]
It can be noted here that the state space realization of
F(z,0) can be found via a similar procedure as described in
Proposition 4 and Proposition 5, even if the basis functions
Vi (z) are constructed via (8). With the state space realization
of Ho(z), Go(z) and F(z,0), the state space realization
(A,B,C(0),D(0)) of Hy(z) — F(z,0)Go(2) is given by

Ay 0 0 By,
A=| 0 A, 0 | B= B,
0 Bn—lcg An—l Bn—ng

CO)=[Cn —DsCy —Cy ] D(0) = [DsD,]

12)

With these results, the minimization of || H(z, 6)||2 can be
computed as an affine function of § = [Dy, L, --- | LT_|]
and the result is summarized in the following theorem.

Theorem 1: Consider the discrete-time system H(z,0),
Minimization of ||H(z,#)||3 is equivalent to

min {tr [DO)D(O)" +C(0)QC()"]} (13)
where () is the solution to the Lyapunov (Stein) equation

AQAT —Q+BBT =0

The optimization in (13) can be solved via a SemiDefinite
Programming (SDP) problem

min v such that
v,X1,X2,0
X c(o
Y w{Xi} - X} > 0, [ cor ol } >0,
Xs D)
[ DO I ] >0

(14)
where v is a positive real number.
Proof:  Since C(0) and D(6) depend affinely on the
parameter 6, the condition

tr{D(0)D(0)T} + u{C(H)QC(O)T} < ~

can be recasted as a Linear Matrix Inequality (LMI). The
LMI will be of the form

X c(f
tr{ X1} + tr{Xo} <, [ O(QI)T Q(*l) ] > 0,
X D(6)
[ DO I ] >0
where X; = X{ and X, = XI are two new (slack)

variables of appropriate dimension needed to formulate the
convex constraints. As a result, the SDP problem

min -~y such that
v, X1,X2,0
X c(
v —tr{X1} — tr{X2} >0, { 0(91)T Q(—l) } >0,
X5 D(9)
[ DOT 1 ] >0
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can be used to find the value of the parameter 6 that
minimizes [|H(z,0)|2 = /7. [ |

A more efficient algorithm to compute 6 is by exploiting
the structure of C'(0) and D(6). Since H(z,0) is defined as
Hy(2)—F(z,0)Go(z), it follows that C'(¢) = [C}, —D;Cy —
Cy) and D(¢) = Dy, — DyD, where the pairs (Cy, Dp,),
(Cq,Dy) and (Cy, Dy) are the output matrices of Hy(z),
Go(z) and F(z,0) respectively. Defining the parameter 6 as
0 = [D; Cy], allows the minimization of |H(z,6)||2 to be
written as a weighted Least Squares problem. The result is
summarized in the following corollary.

Corollary 1: The analytic solution for the minimization

min{tr [DO)D(O)" + C()QC(H)"]} (15)

is given by

0=[vXT)[xxT)! (16)

where

Y=[D, C, 0 0]H, X=[D C]H

o ¢ 0 [ b,
=[5 & v)o- 7]

and H is found by a Cholesky factorization of the positive
I 0
0 T
Proof: Matrices C'(8) and D(#) in (12) can be rewritten

definite matrix Q =

as

Q
—
s
~—
Il
—
2
o
e}

] —6C, D(6) = D), — 6D,

10 ¢, O o g
c=|y T 9] =] %

E=[D. Co 0 0]—0[D c],Q:{

Q

|

Define
I 0
0 @
then (15) can be rewritten as

1H(2,0)[3 = u{EQE}

where H is found by a Cholesky factorization Q = HH”
of the positive definite matrix ). With the definition of

Y=[Dy, Co 0 0]H, X=[D CH

E is defined as £ = Y — #X and the minimization of
tr{EQE} for Q > 0 is a standard weighted least squares
optimization problem for which the analytic solution can be
computed via (16). [ ]

IV. MODEL ERROR BOUNDS

With full knowledge of the dynamics of Hy(z) and Go(z),
the modeling matching problem in (1) can be seen as an Ho-
optimal control or filtering problem. In case no restrictions on
the parametrization of F'(z, #) are imposed, the minimization
|Ho(2) — F(z,0)Go(2)]|2 can be solved with standard Ho
optimal control solutions [13]. Including a requirement on
the parametrization of F'(z,6) in the form of a linear
combination of orthonormal basis functions only enables the
model F'(z,0) to approach the optimal solution Fy,;(%).

