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A Linear Matrix Inequality for Robust Stability Analysis with

Frequency-Dependent Multipliers

M. R. Graham*'!

Abstract—In this paper we introduce a Linear Matrix
Inequality (LMI) condition for robust stability analysis. The
condition is expressed as a pair of convex inequalities that
provides an upper bound for the structured singular that can
be used to verify stability and performance robustness. This
robust analysis test incorporates a particular class of frequency-
dependent multipliers and can be limited to finite frequency
intervals, features which can significantly reduce conservatism
as compared to existing conditions with similar complexity. The
results are illustrated with a simple numerical example that
illustrates the improvement of the proposed LMI condition.

I. INTRODUCTION

The structured singular value, often referred as p and
introduced in [1], has been a popular analytical tool for
analyzing stability and performance robustness of linear
systems with parametric and dynamic uncertainties. Despite
the fact that computing p, or even finding tight bounds
for u, has proved an extremely hard problem, the use of
the p terminology and methodology in robust control is
widespread.

A number of algorithms has been developed to compute
the maximum of the structured singular value over a specific
frequency interval. Many popular methods make use of the
concept of frequency-dependent multipliers [2]. Searching
simultaneously for a frequency-dependent multiplier and the
maximum g over all frequencies has also revealed to be
a hard problem. An often used device is the reduction of
the search domain by using finite yet sufficiently dense
frequency grid. Search algorithms have been proposed for
determining the maximum g over frequency interval [3], [4]
avoiding unnecessarily dense grids. Other approaches have
considered the frequency itself as uncertain parameter aug-
mented to the original system [5] eliminating difficulties as-
sociated with gridding methods. For improved accuracy finite
frequency intervals can be considered via linear fractional
transformation mapping of the real frequency parameter [6].

The KYP (Kalman-Yakubovich-Popov) Lemma estab-
lishes equivalence between frequency domain inequalities
on the system transfer function and a certain Linear Matrix
Inequality (LMI). Generalization of the KYP Lemma allows
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for treatment of finite frequency ranges [7]. This result is
closely related with standard p-analysis [8], and can be
proved from results on the losslessness of scalings for mixed-
1 [9]. Recent results show the connection of these methods
and propose generalizations in the context of powerful re-
laxation techniques [10], [11] for which robust analysis tests
that approach exactness can be derived in a systematic way
at the expense of increasing the large size of the problem to
be solved and number of optimization variables.

The results presented in this paper provide new robust
stability conditions with a complexity that is comparable to
the generalized KYP lemma [7]. The tests are expressed as
a pair of LMI that, if solvable, provide an upper bound to
w over some specified and possibly finite frequency interval
along with a particular frequency-dependent multiplier that is
used to prove robust stability. We borrow ideas from robust
analysis of uncertain polytopic systems [12] in the treatment
of frequency as a real uncertain parameter to formulate the
results in this paper.

The paper is organized as follows: Section III provides
a review of robust analysis using the structured singular
value p. Subsequently, Section IV defines the affine fre-
quency dependent multipliers and presents the main results
for robust analysis. The proof of the main result is provided
in Section V. To illustrate the reduction in conservatism
of the computed upper bounds, the proposed method is
illustrated by a numerical example in Section VI.

II. NOTATION

The following notation will be used throughout the paper.
The scalar j = +/—1. For a matrix X € ¢, X1, X
and X* are the inverse, complex-conjugate and complex-
conjugate transpose of the matrix X respectively. He{ X } is
short-hand notation for X + X™*.

III. ROBUST ANALYSIS

Consider the standard setup for robustness and perfor-
mance analysis as the linear fractional transformation (LFT)
feedback connection of a nominal map M and an uncertainty
or perturbation A, depicted in Figure 1.

The nominal map M(s) is assumed to be a rational
function of the complex variable s, being a proper and square
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Fig. 1. Standard uncertain system connection.

matrix that is analytic in the closed right-half plane. The
unknown uncertainty is restricted to have the structure

A = {diag[(bllsm co 7¢T’IS7‘7511517 c 7(5c]sc7
A17~~~ 7AF] (bz €R7(5¢ = (C7Aj € (ijij}. €))

allowing a combination scalar real-valued and complex
valued parameter perturbations and complex (unstructured)
uncertainty blocks. By choosing the number, size, and dy-
namic nature of the elements of A, a variety of uncertainty
structures can be translated into this standard form (see for
instance [13]).

