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Abstract The increase in aerial storage capacities of fu-
ture magnetic hard disk drives has fostered the use of
dual-stage actuators for high track density data
recording. In a hard disk drive with a dual-stage actu-
ator the standard rotary actuation of the voice coil
motor is combined with an additional micro or milli
actuation to accomplish high-bandwidth and highly
accurate track following. In order to guarantee error less
data transfer, the track following servo controller needs
to perform robustly under different operating condi-
tions, that include changes in flying height and product
manufacturing tolerance of the dual-stage actuator.
Essential in the controller design is to characterize these
uncertain conditions and design a robust track following
servo accordingly. In this paper we present an experi-
ment based methodology to characterize the varying
servo conditions in the form of an uncertainty model.
The uncertainty model can be used for analysis and
synthesis of robust servo controllers.

1 Introduction

Significant progress in areal storage density of a mag-
netic hard disk drive (HDD) can be accomplished by
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using a dual-stage actuator system, in which a high-
bandwidth and highly accurate micro-actuator (MA) is
used in combination with a traditional voice coil motor
(VCM) to position the read/write head on the slider over
the data track (Fan et al. 1995; Li and Horowitz 2002;
Li et al. 2003; Teerjuis et al. 2003). While most high
density demonstrations are achieved under a well con-
ditioned laboratory environment, HDD’s incorporating
dual-stage actuators will be subjected to all the vari-
abilities that come with manufacturing and changing of
operating conditions. If the same areal densities are to be
achieved in low cost consumer applications, then the
track following servo control system will need to be able
to perform adequately in the presence of all possible
product variabilities and uncertainties.

In modern control design approaches for dual-stage
HDDs which make use of H,. and p synthesis (de
Callafon et al. 1999; Hernandez et al. 1999; Rotunno
and de Callafon 2000) it is possible to incorporate the
effects of product variations and various operating
conditions in the design process in the form of an
uncertainty model. The uncertainty model consists of a
nominal model together with a description of the per-
turbation of the nominal model. The first step in
obtaining a servo control system that is robust with re-
spect to product variability, consists of characterizing
the variations and uncertainties of the micro-actuator
system.

This paper focuses on product variabilities that arise
from variations in Z-height and variations from one
suspension to another due to manufacturing. These
variations and uncertainties will have a strong effect on
the effectiveness of a high-bandwidth and highly accu-
rate dual-stage servo controller design. Experimental
data and a systematic modeling and uncertainty char-
acterization are used to capture the variabilities of a dual
stage actuator. The methodology is tested out on a dual-
stage actuator produced by Hutchinson Technology Inc.
(HTI). Once an uncertainty model has been character-
ized, a robust servo controller can be synthesized using
an H,, based control methodology.
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2 Product variability
2.1 PZT micro-actuator suspension

The experimental results produced in this paper are
based on a piezoelectric dual-stage suspension manu-
factured by Hutchinson and a picture of the dual-stage
actuator is shown in Fig. 1. In this HTI Magnum 5E
piezoelectric dual-stage suspension, two PZT bars are
used to move the slider in a direction perpendicular to
the track by a push—pull configuration. In a hard disk
with multiple disks, several dual-stage suspension are
mounted on a single E-block. The E-block connects the
suspensions to a radial VCM for the gross movements of
the read/write head. The piezo-electric dual-stage actu-
ator can be used as a secondary actuator for the fine
movements of the read/write head.

Experiments were conducted to observe the varia-
tions in the dynamic behavior of the dual-stage sus-
pension. The variations are primarily caused by
production and manufacture variations for different
suspensions. Additionally, variations in the dynamic
behavior were observed due to changes in the Z-height,
which is the distance from the E-block connection to the
hard disk. Variations in the Z-height change the flying
height and the air-bearing stiffness of the slider, resulting
in different dynamical aspect of the micro-actuator.
Both conditions reflect the effects of manufacturing
tolerances and changing flying height conditions for
a set of dual-stage suspension mounted on a single
E-block. As multiple suspension are controlled by a
single servo controller, these variations have to be taken
into account when designing a robust dual-stage servo
controller for track following.

2.2 Experimental data

The variations in the dynamical behavior of the dual-
stage suspension is examined by measuring frequency
response functions (FRF) of the suspensions. For that
purpose a Spin Stand with a 7,200 rpm drive, a Polytech
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Fig. 1 HTI Magnum 5E piezoelectric dual-stage suspension

Suspension

Laser Doppler Velocimeter (LDV) position measure-
ment system and a DSP Siglab data analysis system are
used. The DSP board generates a random signal of
prescribed intensity which is amplified to the desired
voltage level by a ST Micro piezo driver and applied to
the piezo pads on the suspension. The slider position is
measured by the LDV and fed back to the DSP board
where a transfer function estimate is computed.