FrB04.1

However, the linear parametrization can be exploited in
recursive computational tools to adjust for changes in the
noise filter Hy(z) as seen for example in Active Noise
Control problems.

To formulate error bounds for the model error between
F(z,0) and F,,(z), the model error is quantified by the
2-norm

[Ho(2) — F(2,0)Go(2)]|2 (17)

and the optimal solution F,,(z) gives a lower bound
| Ho(z) — Fopt(2)Go(2)]|2 for the model error in (17). An
upper bound for (17) can be formulated by considering the
poles locations §; of the basis functions Vi (q) used for the
affine parametrization of F'(z,6). The result is summarized
in the following proposition.

Proposition 6: Let {k;} be the set of stable poles of
Hy(z) and stable zeros of Gy(z), let {o;} be the set of
unstable zeros of Gy(z) and let the all-pass transfer function
P(z) used for the construction of the orthonormal basis

functions have poles p;, j = 1,--- ,n,. Define
p
Ui — s
A maXH‘ i P , l/i:mUUi_l
i =1 1— Vip]

and denote

F(2,0) =Dg+ Y LiaVioa(2), 0 =[L§,-- LT _].
k=1
Then there exists a finite constant ¢ € R and any n € R,
A < n < 1 such that

nnJrl

|Ho(2) = F(z 0)Go(2)]lz < e—e—

Proof: Let F,p(z) be the solution to (17), where
Fopi(2) is freely parametrized, e.g. F,,; is not restricted to
be an affine orthonormal FIR. Then it is straightforward to
show that (17) is an LQG control problem that minimizes

S 2T ()2(1), 2() = Hola)d() + u(t),
T ult) = Fop0)Golad(t)

in which only the variance of the control signal u(t) is being
penalized. For such a minimum variance controller it was
shown in [14] the zeros of Gy(q) are mapped into the unit
circle in order to obtain a stable minimum variance controller.
As a result, the poles of F,,;(z) will include all stable poles
of Hy(z), all stable zeros of Gy(z), and all unstable zeros of
Go(z) which are mapped into the unit circle, e.g. v; = k; U
o; !. Therefore, ming || Ho(2)—F(z,0)Go(2)|2 is equivalent
to ming || Fypi(2) — F (2, 6)||2. For computation of the upper
bound of model error || Fyp, — F(2,0)]|2, one is referred to
the work of [15]. |

The above proposition shows that if the poles {p;} of
P(z) approach the poles {v;}, then A = 0 and the upper
bound of model error ||Hy(z)—F(z,0)Go(2)|2 will decrease
drastically. Therefore, from Proposition 6 it can be observed
that an appropriate selection of the poles of the all-pass
function will have an important contribution to the reduction
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of the model error ||Hy(z) — F(z,0)Go(2)||2. This is due to
the improvement in the convergence rate of the coefficient
Ly for kK = 1,...,n in the affine parametrization of the
filter F'(q,0).

V. CASE STUDY

To illustrate the approximation results using the minimiza-
tion (13) for model matching, consider a fourth order system
Hy(%) and a second order system G(z) given by

22122404 22—240.5

Hy(z) = :
0 = T T8 508 227089’
with poles at 0.9 + 0.3z, 0.5 £+ 0.8¢ (18)
Go(2) = 22 —12+1.94
08%) = 22 —z4074"

with poles at 0.5 &+ 0.74, zeros at 0.5 & 1.3i

The objective is to find a filter F'(q,0) parametrized via a
orthonormal basis function expansion