Let M(A) denote the set of all block diagonal and stable
rational transfer function matrices that have block structures
such as A

MA)Y:={A() e RHo: Alsg) €AV speCyh} (2

The feedback connection of (M, A) is well-posed and inter-
nally stable for all A € M(A) with |Alle < 871 if and
only if [13]
sup pa(M(jw)) < B, 3
weR
where pa denotes the structured singular value of a matrix,
which is defined as

=
ua(M) = (Alng{HAH cdet( — MA) = O}) .

In case no A € A makes (I — M A) singular ua (M) := 0.

In general the structured singular value pa cannot be
computed in reasonable (polynomial) time, being a problem
for which no polynomial-time algorithm can ever be found
(NP-hard) [14]. In practice, the introduction of appropriate
scalings or multipliers through duality theory is commonly
used to provide computable upper bounds for pa in poly-
nomial time.

For instance, define the set of scaling matrices

Z = {diag[Z1, -, Zs 1., 210p, s+ 1 2P Ip,] :
Z; e Cox% 7, =7F >0,z € R, z; >0}, (4)
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and

Y = {diag[¥7,---, Y, ,0,---,0]:
5/; — 5/;* & (CSZ'XSZ'} (5)

where it can be noted that Z and Y commute with the
matrices in A. Now define the matrix valued function

ds(M, Z,Y) = M*ZM — 5 (M*Y —Y M) — B°Z, (6)

and the optimization problem

pa(M) =

inf sup {f: ®3(M(jw), Z(w),Y (w)) < 0}.
BER,ZEZ,YEY weQ
)

It follows from duality theory [15] that
sup pa(M(jw)) < pa. ®
we

The problem on the right hand side of the above inequality
is, in some sense, simpler than the original problem (3). Yet
it cannot be easily solved as well and the following strategies
are commonly known approaches to tackle this problem:

a) Constant multipliers on € = R: When Q) = R and
Z and Y are assumed to be constant, i.e., Z(w) = Z and
Y(w) =Y Yw € R, then problem (7) can be converted into
an LMI (Linear Matrix Inequality) using the KYP (Kalman-
Yakubovich-Popov) Lemma. LMIs are convex problems and
can be solved in polynomial time. The particular case Z =
I, Y = 0 reduces to the well known BRL (Bounded-Real
Lemma). This approach produces upper bounds for pa.

b) Constant multipliers on & C R: When Q =
[wi,ws] C R and Z and Y are assumed to be constant,
ie, Z(w) = Z and Y(w) = YV|w| € |wy,ws], then
problem (7) can be converted into an LMI (Linear Matrix
Inequality) using the Generalized KYP Lemma [7]. This
approach produces upper bounds for pa . Tight upper bounds
are obtained by splitting 2 in N segments €; = [w;, wit1],
t=1,..., N such that Q = U;Q;.

¢) Constant multipliers on @ = {w;}: For a single
frequency wi, i.e., Q = {wy} problem (7) is an LMI. Lower
bounds for pa can be obtained by solving this LMI on
a finite grid © = U;{w;}. In most cases, to achieve a
reasonable approximation for pa a very dense grid must
be used.

This paper introduces a procedure to produce upper
bounds to pa which has as its main advantage the fact that
Z and Y are allowed to be some specific affine functions
of won aset & = [wy,ws] C R. The result, as illustrated
by examples, produces upper bounds for pa that can be
significantly less conservative than the ones obtained by
the methods discussed above while been relatively cheap to
compute [16].
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IV. THE MAIN RESULT

The basic idea behind the results of this paper is to
treat the frequency w as an uncertain parameter. We borrow
ideas from the robustness analysis of uncertain systems with
polytopic uncertainty [12] to develop robustness analysis
conditions with frequency-dependent multipliers. These tests
allow the value of w to be constrained in a segment of the
real line, i. €., |w| € O = |wy,ws] C RT, where wy can be
possibly zero and wo infinity.

A. Frequency-dependent Multipliers

The main contribution of our results is the possibility of
incorporating frequency-dependent multipliers. In particular,
we consider frequency-dependent multipliers of the form

Zy —wZy 0

Z((U) _ way, w <\,

Zo+wiy, w>0,
Y, -V, 0 o

Y(w) _ WYp — Y, w<U,

Y, +wYy, w>0.

Note that this definition implies

Z(~w)=Zw), Y(-w)=-Y(w), w#0. (10

The multipliers Z and Y are affine functions of w for positive
and negative real values of w and it is not defined at w = 0.
We will extend this definition to handle this case later. Also
of interest is the fact that a spectral factorization of Z(w) € Z
will not in general produce a rational function of jw, which
means that these multipliers cannot be realized as rational
transfer functions of jw.

