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1. INTRODUCTION

As track density in hard disk drives increases,
the requirements for actuator servo system track
following become more strict (Chew, 1995). For
improved track following performance the band-
width of the servo system should be increased,
however this is limited by sampling frequency and
mechanical resonances of the head/disk assembly.

This paper demonstrates modeling and control
designs that reflect the performance objectives for
hard disk drive actuators in terms of of desired
control bandwidth. Control-relevant modeling is
accomplished by using information of appropriate
weighting functions applied in the control design.
The control design is based on standard H∞

optimization and requires an upper bound on the
characterization of model uncertainty as well as
specification of a performance weighting function
that directly relates to the closed-loop transfer
functions of interest.

2. CONTROL-RELEVANT MODELING

2.1 Estimation of a nominal model

In designing an optimal servo controller for distur-
bance rejection and improved track following, it is
preferable to estimate a set of models P for which
the difference between the designed performance
and the achieved performance of the controller
implemented on the real system is minimized.
Bandwidth and disturbance rejection performance
are characterized by the sensitivity function

S = (1 + PC)−1 (1)

where P denotes a dynamical model of the voice
coil motor (VCM) with flexibilities of the E-block
and suspension and C denotes the VCM servo
controller. The desired performance characterized
by the shape of the sensitivity function is captured
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in the weighting function WS , which is specified in
terms of bandwidth ωb and maximum disturbance
amplification Ms requirements in the form

WS =

(

s/ k
√

Ms + ωb

s + ωb
k
√

ǫ

)k

, for k ≥ 1 (2)

where ǫ determines the level of steady-state error
rejection.

A link between modeling and control is estab-
lished by considering a minimization of the differ-
ence between the designed performance and the
achieved performance in terms of the sensitivity
function (1) providing a control-relevant identifi-
cation given by (Van Den Hof and Schrama, 1995)

‖WS(1 + P0C)−1 − WS(1 + PC)−1‖∞. (3)

Identification of a model P from the control-
relevant criteria (3) can be written into a weighted
additive difference between the actual VCM dy-
namics P0 and the nominal model P via

‖WS(1 + P0C)−1(P0 − P )C(1 + PC)−1‖2 (4)

motivated by the fact that L2 approximation
tends to L∞ approximation (Caines and Baykal-
Gürsoy, 1989).

The weighted additive difference between P0 and
the nominal model P can be written in terms
of frequency domain criterion. When using ex-
perimental frequency domain data P0(ωk), where
ωk, k = 1, 2, . . . , N refers to a frequency domain
grid, the two-norm criterion in (4) can be approx-
imated by

N
∑

k=1

|(P0(ωk) − P (ωk))W (ωk)|2

where the frequency weighting W (ωk) given by

W (ωk) =
WS(ωk)

1 + C(ωk)P0(ωk)
· C(ωk)

1 + C(ωk)P (ωk)
.

(5)
As a result, computation of a finite order discrete-
time model P (q) can be found with the (non-
linear) Least Squares optimization techniques



available in (de Callafon R.A. and Van Den Hof,
1996).

From (5) it can be observed that the frequency
weighting requires information of the actual sen-
sitivity function (1+CP0)

−1, the sensitivity func-
tion (1 + CP )−1 based on the model to be esti-
mated and the desired performance WS based on
a desired shape of the sensitivity function. Data
of the actual sensitivity (1 + CP0)

−1 is easily
constructed from closed-loop experiments using
the controller C or can be computed from the
open-loop frequency response data P0(ωk) and the
controller frequency response C(ωk). The weight-
ing (1 + CP )−1 can only be computed once the
frequency response of a model P (ωk) is available.
However, an iterative update of the frequency
weighting can be used to update the weighting
(1 + CPi)

−1 on the basis of a model Pi. The
desired performance WS can be fixed with ideal
parameters ω∗

b , M∗

s , ǫ∗ even though these param-
eters may not yield a control design satisfying the
performance robustness requirements discussed in
Section 3.

2.2 Estimation of additive uncertainty bounds

To facilitate the design of a robust performing
feedback controller, the open-loop frequency do-
main data P0(ωk) can be used to account for mod-
eling and approximation errors made by consid-
ering possible variations in the nominal response
modeled by P (q). Consider a set of models P con-
sisting of a nominal model P along with an upper
bound allowable additive model perturbation WA

P = {P | P + ∆WA, ‖∆‖∞ ≤ 1} (6)

such that the real system, represented by P0, is
contained in the model set P0 ∈ P.

A frequency dependent upper bound is available
via a model error model identification between
the control signal and prediction error residual
(Ljung, 1999). A control-relevant frequency de-
pendent upper bound can be obtained such that

‖∆‖∞ ≤ δ(ω) with prob. ≥ α. (7)

Subsequently spectral over bounding routines
(Bayard and Yam, 1994) can be used to construct
a limited complexity stable and stably invertible
weighting filter WA that over bounds δ(ω).