For notation purposes, let u(z), r=1,...,N indicate the
discrete signal generated by the DSP board and y(¢) the
slider position measured by the LDV. Then the discrete
Fourier transforms of u(f) and y(r) are given by:

N
2

v
Z exp —iwt (2)

the empirical transfer function estimate (ETFE) is given
by Ljung (1999)

To reduce the effects of measurement noise and the
variance of the ETFE, the estimate given in Eq. 3 is
averaged over several measurements. This greatly im-
proves the variance aspects of the ETFE, leading to
unbiased and consistent estimate of the FRF of the dual-
stage actuator.

To indicate the quality of the FRF measurements, a
typical frequency response of an HTI suspension is
shown in Fig. 2. For illustration purposes, only the
amplitude Bode response of the FRF measurement is
shown in Fig. 2. It can be observed from this figure that
the dual-stage actuator exhibits a dynamical behavior

Un(w) = u(r) exp ™" (1)
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Fig. 2 Typical amplitude (top) and phase (bottom) Bode frequency
response function of an HTI dual-stage suspension



that involves a major resonance mode at 9 kHz, which
corresponds to the first sway mode of the suspension.
Additional small resonance and anti-resonance modes
are observed around 6.5 and 13 kHz that can be con-
tributed to torsional modes of the suspension. Varia-
tions in both manufacturing and in mounting
conditions, such as the distance in spacing between
suspension mounting and the hard disk (Z-height), will
modify the location and height of these resonance modes
in the frequency domain measurements. As an example
it is worth mentioning here that variations in the
Z-height has a significant effect on the torsion modes fop
the suspension. These variations are illustrated in the
following.

2.3 Manufacturing variations

With a fixed Z-height, it is possible to compare the
frequency response data of various suspensions for
manufacturing variabilities. At a fixed Z-height of 22
micro inches or 0.56 mm, in Fig. 3 FRF measurements
Fi(w), k=1,...,7 of seven different dual-stage suspen-
sions are compared. It can be noted that there can be
substantial difference between the frequency response of
the various suspensions, especially at the first torsion
mode around 6.5 kHz.

The variations in the dynamic behavior of the dual-
stage suspension due to manufacturing variations or
production tolerances play an important role in the de-
sign of high performance (high bandwidth) dual-stage
servo controllers. Only one single servo controller will be
used to control several dual-stage suspensions in a single
HDD. As a result, the dual-stage servo should be de-
signed such that it is robust against the variations in the
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Fig. 3 Magnitude (top) and phase (bottom) Bode plot of the
frequency response for seven different dual-stage suspensions all
mounted and flying over an 7,200 RPM operating hard disk at a
Z-height of 22 milli inches or 0.56 mm

805

dynamic behavior to avoid servo performance deterio-
ration.

2.4 Variations in Z-height

The dual-stage suspensions were also tested for Z-height
variations: the distance from the E-block connection
to the magnetic recording surface of the hard disk.
Variations in the Z-height will alter the flying height
and air bearing properties of the slider on which the
read/write head is mounted. For experimental purposes,
the Z-height is varied 10 milli inches or 0.26 mm
around the nominal value of 0.56 mm to simulate
excessive Z-height variations in a HDD. It should be
noted that such variations are much larger than typically
observed in a suspension mounted in a HDD the results
are solely used to demonstrate the effectiveness of
capturing possible structural variations in the torsion
mode of the suspension. Measured frequency response
functions Fi(w) of one dual-stage suspension for which
the Z-height is varied between 0.30 mm and 0.82 mm
is depicted in Fig. 4.

It is observed from the data in Fig. 4 that the smallest
value of the Z-height (0.30 mm), significantly decreases
the torsion mode at approximately 6.5 kHz. The largest
value of the Z-height (0.82 mm) causes a significantly
large torsion mode. Henceforth, the FRF measurements
due to variations in Z-height from 0.30 to 0.82 mm in
Fig. 4 can be distinguished by the size of the torsion
mode around 6.5 kHz. The effect of Z-height is clearly
demonstrating the changing boundary conditions of the
air bearing, causing the dual-stage suspension to act
more as cantilevered beam with a less restricted torsion
mode.

magnitude
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Fig. 4 Magnitude (top) and phase (bottom) Bode plot of the
frequency response of a single dual-stage suspension for Z-height
variations between 0.30 and 0.82 mm
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3 Uncertainty modeling
3.1 Uncertainty models

From the experimental results it can be observed that a
single linear dynamical model P will not capture the
dynamical variations in the dual-stage suspension. In-
stead of formulating a single dynamical model, a set of
models 2 can be proposed to account for the variations
in the FRF measurements of the dual-stage actuators.
The set of models £ needs to be constructed in such a
way, that all measured FRF can be represented in the
set Z. In case this set of models Z is constructed in
conformance with robust control design techniques, a
robust dual-stage servo controller can be designed and
analyzed to account for the variations in the dynamical
behavior in the dual-stage suspensions.