We now introduce alternative parametrizations for these
multipliers based on the affine functions

Ze(&) = EZ1+ (1 = §) 2y, Zy,Z2 €1,
Ye(€) =¢Yi+(1-9)Ys, Y, Y2€Y.

This parametrization will prove better suited to our future
developments. Note that

Ze(€) € Z, Ye@) e, vEe (01,
and that for all |w| € £ = [wq, wa]
wa — |wl €0, 1].
Wy — W1

Finally define
_ wy — |w]| oy (w2 el
Zaw) = 2 (228 vo) - v, (221)),

so that Z and Y can be rewritten in the form

Ziw) = {ZQ(_wL w <0,

Za(w), w >0, )
Yiw) {—m7 w <0,

Ya(w), w > 0.
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The two main advantages of this alternative parametriza-
tion are: a) the constraint Z(w) € Z and Y (w) € Y can
be enforced by imposing Z1, Z9 € Z and Y;, Y5 € Y; b)
linearity of Z and Y with respect to & = (w2 — |w|)/ (w2 —
wy) can be used to build convex sufficient conditions for
robust stability, as we will see in the next sections.

Note that (9) and (11) are completely equivalent. For in-
stance, values of Z, and Z; associated with the definition (9)
can be obtained from (11) by computing

Accordingly for Y, and Y}

Ya = YQ(O)7
Yo = — [¥e(0) - Yal = —— V2 - Yi)

B. The Basic Idea

In order to understand the idea behind the results to be
presented in the next sections consider, just for the moment,
that M (jw) = MVYw € Q = [wq,ws], that is, that M is
constant and real. Now verify for some 5 > 0 whether the
pair of inequalities
0> MTZ(w)M — j [MTY (w1) = Y(w1)M] — B2 Z(w1)

=MTZ\M -5 [MTY, - Y1 M| - 3274,
0> M"Z(wo)M — j [MTY (wp) = Y (wg) M] — 8°Z(ws)

= M"ZoM — j [MTYs — YoaM] — 5% Zs,
have some feasible solution Z1, Z> € 7, Y1, Yo € Y. In the
affirmative case, the sum of the first inequality multiplied by
the positive scalar £ = (wy — |w|)/(wy — wy) € [0,1] with
the second multiplied by (1 — &) implies that

MTZ(w)M — j [MTY (w) - Y (w)M] — B2Z(w) <0,

Vw e Q= [wy,w]. (12)

Now to prove that the result is also valid for negative values
of w, take the complex conjugate of the above inequality

MTZ{)M +j [MTY(w) - WM] — B Z(@) < 0,

and use (10) to obtain
MTZ(—w)M—j [MTY (~w) - Y(~w)M]-5*Z(~-w) < 0,

which implies that (12) indeed holds for all |w| € Q.

Feasibility of the pair of inequalities should be verified
for a given value of 5. A simple bisection algorithm can be
used to compute the minimum value of 3* = 3 for which
these inequalities are feasible. This value is clearly an upper
bound to pa for w € Q.
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C. Robust Stability Tests

Of course, the problem of the previous section where M
is assumed to be constant, is not interesting at first!. The
technical challenge is to introduce pairs of LMIs that produce
upper bounds to pa for the case when M is a general proper
rational function of w, i.e., M (jw) = C(jwl — A)"'B+ D,
where the real valued matrices (A, B, C, D) are assumed to
have compatible finite dimensions.

To achieve this goal, frequency-dependent multipliers of
the form (11) can be used and the following robust stability
conditions sumamrize the main contributions of this paper.

Theorem 1: Let M (jw) = C(jwl — A)"'B + D where
A e R B e R"™™ (C e R™™ and D ¢ R™*™,
Let wi,ws € R such that wo > wy > 0. If there exists
matrices 21,725 € Z, Y1,Y> € Y and matrices ' € C™**",
G € C™*™ such that the pair of LMIs

c*7Z.C C*7Z1D — jC*Y,
D*Z\C+YhC D*Z1D —nZy + He {jY1 D}

+ He { ﬂ [(jwrI — A) —B]} <0, (13)

O Zlr C*Z,D — §C*Y,
D*ZoC + §Y2C D*ZyD —nZy + He {5Y2D}

+He{ @ [(jwol — A) —B]} <0 (14

has feasible solutions then pa(M(jw), Q) < /n for all
|w] € Q = [w1, wal.

It can be seen that indeed the frequency-dependent multi-
pliers obtained with the above theorem are of the form (11).
This theorem has difficulties to handle the extreme case
wy — oo. This case is summarized in next main result,
which is an alternative version of the previous theorem on
the transformed frequency variable v — w™".

