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Abstract— This paper addresses the time domain model
validation problem for uncertainty models that are structured
using coprime factorizations. A model validation technique is
proposed in which measurement data is used to validate a
derived uncertainty model. Newly proposed model validation
techniques are based on a fractional representation approach
and addresses the problem of correlation between the input
and output signals inherent to closed-loop systems. The model
validation problem for coprime factorizations is considered
for closed-loop time domain data in the cases of noise-free
and noisy measurements where the results rely on a linear
relationship between input and output data.

I. INTRODUCTION

Closed-loop model validation is a critical procedure to
establish whether or not a model can reliably predict the
output of a system measured under feedback controlled
conditions. In previously developed model validation tech-
niques [14], [4], models can be parametrized in a Linear
Fractional Transformation (LFT) uncertainty set to account
for modeling uncertainties. In [14] and [3] it was shown that
model validation tests have a low level of computational
complexity by formulating the model validation problem as
a convex optimization. However, application of these time-
domain based techniques to data obtained under closed-loop
conditions is challenging for model validation purposes due
to the presence of correlate noise on closed-loop signals and
the implicit modeling uncertainty in the closed-loop transfer
function.

In this paper a fractional representation approach is
presented to address the model invalidation problem for
measurements obtained under feedback controlled condi-
tions. This approach allows the formulation of a unified
method to estimate models for stable, marginally stable
or unstable systems via the estimation of stable coprime
factorizations on the basis of closed-loop data. The work
on fractional model identification was initiated by [9] and
further developed in the work by [11] [7] and [13]. The
fractional approach forms an excellent framework to address
the identification of systems on the basis of closed-loop data
[1] and control oriented model validation [8].

A model validation problem using open-loop based
frequency-response data in a coprime factor framework was
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presented in [2]. The closed-loop frequency-response data
using both noisy and noise-free conditions was presented in
[5] with the application to a flexible structure. The results
of [5] show that coprime factorizations in the uncertainty
model depend on the knowledge of a stabilizing feedback
controller to facilitate the closed-loop (in)validation of the
uncertainty model. Time domain model validation results
for a variety of uncertainty models was presented in [14]
where it was shown that the solutions are given in terms of a
convex matrix optimization. By following the results given
in [14], this paper develops alternative model invalidation
results for uncertainty models characterized with coprime
factorizations.

II. PROBLEM FORMULATION

A. Motivation for Closed-loop Model Validation

Validating models for control design purposes inher-
ently requires closed-loop model validation techniques and
closed-loop data. Closed-loop model validation is often
preferred since open-loop model validation may invalidate a
model that might be well-suited for control design purposes.

With a simple example it is easy to illustrate the benefits
of a closed-loop model validation technique over that of an
open-loop technique. Suppose a real plant is an integrator
such thatP (s) = 1

s and the model is described aŝP (s) =
1

s+ε whereε ≥ 0. Computing the additive and multiplicative
uncertainty descriptions̄∆a and∆̄m, respectively yields

∆̄a(s) := P (s) − P̂ (s) =
ε

s(s + ε)
(1)

∆̄m(s) :=
P (s) − P̂ (s)

P̂ (s)
=

ε

s
(2)

With ε > 0 it is obvious that an∞-norm for the additive
and multiplicative uncertainties given in (1) and (2) will be
unbounded and not suitable for open-loop model validation
techniques. To overcome this problem, a closed-loop ori-
ented uncertainty should be used to describe perturbations
of a model for control design purposes.

B. Use of Fractional Models

For model validation purposes, the possible set of models
is denoted by an uncertainty setP and is characterized by
a fractional approach. A fractional based uncertainty setP
in this paper is structured as follows:

P = {P | P = ND−1 with
N := N̂ + Dc∆̄, D = D̂ − Nc∆̄

and∆̄ := V ∆}
(3)



where∆ is defined as the (unknown but bounded) pertur-
bation

∆ = {∆|∆ ∈ RH∞ and‖∆‖∞ < 1} (4)

and where(N̂ , D̂) and(Nc, Dc) respectively denote a right
coprime factorization (rcf ) of the nominal modelP̂ and
the controllerC that is stabilizes the nominal model̂P .
The weighting functionV in (3) is used to normalize the
unknown but bounded perturbation. The modelsP ∈ P are
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Fig. 1. Coprime factor based uncertainty modelP

visualized in the block diagram of Figure 1. Note that the
uncertainty model given in(3) is different from standard
additive coprime factor perturbations as used in [2].