A set of models # that is conform with robust servo
control design techniques is described by norm bounded
perturbation in a linear fraction transformation (LFT)
framework. Such a set of models 2 is described by

P ={P|P=7.,(0,A),[IAll <1} (4)

where A indicates a stable norm bounded perturbation
and

Fu(0,A) = O + O Al — O11) ' On (5)

denotes the upper linear fractional transformation
(LFT) of A with the four transfer functions in the
transfer function matrix

On le}
On On

In Eq. 5 O, is used describe the nominal dynamical
behavior (A=0). The stable (and possibly structured)
norm bounded perturbation A is the (allowable) per-
turbation, which encompasses the variability and
uncertainty that arise due to changing of operating
conditions or manufacturing tolerance. In general, the
terms Q1,, 0> and Q;; are additional dynamic models
that specify and normalize the shape and location of the
perturbation that occur in the nominal behavior Q»,.
The format of Q in Eq. 5 completely determines the
uncertainty model and the corresponding set of models
2 in Eq. 4. The uncertainty model Q can be found by
considering unstructured uncertainty perturbations in
order to characterize variations with an unknown
structure such as the effects of manufacturing varia-
tions for dual-stage actuators as illustrated in Sect. 2.3.
Structured uncertainty perturbations can be used to
model highly structured dynamical variations such as
the possible changes in Z-height conditions discussed
in Sect. 2.4. The distinction between unstructured
uncertainty models for modeling product variabilities
and structured uncertainty models for modeling
Z-height conditions will be continued throughout the

|

paper. More details can be found in the following
sections.

3.2 Unstructured uncertainty description

In order to represent the various FRF Fi(w) of the dual-
stage actuators, an nominal model along with a uncer-
tainty description is used. The effect of manufacturing
variations for dual-stage actuators, that typically has an
unknown structure, is chosen to be represented by a
multiplicative uncertainty description

P = {P|P = PO(I + WmAm)7 ||Am||oo§ 1} (6)

that is well suited for representing unstructured
dynamical variations (Skogestad and Postlethwaite
1996; Zhou and Doyle 1998). In Eq. 6, Py is used to
denote the nominal model and W,, is a weighting
function which models the size and shape of the multi-
plicative perturbation. The frequency dependency of
both the nominal model P, and the multiplicative
uncertainty weighting function W, will be indicated by
the argument (w) and both Po(w) and W (w) can be
continuous or discrete time models.

The multiplicative uncertainty set in Eq. 6 is a special
case of the LFT based uncertainty set in Eq. 4 with
011=0, Q12=Wy, Py, Q-1 =1 and Q», = P,. Henceforth,
to complete the multiplicative unstructured uncertainty
description, both the nominal model P, and the
weighting function Wy, in Eq. 6 need to be modeled. In
the next section it is shown how the nominal model P,
and the multiplicative uncertainty weighting function
can be estimated from the measured frequency response
measurements Fy(w) presented in Fig. 3. First, the
structured uncertainty associated to Z-height variations
is discussed.

3.3 Structured uncertainty description

As indicated in Sect. 2.4, Z-height variations typically
cause a slight change in frequency and damping of the
resonance (torsion) mode of the dual-stage suspension.
Such variations can be captured very well in a structured
uncertainty description with perturbations on stiffness
and damping parameters of a model.

The discrete time nature of the servo controller in a
HDD motivates the use of discrete time models in this
paper. To describe the structured uncertainty associated
with Z-height variations, consider a discrete time model
P(z) described by

- b222 + b]Z + b()

_ - , z= e/ATw
arz- 4+ aiz+ ag

P(z)

where AT reflects the sampling time of the discrete time
model P. For the analysis purposes of this section, the
model P in Eq. 7 is chosen as a second-order discrete

(7)



time model and is used to reflect a varying resonance and
anti-resonance mode present in the nominal model P,

From the data in Fig. 4 it can be observed that
variations in Z-height do not cause DC variations, but
only changes in location and damping of the torsion
resonance mode located around 6.5 kHz. This can be
included in Eq. 7 by assuming no gain variations of the
transfer function P(z) and a simple variable transfor-
mation

b2 - bl aq ay - bo ag ap
D]

K=—, bj=———, a1= by=———, do=—
a by a az by a az

(3)

rewrites Eq. 7 into a monic transfer function with con-
stant gain K

22+ (b1 + @)z + (bo + @)
z2 4+ az+a
Blz—f‘l_?o

22 +c‘11z+ao>’

P(z) =K

k(14

In Eq. 9, the parameters b, and by are now used to
indicate a difference in the numerator coefficients with
respect to the denominator coefficients.

