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Abstract:In this paper, we consider the problem of estimating low order and control

relevant models of plant dynamics and additive noise dynamics on the basis of closed-

loop experiments. Estimating low order models for both the plant and noise dynamics

is important in control design applications that focus on disturbance rejection. Several

methods for low order model estimation on the basis of closed-loop data exist in the

literature, but fail to address the simultaneous estimation of low order noise models that

are relevant in disturbance control problems. In this paper we evaluate and compare some

of these methods and propose a new methodology that extends the results to low order

noise model estimation. The new methodology is an extended two-stage method where

the first stage is used to estimate high order models for filtering purposes. In the second

stage, filtered signals are used for low order model approximation. The methodology is

illustrated in a realistic simulation study based on the windage disturbance reduction of a

flexible hard disk drive suspension.
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1. INTRODUCTION

For the modeling purposes of a system with unknown

or partially known dynamics, system identification

techniques can be used to characterize the dynamic

behavior of the system (Ljung 1992).Models obtained

by system identification techniques can be used for

simulation, prediction or control purposes. Models for

simulation purposes focus mainly on system dynam-

ics, whereas models for prediction purposes may re-

quire open-loop accurate models of both system and

noise dynamics to provide reliable prediction of out-

put signals (Ljung 1992). On the other hand, models

intended for control purposes may require high quality

system dynamic representations of critical closed-loop

behavior to design reliable robust servo controllers

(Van Den Hof and Schrama 1995).

The need for control oriented modeling has resulted

in several methodologies that aim at iteratively im-

proving closed-loop system behavior on the basis of

closed-loop experiments (Gevers 2002). In most of

the existing methods, the emphasis is placed on the

control-relevant approximation of system dynamics

only and ignore the approximate modeling of the dis-

turbance dynamics that is relevant in disturbance con-

trol. For minimumvariance and LQG control, success-

ful modeling and control performance improvements

have been shown in (Gevers and Ljung 1986, Hjal-

marsson et al. 1994), but these results assume consis-

tent estimation of system and disturbance dynamics.

In dealing with closed-loop data, one of the problems

in approximate closed-loop identification of plant and

noise dynamics is the correlation of the disturbance

with any of the signals in the closed-loop. As a re-

sult, a so-called direct identification using input and

output of the plant will lead to biased approximation

results for the system and disturbance dynamics (Van
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Den Hof and Schrama 1995, de Callafon 1998). Pos-

sible ways to overcome this problem is by assuming

low noise correlation condition (Gevers 1993, Zang et

al. 1995, Åström 1993) that might only be realistic in

simulation studies.

A possible way to deal with closed-loop data is

a reparametrization of the closed-loop identification

problem. Reparametrization can be done by a direct

parametrization of the closed-loop transfer function

as done in (Donkelaar and Van Den Hof 1996) or

in the recursive algorithms for closed-loop identifica-

tion of (Landau and Karimi 1997, Landau and Karimi

1999). Although powerful for estimating control-

relevant plant dynamics, bias approximation results

similar to direct identification are obtained in case

an approximate noise model is estimated (Karimi and

Landau 1998).

The contribution of this paper is to propose an new

estimation method that allows for a control-relevant

estimation of low order models of both system and

noise dynamics. Several other parameter identification

methods are reviewed and the bias distribution of the

low order plant and noise model estimates of the pro-

posed extended two-stage method are presented for

comparison. It is illustrated how control-relevantmod-

els for both the system and the disturbance dynamics

can be obtained on a case study based on models of a

flexible suspension and the windage disturbance found

in a conventional hard disk drive.

2. PROBLEM FORMULATION

In order to discuss the problem of estimating low order

and control relevant models of plant dynamics and

additive noise dynamics on the basis of closed-loop

experiments, a feedback connection
�������	��

�

of an

unknown plant
���

and a feedback controller


will be

considered here. The feedback connection
����� � ��

�

is described in Figure 1 where the output � ����� of
the plant is fed back to the input � ����� of the plant.
Additionally, an additive noise � ����� acts on the output
of the plant which is modeled as a monic stable and

stably invertible noise filter � � having a white noise
input � ����� .

� ������ ����� � ����� � �����
�� �����

� � �� ��� ��� � ���	��

����	�  

� � ���	�
�!