In the uncertainty model given in(3), the perturbation̄∆
is used to model a combined perturbation on thercf (N̂, D̂)
of the modelP̂ and thercf (Nc, Dc) of the controller plays
an important role in assigning the common perturbations in
the rcf (N̂, D̂). Introducing a combined perturbation∆ on
the rcf (N̂ , D̂) of the modelP̂ in the uncertainty modelP,
establishes a link with the Youla-Kucera parameterization
[1] that facilitates closed-loop model validation of the
uncertainty model. The Youla-Kucera parameterization is
applicable to all modelsP ∈ P in (3), provided the nominal
model P̂ and the controllerC form a stable feedback
connection.

An alternative presentation ofP in (3) can be given in
terms of an LFT

P = {P | P = Fu(Q, ∆), ∆ ∈ ∆} (5)

where

Fu(Q, ∆) := Q22 + Q21∆(I − Q11∆)−1Q12 (6)

and where∆ is defined in (4). The entries of the coefficient
matrix Q in (5) dictate the way in which the set of models
P is being structured and are given by

Q11 = V D̂
−1

Nc Q12 = V D̂
−1

Q21 = Dc + N̂D̂
−1

Nc Q22 = N̂D̂
−1 (7)

Although complicated at first glance, the uncertainty model
P can be simplified if either the model̂P or the controller
C is stable. In that case, the uncertainty setP illustrates the
closed-loop oriented character of the allowable perturbation
∆̄.

As an example, consider̂P and C to be stable transfer
functions with arcf N̂ = P̂ , D̂ = I, Nc = C, Dc = I. This
yields an uncertainty setP where for each modelP ∈ P
it can be verified that

∆̄ = (I + P̂C)−1(P − P̂ ) (8)

and illustrates that̄∆ is a perturbation on a closed-loop
transfer function. For an arbitraryrcf (N̂ , D̂) of P̂ and
rcf (Nc, Dc) of C it can be shown that

∆̄ = D−1
c (I + P̂C)−1(P − P̂ )D̂ (9)

which illustrates that the coprime factor uncertainty is
a weighted closed-loop uncertainty, where the sensitivity
function (I + P̂C)−1 plays an important role.

Reconsider the example described earlier where a PI
controller C(s) = Kp + Ki

1
s is used for control a plant

P (s) = 1
s . With a nominal modelP̂ = 1

s+ε , the coprime
factor uncertainty description is given by

∆̄cf =
ε

s2 + (Kp + ε)s + Ki
. (10)

As shown in(1) and (2), the additive and multiplicative
uncertainty become unbounded whenε > 0. However,∆̄cf

in (10) is stable and bounded for the caseKp > −ε, Ki > 0,
which is the condition for stability of the feedback connec-
tion of P̂ andC. This simple example shows the clear merits
of a coprime factor based uncertainty description over that
of an additive or multiplicative uncertainty description.

C. Closed-Loop Model Validation Problem

For dealing with closed-loop data, consider a feedback
connection of a system, denoted byPo, and a feedback
controllerC, with y = Pou + d, u = r − Cy, and whered
is an additive noise on the outputy. The signalr denotes an
external reference signal that provides sufficient excitation
of the closed-loop system and the signald denotes an
additive colored noise that will be present on bot the inputu
and outputy signal. With this information, the input-output
data{u, y} of the closed-loop controlled systemPo can be
described by[

y
u

]
=

[
Po

I

]
(I + CPo)−1r +

[
I

−C

]
(I + PoC)−1d

(11)
where the additive noised is assumed to be uncorrelated
with the external reference signalr.

For closed-loop model validation purposes, the reference
signalr is considered as an input signal. The signalu and/or
y can be considered as a measurable closed-loop output
signal. When only the outputy is considered for closed-
loop model purposes, the mapS from the reference signal
r to the outputy for all modelsP ∈ P in (3) can be written
as another LFT:

S = {S | S = Fu(M, ∆), ∆ ∈ ∆ } (12)



with M given by

M11 = 0 M12 = V (D̂ + CN̂)−1

M21 = Dc M22 = P̂ (I + CP̂ )−1 (13)

and where∆ is defined in (4). The entries ofM in (12)
are all known quantities and determined by the coprime
factor uncertainty setP in (3). It can be verified that all
entries of M are stableif and only if the controllerC
internally stabilize the nominal model̂P , as required by
the construction of the uncertainty modelP in (3).