The model parametrization in Eq. 9 can be used to
characterize structured uncertainty in damping and
stiffness in the torsion resonance/anti-resonance mode of
the dual-stage actuator due to Z-height variations.
Moreover, the parametrization (Eq.9) allows the
structured uncertainty to be represented in a LFT for-
mat. This can be seen as follows.

The interval for each parameter b;, a;, i=0,1 in Eq. 9
can be considering as a (structured) additive perturba-
tion. The parameter perturbations are described by

i=0,1
i=0,1

©)

bi = bo; + 1p:0p;

a; = ag; + 404

|5b",’|<1,

10

|04,:]<1, (10)
and indicate absolute changes in the parameters. In
Eq. 10, by ;, ap; denote the nominal parameter values,
where as r,, ,; respectively denote the absolute size of
the perturbation of the parameters.

The parametrization given in Eq. 9 can be repre-
sented by the block diagram given in Fig. 5. As the
perturbation of each parameter b;, a; in Eq. 10 can be
written as a LFT, the combination of all parameter
perturbations can be written in a structured uncertainty
model using a LFT representation

P, ={P|P=7(0Q,A.), A. = diag(dp,1, s.0,a,1,040) }
(11)

where [6,,] <1,i=0,1, |6,, <1,i=0,1. The entries of O
in the LFT representation of Eq. 11 can readily be found
with Fig. 5 and Eq. 10.

Both the uncertainty model £,, in Eq. 6 for manu-
facturing variations and the uncertainty model #, in
Eq. 11 for Z-height variations are represented by LFT’s.
Both uncertainty models can be combined to capture
both the product and Z-height variations in a single
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LFT based uncertainty model £ similarly to Eq. 5 where
the uncertainty A has been normalized and structured in
a diagonal form A=diag (651, 5.0, 94.1> Ou0, Am) Where
105 <1,i=0,1, |0, <1,i=0,1and || Apll.. < 1.Inthe
following, the estimation of the nominal model Py along
with the uncertainty bounds on the basis of FRF mea-
surements is discussed in more detail.

4 Application of uncertainty modeling
4.1 Role of nominal model

The nominal model P, plays an important role in the
characterization of an uncertainty model. In case of the
unstructured multiplicative uncertainty model 2,
mentioned in Eq. 6, the choice of a nominal model P,
directly affects the weighting function W,,. An appro-
priate choice of Py can lead to a small multiplicative
uncertainty bound W, which in turn is favorable for the
design of a robust performing servo controller.

Given the FRF measurements Fj(w) of several dual-
stage actuators and a choice of for a single nominal
model Py, an upper bound for the unstructured multi-
plicative uncertainty can be computed by

Fi(0) = (o)

Om(®w) = max o)

k‘ , weEQ

(12)

At a frequency point w at the frequency grid Q, the
frequency dependent function é,,(w) is simply the worst
case upper bound between the nominal model Py(w) and
each frequency response function Fy(w).

An appropriate choice of the nominal model Py can
reduce the size of the frequency dependent upper bound
Om(w) and therefore the size of the multiplicative
uncertainty. Given Eq. 12, an appropriate choice for
Po(w) is found by minimizing the worst case upper
bound

Fig. 5 Parametrization for characterization of damping and reso-
nance frequency variations in discrete time model
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(13)

where 0 indicates the free parameter of a parametrized
nominal model P,(0). The nominal model Py(0) should
have low complexity in order to provide a manageable
control synthesis problem. Low complexity require-
ments on the nominal model rule out interpolation
algorithms (Partington 1991; Pena and Snaizer 1995;
Chen et al. 1996) to solve Eq. 13, as they tend to give
fairly high order models.

A straightforward approach to the construction of a
nominal model is to a two-step procedure in which an
interpolation is followed by a curve fitting routine to
provide the estimation of a low order model:

P,(0, ) = min max oy, ()
0 weQ

1. Compute an optimal nominal frequency response
that minimizes the worst case frequency response
upper bound in Eq. 12. This first step is a non-
parametric characterization of the nominal behavior
of the micro-actuator system in the form of a nominal
frequency response.