Fig. 1. Closed-loop system

Given Figure 1, the data coming from the plant
� � ���"�

and subjected to external reference signal � ����� and

additive noise � � ���"� � ����� operating under closed-loop
condition can be described as follows:� �����$#%� � ���	��&(' )(���"� � ����� � &*' )*���	� � � ���	� � ����� (1)� �����$#+& ' ) ���	� � ����� � 
����	��& ' ) � �,���"� � ����� (2)

where
�
is the forward shift operator, and

& ' ) ���	�
is the

input sensitivity function defined by&(' )-���	�$# .. � 
/���"�0�1�2���	�
Consider the feedback connection

����� � ��
3�
in Fig-

ure 1 and the measurement of the reference � ����� and
the output � ����� , the objective is to estimate low order

models of both plant
� �

and noise � � which are im-
portant in control design applications that focus on the

disturbance rejection.

3. DIRECT METHOD

3.1 Method description

In this method, the input � ����� and output � ����� sig-
nals of the plant

� �
are used directly to identify the

plant model
��4

and noise model � 4 . In this method
the feedback is ignored, so the information of the

controller


does not need to be known. Consider a

general open loop input/output system with additive

disturbances � ������#+� � � ����� � � � � �����
The one step predictor of the open-loop system is

given by (Ljung 1992)� ���65 � � . ��7,��# �98(:4 �;4 � ����� � � . � �98(:4 � � �����=<
To decouple the mutual influence between the plant

model and noise model, estimation an independent

parametrization of the plant model and noise model

can be used. The parameter vector
7
is split up in7>#@? A	B(CDBFE�B

, and
�;G

and �IH are the models of � �
and � � , respectively. The prediction error is denoted
by J ���=��7K��# � ����� � � ���L5 � � . ��7K�=<
The resulting prediction error

J 4	�����
isJ ���=��7K�$# � 8(:4 ? ���1� � � 4 � � ����� �� � � � � � 4 � � �����ME � � �����=< (3)

and the parameter estimate N7 is found by minimizing
the 2-norm of prediction error:N7�#PO"Q�RTS�U V4 5 5 J ���=��7K�L5 5 W

(4)

3.2 Biased distribution and conclusion

In the case of open loop identification, � ����� and � �����
are uncorrelated. The minimization (4) can be repre-

sented by an integral in the frequency domain, where

minimizing argument of (4) is described byXZY8 Y3[[ � 8(:4 � �L\�] � [[
W3^ [[ � � � �L\�] � � �;4,� �L\�] � [[

W(_-` ��ab�� [[ � � � � \�] � � � 4	� � \�] � [[
W _-c ��ab�Md/e,a3< (5)
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For notational purposes, consider the model setfhg ikjml;nboqp/rts3u
(6)vwg ikjmx/nyoLp/rts3u
(7)

where
s
is the parameter space that guarantees sta-

bility of the prediction error (3). If the true system

belongs to the model set, which is defined by
l�z�r{f

and
x/z%r|v

, then a consistent identification of
l}z

and
x z

is obtained (Ljung 1992). In case
l z�~r{f

andx z rZv
, an expression for the approximate identifi-

cation of the models
l n

and
x n

is derived as follows.

In the case the signals � and � are obtained under

feedback, substitution (2) into (3) yields the following

prediction error�m���=� pK��i+x��(�n�� � l1z��9l1n6�D�*� �K� ��� �� ��� l;n}�9l1zm���
�(� �2x�z � � x�z��9x/nL���0� ��� �M� � � ��� � (8)

The last term
� ��� � can be ignored because it does not

contribute to the minimization. Because
� ��� � and � ��� �

are uncorrelated, we can get the bias expression of �p as�p�i+�"������� �nw�>�� � o x �*�n o � � o l z ��l n o �Ko � � � o �L *¡� o � l n �9l z ���
� � � x z � � x z �9x n �Lo �  -¢��m£,¤ (9)

Compare (9) and (5), it shows that the estimation ofl1z
and

x/z
effect each other even if the plant model

lbn
and noise model

x{n
are parametrized independently.