F(2,0) =Dy +> 1 Lp—1Vi—1(2),

0= [Lga"' ’Lgfl] (19)
with a limited number n of parameters, such that
[Ho(z) — F(2,0)Go(2)||2 (20)

is being minimized. Using H» optimal control design tech-
nique, an optimal F,,(z) can be obtained as

b52° + byzt + bgz® 4+ bez? 4+ b1z + by

F, =

pt(2) 20+ a525 + agzt +azzd + ag2? + a1z + ag
where by = —0.08646, by = 0.2046, b, = —0.2522,
b3 = 0.1443, by = —0.0267, bs = 0.004005. ag = 0.4129,
ay = —1.7032, ag = 3.941, az = —5.796, aq, = 5.549,

as = —3.315. The poles of Fy,,i(z) are 21,21 = 0.9 £0.3¢,
29,722 = 0.5 £0.87 and 23,23 = 0.2577 £ 0.67017. With
F,pt(2) in place, the lower bound of model error can be
computed as |Ho(z) — Fope(2)Go(2)]|l2 = 1.2243. Since
Fopi(q) is computed with a feed-through matrix Dy = 0, the
feed-through term D/ in (19) also be set to 0 for comparison
purposes.

For the sake of illustration in this case study, it is assumed
only the first two (conjugate) poles {z1, z1, 22,22} of the
model Fyp(z) are known for the construction of basis
functions Vi (z). Actually, these poles are also the poles
of Hy(z). Obviously, if all pole locations of F,,;(z) were
known beforehand, n can be set to n = 1 as only one unique
coefficient Ly will be able to represent F,,.(z). However,
in this case incomplete knowledge of the pole locations of
F,pt(2) is assumed, requiring theoretically an infinite number
of parameters for an accurate representation of Fy,:(z),
increasing the McMillan degree of F(z). To make a fair
comparison between the usage of different basis functions,
n is limited such that F,,;(z) will have a McMillan degree
that is less than or equal to 20.

The quality of the approximation measured by (20) is
compared for different sets of basis functions. The first set
of basis functions Vj(z) are constructed via Proposition 2
and are based on a single all-pass function P(z) that uses

FrB04.1

the knowledge of the two (conjugate) poles z1, z; and z2, 22
of Fop(2). Since P(z) is a fourth order all-pass function,
the parametrization of the first filter F(z) is given by

Fi(z) =Y Li-1Vio1(2), Vio1(2) = ®o(2)P(2)* @D

where ®g(2) = (2 — A)~! B in which (A, B) are computed
from an input balanced state-space realization of P(z). With
the fourth order all-pass function P(z), it can be seen from
(21) that n has been limited to n = 5 to ensure that F'(z)
has a McMillan degree that is less than or equal to 20.

Instead of a single basis function Vi (z), an alternative
approach would be to create mutually orthonormal basis
functions on the basis of the two all-pass functions P;(z)
and P5(z) that separate the knowledge of the (conjugate)
poles location at z1,z; and z9,2s. On the basis of the
parametrization given in Proposition 3, the following filters
F,,(z) are considered:

10
Fo(z) = Z Ly_1Vi—1(2z) where
k=1

O1(2)Pi ()", k=1,...,m
V}g_1(Z) =
Bo(2) P (2)™Pa(2) ™ k=14m,...,10
(22)

where ®1(z) = (2I — A;)7'Bj in which (A, By) are
computed from an input balanced state-space realization of
Pi(2) and ®5(z) = (21 — A2) "' By in which (A, By) are
computed from an input balanced state-space realization of
P. 2 (Z )

In case the orthonomal basis functions are simply set to
Vi(2) = 2% to obtain a 20th order FIR model Fy;.(g,6),
then the model error becomes ||Ho(z) — FrirGo(2)|2 =
1.2586. With the 4th order all-pass function P(z) and the
construction of the orthonormal basis functions in (21), the
computations of 5 coefficients L; for the 20th order filter
F(2) reduces the model error to ||Ho(z) — F1(2)Go(2)||2 =
1.2257. This illustrates that a generalized FIR filter can pro-
vide much better approximation results than a conventional
FIR filter.