2. Fit a nominal model Py(0) of specified low complexity
to the optimal nominal frequency response data. This
second step the actual nominal model P, of limited
complexity for which the resulting frequency re-
sponse upper bound in Eq. 12 can be evaluated.

These steps are outlined in the following.

4.2 Characterization of nominal frequency response

Let Fi(w) € C represents the kth complex frequency
response function (FRF) with k=1,...,p and measured at
a finite number of frequency points w € Q, where Q2 is a
chosen frequency grid. Then the worst case upper bound
for the multiplicative model error is given by

Fi(jo) = Faom(jo)
Fom (j)

(14)

H weQ

where F,om(w) denotes the nominal FRF to be deter-
mined.

In order to find a nominal FRF Fyon(w) € C with the
smallest multiplicative error d/{w), an optimization has to be
solved for each w € Q. By setting Fyom(®)=a(w)+ ifi(w)
the minimization of d/{w) with respect to Fom(w) can be
expressed as follows:

L ma [U@) — (a(0) + i)
o) = min o [0 GO
for w € Q.

The computation of a(w), f(w) € R in Eq. 15 is a con-
vex optimization and guarantees a unique solution at
every frequency w €Q. The convexity of the problem for
each frequency w €Q can be seen by the following
formulation. Let o (w) and fi(w) be the real and imag-
inary part of the kth FRF F(jw) at a frequency w €Q. In
order to obtain the minimum worst case upper bound,

we can perform the following optimization for each
w €

“(Ofilggu)arr
(%(@) = %(@))* + (B() = Bi(@))* < (F(@) + f*(@))r
fork=1,...,p (16)

subjected to

where p is the number of FRF measurements. It should
be noted that the computation of F,,,(w) via Eq. 16 at
each w € Q does not resemble the geometric mean

ZFk((J))

k=1

as the geometric mean does not minimize the worst case
multiplicative (or even additive) uncertainty bound é(w)
in Eq. 14.

As the multiplicative uncertainty description will be
used to describe the manufacturing variations, the
optimization (Eq. 16) is applied to the FRF measure-
ments depicted in Fig. 3. For each frequency w €Q an
optimal nominal FRF F,,,(w) is computed that mini-
mizes the multiplicative error bound J(w) given in
Eq. 14. The result has been plotted in Fig. 6 and it can
be observed that the nominal FRF is chosen such that
the multiplicative error bound d{w) < 1 V o €Q.

4.3 Estimation of a low order nominal model
The nominal FRF F,,,(w) is found by a frequency

dependent worst case optimization of a multiplicative
error bound. As Fon(®), @ €Q is still in the form of

magnitude

3
10 frequency [Hz] 10

Fig. 6 Amplitude (top) and phase (bottom) Bode plot of the
following frequency domain data: seven frequency response
measurements Fi(w), k=1,...,7 caused by manufacturing variations
(dotted), the computed nominal frequency response Fy,om(w) (solid)
via Eq. 16, and the resulting minimum multiplicative error bound
6/w) (dashed) according to Eq. 14



frequency domain data points, a parametric nominal
model of preferably low order is needed for controller
synthesis.

For the discrete time servo control implementation in
a HDD it is necessary to construct a discrete time (linear
time invariant) model Py of limited complexity that
approximates the nominal FRF F ., (»), o €Q as good
as possible. To address the limited complexity, the
nominal model Py to be determined is parameterized in a
transfer function representation

bo+biz '+ -+ b,z"
Po(z,0) =
O(Za ) 1+(11271 +"'+an27"7

(17)

where z=¢/27 @ denotes the z-transform variable, AT the
sampling time of the discrete tiem model and

0 =[bo,b1,...,by,ai,...,a,)

denotes a real valued parameter of unknown coefficients
in the transfer function representation given in Eq. 17.
The order or complexity of the linear model can be
specified with the integer value n.

The approximation of Fj,n(jw) by the model Py(z,0)
is addressed by considering a curve fitting procedure. In
the curve fitting procedure the following curve fitting
error

From(®) — Py(e/%, 0)
From (CL))

is considered. In Eq. 18 a multiplicative error is being
considered that is similar to Eq. 15. Additionally, a
frequency dependent function W(w) can be used to
influence the curve fitting of the frequency response
data.

The weighting function W(w) plays an important role
in finding a low order nominal model Py(w) by empha-
sizing the dynamics in the nominal FRF F,,,(w) that
are most relevant for control design. The choice of the
proper weighting function W(w) during estimation of a
nominal model Py(w) can be used to take into account
the control application of the model (Gaikwad and
Rivera 1997; Van den Hof et al. 1997, Boéling and
Mikild 1998).