As a result, a biased estimation of the noise model

will leads to a biased estimation of the plant model,

and vice versa. This effect can be seen more clearly in

case the noise model
x n

is not estimated and fixed to

1, as in an Output Error (OE) model, which yields a

parameter estimate�p�iP�"���T��� �nw�>�� � � o l1z��9l;nKo � o �(� �*o �   ¡� o � l;nL� �P¥ ���(� �Kx�zKo �   ¢ �m£,¤3¦ (10)

When the reference signal
� ��� �$i+§ and assuming that�y� �(� rkf

, a biased estimation of
l$n9i¨�y� �(�

is

obtained, even if
l$z{r�f

. As a result, the estimation

of plant model
l$n

will be biased, and it depends on the

noise present on the closed-loop data.

4. TWO-STAGE IDENTIFICATION

4.1 Method description

In the two-stage method, identification of the plant

model and noise model in closed loop is performed

in two steps to eliminate the correlation between the

input and the noise. The method can be summarized as

follows (Van Den Hof and Schrama 1993). In the first

step, one identifies a model
��©� �

of the input sensitivity

function
�1� �

by considering the map from reference

signal
� ��� � to the plant input � ��� � in (2). The estimate��©� �

is then used to simulate a noise free input signal� ¡ ��� � via � ¡ ��� ��iP� ©� � � ��� �=¦

that will be uncorrelatedwith noise
� ��� � on the closed-

loop data. In case a consistent estimate
�y©� � ih�(� �

is

obtained in the first step, (1) rewrites into� ��� ��i+l1z � ¡ ��� � � �(� �2x�zL� ��� �
Subsequently, in the second step of this method a

plant model
l n

(and possibly a noise model
x n

)

can be estimated by minimizing the two-norm of the

prediction error�m���=� p,�$iPx �(�n � l z � ��� �;�9l n � ¡ ��� �� � x z �9x n �0� ��� �M� � � ��� � (11)

It should be noted that the model
� ©� �

is used only for

filtering purposes. No specific restrictions on the order

of this models is needed.

In general, the two-stage method is used only to es-

timate (low order) models
l n

of
l z

in the second

step and the estimation of noise filters is omitted. For

comparison and analysis purposes, we also consider

the estimation of noise models in the standard two-

stage method. Rewriting (11) in terms of the reference

signal yields� n ��� ��iPx �(�n � � l z � � � �9l n � ©� � �K� ��� �� � x�z6�(� ���9x/nL�ª� ��� �M� � � ��� � (12)

and we will compare the results of noise model esti-

mation with the direct method and the extended two-

stage method proposed in this paper.

4.2 Biased distribution and conclusion

By minimizing the 2-norm of the prediction error (12)

during the second step of the two-stage method, the

parameter estimate �p can be represented by the fol-
lowing integral expression (VanDen Hof and Schrama

1993)�p�i+�"������� �n�� �� ��««
x �(�n ««

� � o � l z �9l n �ª� � �� l1n � �(� �����$©� � �¬o �   ¡ � o x�z6�(� ���9x/nKo �   ¢ �m£	¤ (13)

From the above expression, the following remarks can

be made with respect to the bias distribution of this

method.­
In the case that the plant and noise model are

identified independently, the bias of the noise model

does not effect the estimation of the plant model.­
The estimation of the noise model

x n
is always

biased, and it tends to
x z � � �

, which is the closed-loop

noise model.­
The estimation of the plant model

l�n
depends on

the estimation of the input sensitivity function
�}� �

obtained from the first step. In case
�b©� � ~i®�(� �

, it

can be observed from equation (13) that the terml;n � �(� ���¯� ©� � � effects the fitting of
l$nk°±l1z

. As

a result, no explicit tunable expression for the misfit

between
l;z

and
lTn

is obtained. However, this term can

be made small by obtaining a consistent estimate of

the sensitivity function in the first step of the method.
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5. EXTENDED TWO-STAGE METHOD

5.1 Method description

The extended two-stage method, just as its name im-

plies, is similar to the previously mentioned two-stage

method. But the main difference lies in the use of a

noise model estimate in the two steps of this method.