Different combinations m of basis functions in the mutual
orthonormal basis functions in (22) to construct F,(z,0)
will give different model error results. As a final compar-
ison for this case study, the modeling error of || Hp(z) —
F(2,0)Go(2)||2 is calculated and shown in Fig. 3. From
Fig. 3, the following observations can be made. Firstly,
if only the 2nd order Pi(z), m = 10 or Ps(z), m =
0 all-pass functions are used to create orthonormal basis
functions Vj(z), the approximation result is worse compared
to choosing a 4th order basis function P(z) or any linear
combination of Pj (z) and P»(z) as all-pass functions. Hence,
higher order basis functions Vj(z) that include more poles
of the dynamic system to be approximated is preferable to
reach an improvement in model approximation.

Secondly, the smallest model error is obtained when m =
1. This implies that the quality of the approximation is not
only related to the location of the poles of the basis function,
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%
[}
1.3396

[ Ho(2) = Fu(2)Go

m

Fig. 3. Comparison of model error for 20th order filter Fyy,(q,0) with
different combinations m of mutual orthonormal basis functions in (22).

but is also determined by the number of coefficients used for
building the series expansion on the basis of a specific basis
function. In this case study, only two poles of Fj,,; are used
to create an orthonormal basis. A possible explanation for
the approximation results lies in the location of the poles, as
indicated by Proposition 6. Since the poles z3, Z3 are closer
to 22, Zo than to z1, z; less coefficients (m = 1) are needed
to obtain a better approximation.

VI. H,, NORM MODEL MATCHING PROBLEM

Next to the Hy-norm based model matching, the linear
parametrization of the filter F'(¢,6) in terms of basis func-
tions can also be used to minimize an H,.-norm based model
matching. Since F(¢q,0) € RH, implies F(q,0) € RH
for a discrete-time filter, a stable filter F'(z,0) € RH, can
be parametrized via a linear combination of basis functions
Vi(z) given in (8), provided the basis functions V(%) have
no poles on the unity circle. Given the state space realization
(A,B,C(0),D(9)) of Ho(z) — F(z,0)Go(z) in (12), the
minimization of || Hy(z) — F(z,0)Go(z)]||s can be computed
by using Linear Matrix Inequalities (LMIs), which is given
in the following proposition.

Proposition 7: Given the system matrix

A B
o) oo |
of a discrete time system H (z,0) := Hy(z) — F(z,0)Go(2),
|H(2,0)|| < 7 is equivalent to the existence of a positive
definite symmetric matrix P > 0, such that

ATPA—P  ATPB  C(O)T
BTPA  BTPB—~2I D) | <0 (23)
C(8) D(6) I

where C'(6) and D(f) can be written as

c(o) = [ C, O 0]—90, D(6) = Dy, — 0D,
0 C, 0 D
C::{O ng , D= Og],HZ[Df Cf}

Proof:  The bounded-real Lemma states equivalence
between ||H(q,0)|l« < 7 and the existence of a positive
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definite matrix P such that
ATPA—-P+CTC - (ATPB+CTD)
(BTPB+ D™D —~+21)"Y(BTPA+ DTC) <0

Via Schur complement on (24) one obtains (23). |

(24)

VII. CONCLUSIONS

In this paper an analytic solution for both Hs- and H-
norm based model matching problem is formulated on the
basis of an affine model structure parametrized by gener-
alized orthonormal basis functions. The analytic solution is
formulated in terms of Semidefinite Programming problem
and the solution to model matching is typically found in
problems associated to feedforward active noise control.

A model error bound for the model approximation is
formulated and using the analytic solution, different or-
thonormal basis functions for the construction of generalized
FIR filter are compared in a case study. The results show that
during the construction of the orthornomal basis functions, a
high order orthonormal basis function with a small number of
coefficients is preferred over a low order orthonormal basis
functions with a larger number of parameters.
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