In order to motivate the choice of a weighting func-
tion W(w), consider the problem of robust stability of a
servo control loop in the presence of multiplicative
modeling errors, similar as in Eq. 18 with W(w)=1. For
notation purposes, consider a scalar system P and servo
controller C. In the presence of a multiplicative model
error Ap(w) = [(P(w) — Py(w))/P(w)], standard robust
stability results (Zhou et al. 1996) indicate that

C(w)P(w) ’
1+ Clw)P()

E(w,0) = o eQ

W(w), (18)

nfo) (19)
is a sufficient condition for stability robustness. Multi-
plicative modeling errors are weighted by the comple-
mentary sensitivity function [CP/(1 + CP)] in the robust
stability test (Eq. 19). Hence, minimization of the curve
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fitting error (Eq. 18) with a weighting function W(w)
that resembles [C(w)P(w)/(1 + C(w)P(w))] will facili-
tate the robust stability test (Eq. 19). Such a frequency
dependent weighting function W(w), w € Q can be
constructed by performing closed-loop experiments and
measuring the complementary sensitivity function.
Alternatively, the desired weighting function W(w), o
€ Q can be realized by approximating the general shape
of the complementary sensitivity function. In this way
the weighting function W(w) has a general shape that is
chosen to be constant at low frequencies, a small in-
crease at the cross-over frequency and a roll-off at high
frequencies.

With the definition of the curve fitting error (Eq. 18),
a parameter 6 is estimated by solving the following non-
linear weighted least squares minimization:

0 = arg min, ZE(a))E*(w)

weQ

where " is used to denote the complex conjugate trans-
pose. The estimation of the parameter 0 is solved by an
iterative convex optimization and more results on the
curve fitting procedure can be found in de Callafon et al.
(1996). The curve fitting procedure is applied to the
nominal FRF F,,,(w) to estimate a nominal model P,
of order n=6 and a Bode plot of the model has been
depicted in Fig. 7.

Along with the Bode plot of the nominal model P,
the FRF measurements Fi(w), k=1,...,7 given in Fig. 3
due to manufacturing variations, have been plotted. The
resulting multiplicative error bound

Fi(jo) = R(e)

. weQ
Po(e/”)

magnitude

I
RS O v
A iy "r‘,"\ i S et
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10 frequency [Hz] 10

Fig. 7 Amplitude (top) and phase (bottom) Bode plot of the
following frequency domain data: seven frequency response
measurements Fy(w), k=1,...,7 caused by manufacturing variations
(dotted), the nominal sixth order discrete-time model Py(e/ “) (solid)
found via curve fitting Fyom(®w), and the resulting multiplicative
error bound §,,(w) (dashed) according to Eq. 12
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has been plotted in the top portion of Fig. 7. With the
definition of 6{w) in Eq. 14 it can be seen that J,,(w) =
0[w) in Fig. 6. This is due to the fact that a low order
discrete time nominal model Py is estimated, resulting
in a larger multiplicative error bound. Moreover, it
can be observed that the multiplicative error bound
Om(w) is allowed to be larger at higher frequencies,
which is motivated by the discussion on the weighting
function W(w) for robust stability analysis indicated
above.

4.4 Unstructured uncertainty bound

To finalize the uncertainty model of the piezo-electric
dual-stage actuator for manufacturing variations, a
model W, for the multiplicative model error has to be
formulated. The model W, is a parametric model that
over bounds the unstructured multiplicative uncertainty
bound. Next to the characterization of a nominal model
Py in Eq. 6, a discrete time parametric model of the
uncertainty weighting function W, is needed for a dis-
crete time robust controller synthesis. Similarly to the
low order requirements on the nominal model, it is again
advantageous to estimate a low order model for the
uncertainty weighting function W, to provide a man-
ageable robust control design problem.

With the given estimated nominal model Py, the
resulting multiplicative model error bound

Fi(jo) = Py(e”)

. Q
2 (el‘”) [ONS

(20)

needs to be over bounded by a stable and stably
invertible discrete time transfer function W,,(¢/ ©) such
that

Wi (jo)| > m(jo),

In this way, the multiplicative error bound d,(w) is
bounded from above by a low order weighting function
Win

om(®) < [WnAn|

Yo € Q. (21)

where A, is unknown, but bounded ||Ay |l < 1.