To explain the extended two-stage method in more

details, define ²³h´|³¬µ6¶(· ¸ and ²¹¨´|¹�µ6¶(· ¸
for nota-

tional convenience. ²³ and ²¹ indicate the closed-loop

transfer functions in (1). Using the knowledge of the

controller º , (1) can be rewritten into the following
two expressions:»*¼�½�¾ ´ ²³À¿ ¼�½�¾1Á ²¹tÂ ¼�½�¾ (14)»*¼�½�¾ ´9³1µ ¼0Ã�Ä ºP²³ ¾ ¿ ¼�½�¾1Á ¹�µ ¼0Ã�Ä ºP²³ ¾ Â ¼�½�¾ (15)

From (15) it can be observed that with knowledge of²³ , the controller º and a time realization of
Â ¼�½�¾ , the

estimation of
³Tµ

and
¹/µ

becomes a standard open-

loop identification problem. Furthermore, ²³ , ²¹ and

a time realization of
Â ¼�½�¾ are accessible from (14)

by performing a consistent identification. From these

observations, the extended two-stage method can be

summarized as follows:

(1) Using the reference signal
¿ ¼�½�¾ and the output

signal »*¼�½�¾ according to (14) to perform an stan-

dard open-loop identification of ²³ and ²¹ . Using
the estimated models ²³TÅ and ²¹IÅ , compute the
closed-loop prediction errorÆ	ÇÉÈ ¼�½�¾ ´ ²¹9Ê(ËÅÍÌ »(¼�½�¾;Ä ²³ Å ¿ ¼�½�¾�ÎTÏ (16)

(2) The estimated models ²³ Å and ²¹ Å are used to cre-
ate a filtered input Ð1Ñ ¼�½�¾ and a filtered prediction
error Æ Ñ ¼�½�¾ :Ð*Ñ ¼�½�¾ ´ ¼0Ã�Ä ºP²³ Å ¾ ¿ ¼�½�¾ (17)Æ Ñ ¼�½�¾ ´ ¼0Ã�Ä ºP²³ Å ¾ Æ,ÇMÈ ¼�½�¾=Ï (18)

Use the signals Ð(Ñ ¼�½�¾ and Æ Ñ ¼�½�¾ according to (15)
to estimate low order models

³}Ò
and

¹IÒ
by the

output error minimizationÓÔ ´
arg Õ�Ö ×ÒÙØØØØ »(¼�½�¾;Ä%Ú ³ Ò ¼ÜÛ"¾ ¹ Ò ¼�Û"¾ÉÝ�Þ Ð Ñ ¼�½�¾Æ Ñ ¼�½�¾(ß ØØØØLà (19)

During the open-loop identification of ²³ and ²¹ in the

first step of this method, a stable plant model ²³ and

a stable and stably-invertible noise model ²¹ are esti-

mated. The reason for the construction of the closed

loop residuals in (16) in the first step of the method is

to allow control over the order of the estimated noise

model in the second step. An alternative would be to

compute a noise model from the estimate ²¹ Å using
knowledge of º and a model

³�Ò
, but this would lead

to a higher order estimate of the noise model.

Compared to the two-stage method it can be observed

that the extended two-stage method also uses the

knowledge of ²¹ Å to estimate lower order approxima-
tions of

¹Iµ
in the second step. Only the signals

¿ ¼�½�¾
and »(¼�½�¾ are used in this method, but it should be

observed that the knowledge of the controller º can

be replaced by an additional measurement of Ð ¼�½�¾ .
Similar to the two-stage method in (Karimi and

Landau 1998), the models ²³ Å and ²¹ Å are only used
for filtering purposes. No specific restrictions on the

order of these models is needed, as they are only used

for filtering purposes. Moreover, the computation of

the prediction error ÆDÇMÈ ¼�½�¾ can be used for model as-
sessment purposes to validate the models ²³ Å and ²¹ Å
being estimated (Ljung 1992).

5.2 Biased distribution and conclusion

A result for the bias distribution of the estimation of

plant model
³ Ò

and noise model
¹ Ò

is given in the

following theorem.