With the LFT Fu(M, ∆) given in (12) and (13) it
is easy to see the benefits of the coprime factor based
uncertainty modelP in (3) for closed-loop model validation
purposes. The closed-loop map fromr to y is simplified
asFu(M, ∆) = M22 + M21∆M12 where the uncertainty
∆ now appears linearly. The affine representation of the
coprime factor perturbation∆ in the closed-loop map
Fu(M, ∆) can be exploited to formulate a time domain
model validation techniques that rely on linearity of the
uncertainty in the input-output map.

III. NOTATION AND MAIN RESULTS

Following the results given in [15], notation regarding
discrete time domain model validation techniques are now
described. These results are used to establish the framework
for the closed-loop model validation discussed in this paper.

For a sequence of vectorsk = (k1, k2, · · · , kn ∈ Rm),
let Tk ∈ Rmn×n denote the associated Toeplitz matrix
defined as

Tk =




k1 0 · · · 0

k2 k1
. . . 0

...
...

. . . 0
kn kn−1 · · · k1


 . (14)

Further, letSm denote the set of one-sided sequences with
elements inRm and define then-step filter operatorπn :
Sm → Sm such that

(· · · , k0, k1, · · · , kn) → (0, · · · , 0, k1, · · · , kn). (15)

Let ∆ be a stable, casual, time-invariant system with
transfer matrix

∆(z) = h1 + h2z
−1 + h3z

−2 + · · · =
∞∑

`=1

h`z
1−` (16)

wherehi, i = 1, 2, · · · are the matrix Markov parameters
of the the transfer function∆(z). Suppose the input se-
quencea = (a1, a2, . . . , an) is applied to a system and
the outputb = (b1, b2, . . . , bn) is collected for the period
t = 1, 2, · · · , n. The input and output sequences are then
related by a Toeplitz matrix such that the following holds:




b1

b2

...
bn


 =




h1 0 · · · 0

h2 h1
. . . 0

...
...

. . . 0
hn hn−1 · · · h1







a1

a2

...
an


 . (17)

This equation shows that the inputs and outputs uniquely
determine the firstn Markov parameters of the transfer
function ∆(z). The existence of such a∆, that is stable
and satisfies‖∆‖∞ < ∞, is the classical Carath´edory-Fejér
interpolation problem [15].

It can be observed from Figure 1 thatv and w are the
input-output signals of the coprime factor uncertainty∆.
For model validation, the problem is considered where a
portion of this input-output data is used to determine the
minimum norm causal operator∆ that could have produced
the portion of data. In case the input-output signalv and
w are available, the model validation problem could be
summarized as follows.

Problem 1: Model Validation Problem
Given the signalsv = (v1, v2, · · · , vn ∈ Rm) and w =
(w1, w2, · · · , wn ∈ Rp) shown in Figure 1, the uncertainty
model given in (3) is not invalidated by the data(v, w) if
there exist a stable causal operator∆ with ‖∆‖∞ ≤ 1 such
that

(w1, w2, · · · , wn) = ∆(v1, v2, · · · , vn). (18)
Note that the inputsvi and outputswi are allowed to
be vectors. Problem 1 determines whether there exists an
operator∆ such that the output of∆ for the period of
t = (1, 2, · · · , n) is exactlyw = (w1, w2, · · · , wn) when
the input of∆ is v = (v1, v2, · · · , vn). If there does exist
such a∆, then the uncertainty model is not invalidated. In
light of the problem formulation given in Problem 1, two
key items need to be addressed in order to solve the model
invalidation problem. First, it remains to determine how to
access the signalsv andw as measurements ofu andy are
the only signals available from the closed-loop experiments.
Second, once the signalsv andw have been established, a
method must be developed to check the existence of a∆
with ‖∆‖∞ < 1 and is found from the Extension theorem
in [14].

Theorem 1:Extension Theorem [14]
Given input sequences̄v = (v̄1, v̄2, · · · , v̄n ∈ Rm) with
v̄ = πnv and output sequences̄w = (w̄1, w̄2, · · · , w̄n ∈
Rp) with w̄ = ∆v̄. Then∆ is a stable, causal, linear, time-
invariant operator with‖∆‖∞ < 1 if and only if

T T
w̄ Tw̄ ≤ T T

v̄ Tv̄ (19)

where Tv̄ and Tw̄ are the associated Toeplitz matrices
formed fromv̄ andw̄, respectively.