To address the limited complexity of the weighting
function W, (w), the weighting function W, is parame-
terized in a transfer function representation based on a
spectral factorization where

(0, 0) = Win(, O) W (&, 6)
_ Po+ p2cos(w) + -+ f,2 cos(nw)
14 o2cos(w) + - - - + 2,2 cos(nw)

(22)

in which * denotes the complex conjugate. In Eq. 22 the
relation zX+z %=/ K ©+ e K ©=2 cos(k w), k=

has been used to parametrize W, (w). To simplify nota—
tions, the sampling time AT of the discrete time filter W,
is normalized to A7T'=1. The parameter 0 to be estimated
is given by

0= 1[0, 1 B0ty s ]

and the parameter 0 in W, m(e “,0) can be found by
spectral factorization of W, (H) provided W, (0)>0vw
(Astrom 1970). Similarly as in Eq. 17, the order or
complexity of the weighting function W, can be speci-
fied with the integer value n.

The approximation and overbounding of the fre-
quency dependent multiplicative upper bound J,,(w) by
a discrete time parametric model W, (¢’ ©) is addressed
by formulating a spectral overbounding procedure sim-
ilar as in Scheid et al. (1991) or Scheid and Bayard
(1995). In the spectral overbounding procedure, the
constrained min—max optimization

min max’ (5,2n(a)) — W
0 weQ

(o, f))) W(co)‘ subjected to

Win(@,0) > 32 (0), ® €Q Wnlw,0)>0, Yo
(23)

is solved via linear programming techniques. In Eq. 23
the maximum difference between the squared frequency
dependent upper bound 6%(w) and the spectral model
Wi(w) is minimized. Similar to Eq. 18, a frequency
dependent weighting function W(w) can be used to
emphasize certain frequency areas in the squared fre-
quency dependent upper bound 2(w). The first con-
straint in Eq. 23 guarantees that Wy, (w,0) overbounds
5;1((0), _whereas the second constraint guarantees that
Win(w,0) allows a spectral factorization Wy (w,0) =
Wi (€7, 0) W5 (e/”,0) where Wp(¢/ “,0) is a stable and
stably 1nvert1ble discrete time transfer function. Choos-
ing a weighting filter W(w):l/éz{m(a)) in Eq. 23 to
emphasize a relative error during the constrained min—
max optimization, the final result of the parametric
multiplicative uncertainty overbounding has been plot-
ted in Fig. 8.
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Fig. 8 Amplitude Bode plot of multiplicative error bound J,(w)
according to Eq. 20 (dotted) and computed stable and stably
invertible 8th order model W, (¢! ©) (solid)



An amplitude Bode plot of the estimated stable and
stably invertible weighting function W, (¢/ “) has been
depicted in Fig. 8. The model W (¢/ “) is an 8th order
discrete time model that over bounds the unstructured
multiplicative uncertainty bound d,,(w) for all w €Q. It
can be observed that the model W, (¢/ “) provides a tight
overbound of d,,(w), especially at the peaks in the
multiplicative uncertainty bound.

4.5 Structured parametric uncertainty bounds

In order to model the variations in the dynamic
behavior of the HTI dual-stage actuator due to varia-
tions in Z-height, the structured uncertainty model 2,
in Eq. 11 is used. In the structured uncertainty model
2., the Z-height variations are modeled by a varying
torsion resonance/anti-resonance mode in the nominal
model Py with nominal discrete time parameter values
bos, ap; and a additive perturbation bounded by r; ;,
rq; for i=0,1.

A nominal model P, is found by the curve fitting of
the nominal FRF F,,,(w) and the result was depicted in
Fig. 7. With this nominal model Pj, the nominal dis-
crete time parameter values by ;, ao; can be extracted by a
decomposition of Py in

2

_ 22 + b]Z + b() Po(Z)
z=+aiz+ ag

by isolating the estimated torsion resonance/anti-reso-

nance mode around 6.5 kHz from the nominal model

Py. The variable transformation (Eq. 8) with b,= a,

= 1 allows the nominal model P, to be rewritten into

%@_O+

P() (Z)

bo.1z+ boyo
z2 + ap, 1z + app

%ﬂ@

and the nominal values by, ao,, i = 0,1 for the struc-
tured uncertainty set %, are extracted from the previ-
ously estimated nominal model P,.

As the nominal model P, is constructed on FRF
measurements involving a Z-height of 22 milli inches or
0.56 mm, the extreme Z-height situations of 0.30 and
0.82 mm can be used to characterize the additive
parameter perturbations 7, r,,;, i=0,1 given in Eq. 10.
The parameter perturbations are determined by curve
fitting the FRF measurements Fy(w), k=1,2 depicted in
Fig. 4 for Z-height variations of 0.30 and 0.82 mm.