Theorem 1. Consider the first step in the extended

two-stage method with estimates ²³ Å and ²¹ Å with²³TÅ�á´â³ µ ¶ · ¸-ã ²¹IÅ�á´ ²¹ (20)

then the minimization of (19) is equivalent toÕ�Ö ×Ò�ä>åÊ å Ú æ ¼ ³1µ Ä ³1Ò ¾ ¶(· ¸ ÁP¼ ²³ Å Ä ²³ ¾q¼ ³;Ò º Á¹/Ò ¼0Ã�Ä ºP²³ Å ¾ ²¹ Ê(ËÅ ¾Læ à6ç-è ¼�éÀ¾1Áêæ ¼ ¹�µ Ä ¹/Ò ¾ ¶(· ¸ Á¹/Ò ¼ ¶(· ¸ Ä%¼0Ã�Ä º+²³ Å ¾ ²¹ ²¹ Ê(ËÅ ¾Læ à6ç-ë ¼�éÀ¾MÝmì	é (21)

where
³TÒ

and
¹IÒ

denote the models estimated in the

second step of the extended two-stage method.

Proof: With (20), (16) rewrites toÆ,ÇMÈ ¼�½�¾ ´ ²¹ Ê(ËÅ ¼ ²³ Ä ²³ Å ¾ ¿ ¼�½�¾¬Á ²¹ Ê(ËÅ ²¹tÂ ¼�½�¾ (22)

The prediction error can be computed as follows:í Ò ¼�½�¾ ´ »(¼�½�¾;Ä ³;Ò Ð*Ñ Ä ¹/Ò Æ Ñ´+³ µ ¶ · ¸ ¿ ¼�½�¾1Á ¹ µ ¶ · ¸ Â ¼�½�¾1Ä ³ Ò Ð Ñ Ä ¹ Ò Æ Ñ
(23)

Using (17), (18) and (22), (23) can be written así Ò ¼�½�¾ ´ Ú ¼ ³ µ Ä ³ Ò ¾ ¶ · ¸ ÁP¼ ²³TÅ Ä ²³ ¾q¼ ³ Ò ºÁ ¹/Ò ¼0Ã�Ä ºP²³ Å ¾ ²¹ Ê(ËÅ ¾MÝ ¿ ¼�½�¾1ÁPÚ ¼ ¹�µ Ä ¹/Ò ¾ ¶(· ¸Á ¹/Ò ¼ ¶(· ¸ Ä%¼0Ã�Ä º+²³ Å ¾ ²¹ ²¹ Ê(ËÅ ¾MÝ Â ¼�½�¾ (24)

which leads to the bias distribution (21). î
This results gives the bias distribution for the general

case. Useful insight in the bias distribution of
³�Ò

and¹/Ò
in the special cases are described in the following

corollaries.

Corollary 1. Let ²³ Å ´w³1µm¶(· ¸
, ²¹ Å ´ ²¹ in the first

step in the extended two-stagemethod, then minimiza-

tion of (19) is equivalent toÕ�Ö ×Ò�ä>åÊ å Ú�ïï ³¬µ ¼ ÂLð�ñ ¾;Ä ³;Ò ¼ Âqð�ñ ¾"ïï à æ ¶(· ¸ æ à ç-è ¼�éb¾ÁPïï ¹�µ ¼ Â ð�ñ ¾;Ä ¹/Ò ¼ Â ð�ñ ¾"ïï à æ ¶(· ¸ æ à ç-ë ¼�éb¾MÝmì,é (25)

Proof: Substitute ²³ Å ´w³1µL¶(· ¸
, ²¹ Å ´ ²¹ into (21),

then (25) is obtained. î
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It is easily observed that in the case òóTôêõöó1÷mø(ù ú
,òûIôwõ òû , the difference ü ó�÷�ý9ó;þ ü ÿ is weighted

by the reference spectrum ��� and the differenceü û�÷�ý9û/þ ü ÿ is weighted by noise spectrum ��� . Both
are weighted by the input sensitivity function

ø�ù ú
,

which is advantageous for the closed-loop approxima-

tion of
ó ÷

by
ó þ

and
û ÷

by
û þ

.