Proof: See [14]
Corollary 1: Given the sequences̄v andw̄, (19) is equiv-

alent to

σ̄(Tw̄(T T
v̄ Tv̄)−1/2) ≤ 1. (20)

Proof: With v̄1 6= 0, the matrix Tv̄ has full
column rank. It follows thatT T

v̄ Tv̄ > 0 which also
implies (T T

v̄ Tv̄)−1/2 > 0. Pre-multiplying and post-
multiplying T T

v̄ Tv̄ − T T
w̄ Tw̄ ≥ 0 by (T T

v̄ Tv̄)−1/2 results in
(T T

v̄ Tv̄)−1/2(T T
v̄ Tv̄−T T

w̄ Tw̄)(T T
v̄ Tv̄)−1/2 ≥ 0. Substituting

G = Tw̄(T T
v̄ Tv̄)−1/2 reduces the result to1 − GT G ≥ 0.



Sinceλ(GT G) = σ(G2), it follows that 1 ≥ σ̄(G) which
is equivalent to1 ≥ σ̄(Tw̄(T T

v̄ Tv̄)−1/2).
The results in Theorem 1 and Corollary 1 provide tools
to check the existence of∆ with ‖∆‖∞ < 1. However,
the results only hold when the initial input signal is set to
zero. When model validation must be done in real-time or
the basis of short batches of data sequences, the effect of
initial conditions must be taken into account. The effect of
initial conditions on the output signalw can be expressed
as

ρ =
∞∑

k=t

ρkv(t − k) (21)

whereρ is based on previous input measurementsv. For
the general case of determining the minimum norm casual
operator∆ that could have produced a set of data at an
arbitrary time after the beginning of the data measurements
for the model validation, the following result can be used.

Theorem 2:Given the input measurementsv =
(v1, v2, · · · , vn ∈ Rm) and the output measurementsw =
(w1, w2, · · · , wn ∈ Rp). There exists a stable, causal,
linear, time-invariant operator∆ with ‖∆‖∞ < 1 and a
ρ defined in (21) such that

w − ρ = ∆πnv (22)

if and only if there existsρ = (ρ1, ρ2, · · · , ρn ∈ Rp) with

σ̄[(Tw − Tρ)(T T
v Tv)−1/2] ≤ 1 (23)

whereTw, Tv, andTρ are formed from the Toeplitz matrices
of w, v andρ.

Proof: Substitutingw̄ = w − ρ and v̄ = πnv into the
proof of Theorem 1 establishes the result.
The convex problem shown in Theorem 2 is possible
because the sequencew is a linear combination of two
signals such thatw = w̄ + ρ.

As described earlier, the signal̄w is the response due to
an input signal̄v with v(t) = 0 ∀ t < 1 andρ captures the
mismatch due to initial conditions. To determine the effect
of initial conditions, the result given in Theorem 2 requires
the additional monitoring of past input samples of the signal
v. However, the effect of the initial conditions reflected in
ρ can be solved by a standard convex optimization.

Corollary 2: Given the Toeplitz matricesTv, Tw, and
unknown initial condition Toeplitz matrixTρ, the model
validation test given in (23) can be written as the following
linear matrix inequality (LMI):

min
ρ

α, such thatα ≤ 1 and[
αI (Tw−Tρ(T T

v Tv)−1/2)T

Tw−Tρ(T T
v Tv)−1/2 I

]
≥ 0

Proof: The equation given in (23) can be rewritten as
σ̄(Y ) ≤ αI whereα ≤ 1 andY = (Tw − Tρ)(T T

v Tv)−1/2.
The inequalityσ̄(Y ) ≤ αI ⇔ 0 ≤ αI − Y Y T . Using the
schur complement ofαI − Y Y T reduces the result to the

following LMI:

min α ≤ 1 such that[
αI Y T

Y I

]
≥ 0

SubstitutingY = Tw−Tρ(T T
v Tv)−1/2 and minimizing over

the matrixTρ establishes the result.
The result given in Theorem 2 extends the results shown
in [14] to the more general model validation case when the
initial conditions are not zero. What remains to be done is
the computation ofv andw from closed-loop data{u, y},
which will be addressed in the next section.