Theorem 2: Let M (jw) = C(jwl — A)"'B + D where
AeR"™, BeR"™™, CeR™" and D € R™*"™. Let
~v1,¥2 € R such that v5 > 4 > 0. If there exists matrices
Z1,79 € 4, Y1,Y9 € Y and matrices I' € C*", G €
C™>™ such that the pair of LMIs

{7 G C*7,D — jC*Y;
D*Z,C +jYiC  D*ZiD —nZ; + He {jY1 D}

..
+ He { M [(GT —y1A) —71B] } <0, (15
P Zr C*ZyD — jC*Y;
D*Z5C + §Y2,C  D*ZyD —nZy 4+ He {jY2 D}

+ He{ @ [(F] — 72 4) —’)/QB]} <0 (16)

ndeed, the pair of inequalities in the previous section, if feasible, can
always be satisfied with Z1 = Z3 and Y1 = Ya.
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has feasible solutions then pa (M (jw), ) < /7 for all w =
vreQ=[ntn'l

Theorem 2 can handle the case w — oo without further
complications by making ~» — 0. Note that Theorems 1
and 2 are not completely equivalent, and that they may
produce different results for the very same frequency range.
We will see in the next section that the multipliers produced
by Theorem 2 are functions of v = w ™! of the form (11).

V. PROOF OF THE MAIN RESULT

The following Lemma is the central piece in the proof of
Theorems 1 and 2. It establishes an equivalence between the
frequency domain condition pa and two conditions extended
with matrix multipliers as in the lines of [12].

Lemma 1: Let M(s) = C(sI — A)"'B+ D where A €
R™*" B e R™™™ C e R™*™ and D € R™*™. Then the
following statements are equivalent:

i) pa(M) </ on Q = [wy,ws).

(ii) There exists multipliers Z(w) € Z,Y(w) € Y, F(w) €
C™*™ and G(w) € CP*™ such that the inequality

Qn(w)+He{ {gggﬂ [(jwl — A) —B]} <0 (17)

where @, (w) is given by

o

C*Z(w)D — jC*Y (w) }
(%)*

D*Z(w)D — nZ(w) + He {jY (w)D}
18)

and has a feasible solution evaluated for all |w| € Q =

[w17 w?] g

Proof: Equivalence of items (i) and (ii) can be proven

using the multiplier methods of [12]. To show that (ii)
implies (1), multiply inequality (17) by

B-fu)— {(jwj —IA)lB}

on the right and by its transpose conjugate on the left to
obtain

® m(M(jw), Z(w), Y (@) = B (w)Qn(w)Bw)" <0

To show that (i) implies (ii) one can invoke Finsler’s
Lemma (see [12] for more details) to establish the equiv-
alence between feasibility of B (w)Q, (w)B(w)* < 0 and
the existence of matrix multipliers X (w) € CP)*" such
that @, (w) + X (w)B(w) + B(w)* X (w)* < 0, where in this
case

Blw) = [(jw] —A) —B] ,

which is inequality (17). |
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Both items (i) and (ii) of the previous Lemma provide
inequality conditions that must be checked for all w € €. It
can be observed that Theorems 1 and 2 reduce the number of
inequalities to be checked to two convex inequalities (Linear
Matrix Inequalities) at the expense of some degree of con-
servativeness. We now show that these pairs of inequalities
implies feasibility of the condition in item (ii) of the previous
Lemma.

Assume that the pair of inequalities in Theorem 1 have
feasible solutions and that wo > wy > 0. The sum of (13)
multiplied by £ = (wy—|w|)/(ws—wy ) and of (14) multiplied
by (1 — &) produces

Qn(w) + He{ {g} [(GwI — A) —B]} <0,

Vw € [wi,ws]. (19)

Taking the conjugate and using the property in (10) we obtain
the inequality

Qn(—w)JrHe{[Q [(—jwI — A) —B]} <0,

VYw € [—wa, —wi].

Glw) = {27

it can be concluded that (17) is feasible. Henceforth, /77 is
an upper bound to pa on £ = [wy,ws] when wy > 0.

The case w; = 0 can be proven by evaluating the previous
expression in the limit as w; — 0. It should be noted that
Z(w), Y(w), F(w) and G(w) are discontinuous at w = 0,
it is necessary to take the limits on the right and on the left
separately. Also note that the arguments used above do not
require continuity at w = 0, and that feasibility of (19) for
w1 — 07T still implies feasibility of (20).

The proof of Theorem 2 can be found along the same
pattern. The inequality in item (ii) is being satisfied for

ule?

w1G
Flw)= {wlF ) = {wlg7

after imposing that Z(w) and Y (w) are affine functions of
w™! =~ of the form (11) instead of w.