3. ROBUST CONTROL DESIGN

Performance considerations are well suited under
the worst-case H∞-norm based optimal control
which allows robustness issues to be incorporated
into the servo design in the form of uncertainty
models (Zhou et al., 1996). Control design such
that ‖WSS‖∞ < 1 guarantees that the sensitivity
function is bounded above by the desired shape
W−1

S . Minimization of this cost function alone
is not practical as it leads to infinite controller
gains. In practice it is useful to also consider
a bound on the transfer function between the
disturbance and control signal ‖WACS‖∞ < 1,

yielding a bound on control energy and consider-
ing robust stability with respect to additive plant
uncertainty. Combining stability robustness and
performance, a performance robustness condition
can be constructed.

Consider a performance weight of the form (2)
with Ms fixed, then a mixed sensitivity optimiza-
tion problem for finding a stabilizing controller to
achieve maximum bandwidth ωb can be proposed
as

max |ωb| s.t.

∥

∥

∥

∥

WSS
WACS

∥

∥

∥

∥

∞

< 1. (8)

The above optimization may be implemented as
an outer loop around standard mixed-sensitivity
H∞ control design (Skogestad and Postlethwaite,
1996).

3.1 H∞ synthesis

The combination of weighting functions and de-
sign specifications requires the design specifica-
tions (8) can be performed via standard H∞-
synthesis (Zhou et al., 1996). The model and
weighting functions are combined in a generalized
plant

[

z1

z2

y

]

=

[

WS −WSP
0 WA

1 −P

]

[

w
u

]

(9)

where z1, z2 are weighted signals, y, u are the
input/ouput of the controller and w is the dis-
turbance. Standard H∞ methods synthesis a con-
troller C such that ‖Tzw‖∞ is minimized, where
Tzw denotes the transfer function from w to z.
Noting that u = Cy the performance robustness
design specification (8) is recovered from (9). Al-
though the limited controller complexity has been
addressed via low-order control-relevant model es-
timation, a reduction of the controller may be
required where closed-loop balanced model re-
duction methods (Obinata and Anderson, 2001)
account for the performance objectives.

4. HDD SERVO DESIGN APPLICATION

The experimental system consists of a 2.5” disk
drive with 120 sectors and rotational speed at
4200rpm giving it a servo sampling frequency fs of
8.4kHz. The disk drive servo processor is replaced
by a DSP and host computer that allow access to
parameters in a general control transfer function.
The feedback control law for the existing drive is
given by the discrete-time PID controller

u(t) = kpe(t)+ki

t
∑

i=0

e(i)+kd[e(t)−e(t−1)] (10)

and has an initial bandwidth of 600Hz. The
objective is to increase the bandwidth but restrict
the complexity of the feedback controller to a
general second-order transfer function so that fair
comparison can be made with the PID controller
with the same order

C(z) =
b0(q + b1)(q + b2)

(q + a1)(q + a2)
(11)



where q denotes time-shift operation.

A control-relevant third-order nominal model is
obtained from an estimation with identification
criteria (4), shown in Figure 1. Using the nom-
inal model, a second-order upper bound on the
additive uncertainty is obtained with probability
99.9% by identifying a model error model and
estimating a low-order spectral over bound.
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Fig. 1. Frequency response of the measured plant
(dashed-line) and a nominal model (solid-
line) with additive uncertainty (dash-dotted-
line).

The performance weight WS with structure given
by (2) was with fixed maximum allowable distur-
bance amplification Ms. The bandwidth of the
performance weight was maximized in an outer
loop around a standard H∞ controller synthesis
problem (Zhou et al., 1996). The controller de-
signed as in Section 3 lead to an eighth-order
controller which was reduced to a second-order
controller via closed-loop balanced model reduc-
tion techniques (Obinata and Anderson, 2001)
presented in Figure 2. The full order controller has
similar integral gain as the original PID, but pro-
vides higher gain and more phase margin around
the closed-loop bandwidth. The closed-loop bal-
anced controller reduction gives a controller which
approximates the full-order controller around the
closed-loop bandwidth sacrificing some integral
gain at low frequencies.
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Fig. 2. Controller frequency response of original
PID (dotted-line), full-order H∞ controller
(dashed-line) and second-order H∞ controller
(solid-line).

Although the designed performance has been im-
proved via H∞ control techniques, the improve-
ment in achieved performance should be the driv-
ing factor for the new controller. Frequency re-
sponse measurements of the disk drive sensitiv-
ity functions operating under feedback with PID
controller and H∞ controller are compared in Fig-
ure 3. The achieved frequency responses demon-
strate that larger bandwidths are possible with
H∞ control design techniques at the price of
slightly more complex servo control law.
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Fig. 3. Measured disk drive sensitivity functions
resulting from servo controllers PID (dashed-
line) and reduced-order H∞ (solid-line).
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