Similar to the nominal model Py(z), the models Py(z)
found by curve fitting the FRF measurements Fj(w) can
be rewritten into

&@=O+

br1z + bro
22 4+ a1z + ago

yﬂ@

where the estimated torsion resonance/anti-resonance
mode around 6.5 kHz has been isolated. With this
parametric information, the structured uncertainty set
2, can be completed by

811
Ppi = max|bk7,- — bOA’i|
k=12

Vai = max|ak‘,,» — (l()_j’

k=12
for i=0,1. The results for the structured uncertainty
estimation have been listed in Table 1, where both the
nominal values and the additive parameter perturba-
tions have been listed.

It can be observed from Table 1 that all parameters
have additive perturbations smaller than their nominal
value. This avoids a sign change of the parameters in the
structured uncertainty model £, in Eq. 11. As men-
tioned before, the structural variations due to Z-height
variations are much larger than typically observed in a
suspension mounted in a HDD. This is due to the
excessive variations from 0.30 to 0.82 mm for the Z-
height variations in our experiments. These variations
were only used to demonstrate the effectiveness of cap-
turing possible structural variations in the torsion mode
of the suspension.

To indicate the effect for the structured uncertainty
model, consider the Bode plot given in Fig. 9. In Fig. 9
the structural change in the torsion mode can be ob-
served in the form of a change in damping of the reso-
nance/anti-resonance mode, as observed in the FRF
measurements depicted in Fig. 4. It should be stressed
that with the proposed structured uncertainty model Z,,
only a structural change in the torsion mode of the
piezo-electric milli-actuator due to Z-height variations
has been modeled. Additional variations of resonance
modes can be incorporated in the structured uncertainty
model, at the price of additional complexity of the
uncertainty model. As the torsion mode is considered to
be of great importance in robust control design, the
structured uncertainty model only takes into account the
variations in this first resonance mode of the piezo-
electric micro-actuator.

Summarizing, the product variabilities observed in
experimental data obtained from several HTI Magnum
5E piezoelectric dual-stage suspension can be modeled
by a nominal model Py with a unstructured multiplica-
tive uncertainty bounded by W, (w). The Z-height
variations are modeled by a varying resonance/anti-
resonance mode in the nominal model P, with nominal
discrete time parameter values by, ao; and an additive
perturbation of the parameters bounded by r,, r,; for
i=0,1. Both product variabilities can be combined in a
single LFT based uncertainty model £ similarly to Eq. 5

Table 1 Numerical values of the structured uncertainty model 2,
in (9)

Nominal values Additive

perturbation
bo.o —~3.93x10~° bo 3.71x1072
bo 4.29x1072 o 3.34x1072
o 0.98 Fao 1.69x1073
ag, —1.075 Fai 3.27x1072
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Fig. 9 Amplitude Bode plot of structured uncertainty model 2,
(Eq. 11) with maximum and minimum structured perturbation

where the uncertainty A has been normalized and
structured in a diagonal form A=diag (Jp.1,05.0,04.1,
04.0:A) Where |05, <1, i=0,1, [0, <1, i=0,1 and ||
A, |l < 1. Since the uncertainty model is constructed
and validated on experimental data, it forms an excellent
basis for the robust servo control design of the piezo-
electric dual-stage suspension system.

5 Conclusions

In this paper a systematic modeling procedure is pre-
sented for obtaining a nominal model and an uncer-
tainty bound based on experimental frequency response
data. The procedure is applied and illustrated on a mi-
cro-electromechanical system that consists of a HDD
piezoelectric dual-stage suspension manufactured by
HTI. This research is motivated by the design of high
performance and robust dual-stage suspensions con-
trollers for hard disk drives. Under product variations
and changing of operating conditions of the micro-
electromechanical system, uncertainty modeling is nec-
essary to guarantee robustness of the feedback control-
lers. In addition, small and non-conservative uncertainty
descriptions are needed to attain high performance servo
requirements in high track density recording.

For this application, product variabilities are sepa-
rated in structured and unstructured uncertainties and
both are characterized via efficient frequency domain
based optimization techniques. For characterization of
the unstructed uncertainy, the modeling procedure
consists of two steps, where first an optimal nominal
frequency response is computed that minimizes the
worst case multiplicative frequency response upper
bound. In the second step, a low complexity nominal
model for the nominal frequency response and a
weighting function that overbounds the multiplicative
uncertainty are obtained via frequency response curve

fitting. The nominal model is found via an iterative
least-squares solution, while the weighting function is
obtained via a linear programming problem, both of
which can be solved relatively easily. For the charac-
terization of the structured uncertainty, models are
estimated that capture specific perturbation in one of the
resonance modes of the micro-electromechanical system.
Using a framework based on linear fractional transfor-
mation, parameter perturbations are written in an ex-
plicit form and the parametric uncertainty model is
combined with the unstructured multiplicative uncer-
tainty to complete the uncertainty modeling of the mi-
cro-electromechanical system.
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