(20)

Therefore, by defining

I, <0,
Plw) = {F z>0

w <0,
w >0

w <0, w <0,

w >0, w >0,

VI. ILLUSTRATIVE EXAMPLE

The proposed method for computing upper bounds for the
structured singular value for performance robustness analysis
is illustrated by a numerical example. Let an uncertain plant
be known to belong to a set of input-multiplicative plant
models described by

{PA+0Wy): 61 € RH, |01]]c <1}
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For the numerical example in this paper, the nominal plant
model and uncertainty weight are respectively given by
B 10 - 10(s +5)
Cos(s+10) T Y (s 4 100)
Furthermore, as illustrated in Figure 2, this uncertain plant
operates under feedback with a PID controller
0.1 0.5s
C=5+—+4—"—
+ s + 1+0.1s

where the differentiator has been approximated by a proper
transfer function.

M

TWU A

uf

Fig. 2. System block diagram with input multiplicative uncertainty.

In order to analyze performance robustness of the feedback
system in Figure 2 one can construct a generalized plant

()= ()

W,CP/(1+ CP)
P/(1+CP)

where

B { W,C/(1 + PC)} |

1/(1+CP)

and verify stability robustness with respect to the structured
uncertainty

A =diaglor, 0], [l0tllo <1, [1d2flee < p

according to the main-loop theorem [13].

We look for the minimum of p in Q = [10~',10%| Hz for
which M is robustly stable using four different methods.
The results are presented in Figure 3. The four methods
are: a) minimizing p using the Bounded Real Lemma (solid-
thin line), b) solving the Generalized KYP Lemma [7] on €2
(dashed line), c) solving the pair of LMIs in Theorem 1 (dot-
ted line), and d) solving problem (7) on a dense frequency
grid with 200 logarithmically spaced frequencies (thick line).
Note that for this example the uncertainty structure is such
that pa = pa at each frequency w.

The extra freedom provided by the frequency-dependent
multipliers in (13) and (14) allow for a much less conser-
vative upper bound pa when compared to the BRL and the
Generalized KYP Lemmas.

We now repeat the process by further subdividing 2 =
U3_,Q; into three frequency ranges Q; = [1071,2], Qp =
[2,50], Q3 = [50,10%]. We solved the problem on each
range using the Generalized KYP Lemma [7] and by solving
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4r -#- Frequency gridding | -
— BRL

11 Linear Multipliers
35 = = Generalized KYP B

<t 25 il

10 10 10’ 10 10
Frequency [Hz]

Fig. 3. Robust analysis upper bounds pa computed via frequency grid w €
[10~1,103] (thick solid line), BRL V w € R (thin solid line), Generalized
KYP lemma over w € [10~1,10%] (dashed line), and Theorem 1 over
w € [1071,10%] (dotted line).

5 T
—8— Frequency gridding
450 v Linear Multipliers B
’ = = Generalized KYP
4?""""""; =
1
351 1 4
1
1
3 1 N
1
1
o 251 1 .
1
1
2r 1 1
S g
B i
151 g i
1 : ]
057|||||||||||||||||||||||||||||| > i
\, L L L

-1 0 1 2 3

10 10 10 10 10
Frequency [Hz]

Fig. 4. Robust analysis upper bounds pa computed via frequency
erid w € [1071,10%] (thick solid line), Generalized KYP lemma over
w € [1071,2],[2, 50], [50,10%] (dashed line) and Theorem 1 over w €
[10~1, 2], [2, 50], [50, 10%] (dotted line).

the pair of LMIs in Theorem 1. The results are shown in
Figure 4.

Note that for frequency ranges beginning above w; >
10H z the generalized KYP lemma provides an upper bound
similar to the method of Theorem 1, however for w; <
10H z the generalized KYP lemma provides a conservative
upper bound. Smaller frequency intervals reduce the overall
amount of conservatism for both methods. For this example,
Theorem 1 requires two frequency intervals to reach the
bound pa determined by frequency gridding.
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VII. CONCLUSIONS

A computationally efficient method for robustness anal-
ysis over a finite frequency interval has been proposed in
this paper. The methodology utilizes frequency dependent
multiplier relaxations and result into a pair of Linear Matrix
Inequalities that can be solved numerically in polynomial
time. The amount of conservatism in using frequency de-
pendent multipliers parametrized linearly on w for providing
an upper bound for p is reduced as the size of the frequency
intervals are decreased. This effect is clearly demonstrated
by a numerical example in this paper and the results are
expected to be useful for analyzing robust stability and
performance.
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