IV. CLOSED-LOOP MODEL VALIDATION
RESULTS

Consider the input signalu = (u1, u2, · · · , un; ui ∈ Rm)
applied to the physical systemP0 where the output meas-
urement signaly = (y1, y2, · · · , yn; yi ∈ Rp) is observed.
Using the signals(u, y) available from the closed-loop
experiments it is possible to describe the auxiliary signals
(v, w) as filtered versions of the signals(u, y). Without loss
of generality, it is assumed that the input-output experiment
is conducted immediately such thatu1 6= 0. Following the
results shown in [6], consider the following.

Lemma 1:Consider the uncertainty model given in (3)
where the auxiliary signalsv andw are described by

v = V (D̂ + CN̂)−1[C I]
[

y
u

]
(24)

and

w = (Dc + P̂Nc)−1[I − P̂ ]
[

y
u

]
(25)

then the closed-loop map in (11) can be rewritten as

w = ∆v + δ (26)

where the signalδ is given by

δ = D−1
c (I + P0C)−1d (27)

and wherev is uncorrelated withd.
Proof: See [6].

The signals(v, w) can be considered as an input and a
(possibly) disturbed output signal of the uncertainty∆
where the inputv is uncorrelated with the disturbance acting
on the signalw [6]. It can be noted thatv is not perturbed
by the additive noised present in the closed-loop data. This
is due to the fact that

[C I]
[

y
u

]
= r (28)

and thusv is a function ofr only. On the other hand, the
signalw is perturbed by the additive noised as indicated in
(26) where the noise onw is characterized by the filtered
noiseδ in (27). For model validation purpose it is assumed
that knowledge of a boundγ with |δ(t)| < γ ∀ t is known.

By conducting an experiment on the closed-loop system,
it is possible to characterizeγ as a bound on the noise



disturbance. When no reference signal is applied to the
closed-loop system and the output signal is measured, the
quantity (1 + P0C)−1d is observed. Further, by filtering
this observed signal withD−1

c , the signalδ in (27) can be
determined. For the general case of noisy measurements,
consider the following result.

Lemma 2:Consider the uncertainty model given in (3),
the signalsv and w defined in (24) and (25) withw =
(w1, w2, · · · , wn; wi ∈ Rp), v = (v1, v2, · · · , vn; vi ∈
Rm), the effect of initial conditions described in (21), and
an upper bound for the filtered noiseδ ∈ Dγ with

Dγ = {δ(t) | |δ(t)| < γ ∀ t}. (29)

Then the coprime factor uncertainty model given in (3) is
not invalidated by the closed-loop data(u, y) if and only
if the following convex problem is solvable:

Does there existq = (q1, q2, · · · , qn ∈ πnDγ , qi ∈ Rp)
and aρ = (ρ1, ρ2, · · · , ρn ∈ Rp) defined in (21) such that

σ̄[(Tw − Tq − Tρ)(T T
v Tv)−1/2] ≤ 1 (30)

where Tw, Tv, Tq, and Tρ are formed from the Toeplitz
matrices ofw, v, q andρ.

Proof: It can be observed that the uncertainty model
in (3) is not invalidated if and only if there exists a∆ ∈ ∆
with ‖∆‖∞ ≤ 1 such that

w − q − ρ = ∆πnv

for someq ∈ πnDγ and someρ ∈ Rp. Invoking Theorem 1
establishes the result.

Similar to the noise-free case shown in Corollary 2, the
convex optimization in (30) can be written as an LMI
problem. The result has been summarized in the following.

Corollary 3: Given the Toeplitz matricesTv, Tw, un-
known initial condition Toeplitz matrixTρ, and unknown
disturbance Toeplitz matrixTq, the model validation test
given in (30) can be written as the following linear matrix
inequality (LMI):

minTρ,Tqα, such thatα ≤ 1 and[
αI Y T

Y I

]
≥ 0

whereY = (Tw − Tq − Tρ)(T T
v Tv)−1/2.

Proof: The equation given in (30) can be
rewritten as σ̄(Y ) ≤ αI where α ≤ 1 and
Y = (Tw − Tq − Tρ)(T T

v Tv)−1/2. The inequality
σ̄(Y ) ≤ αI ⇔ 0 ≤ αI − Y Y T . Using the schur
complement of αI − Y Y T reduces the result to the
following LMI:

minimize α ≤ 1 such that[
αI Y T

Y I

]
≥ 0

SubstitutingY = (Tw−Tq−Tρ)(T T
v Tv)−1/2 and minimizing

over the matricesTρ,Tq establishes the result.
The convex optimization results for the closed-loop

model validation problem given in Lemma 2 are obtained
due the fact that the coprime factor uncertainty∆ is affine
in the closed-loop input-output map(r, y). Note that the
∆ is not affine in the open-loop input-output map(u, y),
but becomes affine when the controllerC is applied to
the coprime factor uncertainty modelP in (3). Once the
controller is applied to the system, the same input output
data (u, y) can be used to perform model validation in
closed-loop.

V. ILLUSTRATION OF MODEL VALIDATION
TECHNIQUES

As described earlier, closed-loop model validation tech-
niques are required to validate models used for control
design purposes. The fractional approach discussed in this
paper provides a method to deal with closed-loop exper-
iments and takes into account the closed-loop data and
the closed-loop model. To further illustrate the coprime
factor model validation techniques presented in this paper,
consider again the example described in Section II-A where
P = 1

s , P̂ = 1
s+ε , andC = Kp + Ki

1
s .

Using knowledge of the controllerC and the modelP̂ ,
it is possible to describe the coprime factor uncertainty
∆cf as developed in (10). For comparison to the open-loop
uncertainty descriptions computed in (2) and (1), Figure 2
shows the uncertainty description for the coprime factor,
multiplicative, and additive uncertainty descriptions. As
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Fig. 2. Bounded coprime factor description∆cf (solid) and normalizing
over boundV (dotted)

seen in Figure 2, the coprime factor uncertainty descrip-
tion ∆cf is the only bounded uncertainty description for
the closed-loop system. Since the open-loop uncertainty
descriptions∆m and ∆a are unbounded on the domain,
only the closed-loop uncertainty description is suitable for
closed-loop model validation.

For illustration purposes, we consider a white noise unit
variance reference signalr. When the reference signalr is
applied to the closed-loop system(P, C), the measurements



of the closed-loop input/output signals(u, y) depicted in are
available for model validation purposes. With the signals
(u, y) and the uncertainty description∆cf overbounded by
the weighting functionV it remains to establish the filtered
signalsw andv.

Since both the closed-loop modelP̂ and the controllerC
are stable transfer functions,(P̂ , C) can be described by a
trivial choice of thercf : N̂ = P̂ , D̂ = I, Nc = C, Dc = I.
Using thisrcf , the auxiliary signalsv andw described by
(24) and (25) can be obtained via filtering of the measured
closed-loop input/output signals(u, y).

Following the procedure outlined in this paper, the
Toeplitz matricesTw̄ andTv̄ are constructed for

w̄(t), v̄(t), t = n, n + 1, . . . , n + N

whereN = 200 andn = 1, 2, . . . , 300 indicates the starting
index of the data for moel validation purposes. Applying the
model validation result of Corollary 1 to the matricesTw̄

andTv̄ will show that the coprime factor based uncertainty
model is not invalidated by the closed-loop input/output
data(u, y), providedσ̄(Tw̄(T T

v̄ Tv̄)−1/2) ≤ 1. As mentioned
in Section III, the effect of initial conditions must be
considered when performing model validation on a set of
data obtained at a time later then the start of the experiment.
The results shown in Figure 3 show the model validation
results using data after the start of the experiment. As seen
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Fig. 3. Model validation result for different starting indicesn of validation
data

in Figure 3, the model validation result holds using data
obtained from various starting points of the data collection.

This example demonstrates the simplicity of the model
validation technique on the basis of closed-loop time do-
main data. Essential is the use of the coprime factor based
uncertainty model, where perturbations on coprime factors
are specified as (weighted) perturbations that involve knowl-
edge of the feedback controller used during the closed-loop
experiments. As a result, the coprime factor uncertainty ap-
pears linearly in the closed-loop input/output map, allowing
for a straightforward application of a convex optimization
routine to address the model validation problem in the time
domain.

VI. CONCLUSIONS

In this paper, the model validation problem of a fractional
representation has been studied with application to time
domain data. It has been found that the LFT approach
greatly facilitates manipulation and computation of linear
systems and that the use of closed-loop data in using LFT’s
allow the formulation of affine closed-loop expressions for
closed-loop model validation.

The model validation problem presented in this paper
determines whether the uncertainty model is capable of
reproducing data. Although prior knowledge of the system
behavior and knowing how the model relates to observed
data are important modeling considerations, as pertinent
a factor in model validation is the appropriateness of the
uncertainty model. As presented in this paper, uncertainty
modeling using coprime factorizations allows one to per-
form time domain model validation techniques that reduce
to a convex feasibility problem. The convex feasibility
problems rely on the model information and the observed
closed-loop data
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