Corollary 2. Let òó ô��õ ó ÷ ø ù ú
, òû ô õ òû in the

first step in the extended two-stage method, then the

minimization of (19) is equivalent to

�	� 
þ���
� 
�� ü � ó1÷�ý�ó1þ���ø(ù ú�� �-òóTô�ý òó�� � ó;þ����û/þ ��� ý�� òó;ô�� òû ���ô � ü ÿ ��� �"! �#� ü � û�÷�ý9û/þ$��ø(ù ú� �FòóTô}ý òó��%�Àû/þ ü ÿ ���&�"! �('�) !
(26)

Proof: Substitute òóTô �õ ó1÷mø(ù ú
, òûIô�õ òû into (21)

and the result in (26) is obtained. *
In the case òóTô �õ ó1÷6ø(ù ú

, òûIô õ òû , two terms

including �¬òóTô ý òó��
are introduced that will effect

the fitting of
ó�þ

to
ó1÷
,
û/þ

to
û�÷

, respectively. The

biased estimation of òó will effect the estimation of

the noise model. No explicit tunable expressions of

the misfit between
ó ÷

and
ó þ
, and between

û ÷
andû/þ

are obtained. This situation is similar to the two-

stage method.

Corollary 3. Let òóTô õ ó1÷mø(ù ú
, òûIô �õ òû in the

first step in the extended two-stage method, then the

minimization of (19) is equivalent to

�	� 
þ � 
� 
 � ü � ó ÷ ý9ó þ � ü ÿ ü ø ù ú ü ÿ � � �"! �#� ü � û ÷ ý9û þ ��ø ù ú�bû þ ��� ý òû òû ���ô ��ø ù ú ü ÿ � � �"! �('�) !
Proof: Substitution of òó ô õ ó ÷ ø ù ú

, òû ô+�õ òû into

(21) yields the result. *
In the case òóTô õwó1÷mø(ù ú

, òû/ô �õ òû , a term ûIþ ��� ýòû òû ���ô �
is created to effect the fitting of

ûtþ
to
û�÷

,

weighted by
ø1ù ú

. No explicit tunable expressions of

the misfit between
û/÷

and
ûIþ

is obtained.

Summarizing, the following result can be mentioned

for the extended two-stage method., This method gives an unbiased estimation of the

plant and noise model when they are in the model set., In case (high order) consistent estimates are obtained
in the first step, a tunable bias expression for both the

plant model
ó�þ

and the noise model
û þ

is obtained in

the second step., Even though we use the higher order models to fit òó
and òû in the first step, the orders of the models

ó�þ
andû/þ

can be reduced significantly in the second step., The bias of the noise model will effect the estimation
of the plant model in some special cases, and vice

versa.

6. APPLICATION TO CASE STUDY

The case study in this paper is a simulation study

based on a model of a flexible mechanical suspension

and the windage disturbance found in a conventional

hard disk drive (HDD) (Crowder and de Callafon

2003). A schematic representation of the system un-

der consideration is illustrated in Figure 2. Using the

notation
óT÷

and
û/÷

to respectively represent the dy-

namics of the flexible suspension and the dynamics of

the windage disturbances, a block diagram similar to

Figure 1 is obtained.

� -
./ 00 01 �32 �4 �"2 �%�ý65 �"2 � 77 877 877 8:9 �"2 �

Fig. 2. Configuration of HDD (left) and schematic

representation of flexible suspension, windage

disturbance and servo controller
�
(right).

The consistent estimation of (relatively high 12th or-

der) discrete time models for
ó$÷ �3; � and û/÷ �3; � on

the basis of experimental data has been illustrated

in (Crowder and de Callafon 2003). For illustrative

purposes, an amplitude Bode plot of the 12th or-

der models of
ó ÷

and
û ÷

found in (Crowder and

de Callafon 2003) is given in Figure 3.
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Fig. 3. Amplitude Bode plot of system dynamics
ó�÷

(top line) and noise dynamics
û ÷

(bottom line)

The servo controller
� �3; � used during the closed-loop

experiments in our case study is a 3rd order lead/lag

compensator given by� �3; �$õ <>= ? ? ; ÿ ýA@ = ��B < ; ýDC = EF< C; G ýA@ = B H E>I ; ÿ ýA@ = < ? ?FJ ; �K@ = @ EF<F<&J
and closed-loop data of 4096 data points, sampled at

51.2kHz is obtained with 4 and L as independent white
noise sequences with unit variance. The objective of

the case study is to find low (4th) order models
óyþ

andû/þ
of
ó;÷

and
û/÷

depicted in Figure 3 on the basis of

closed-loop experiments.

Figure 4, Figure 5, Figure 6 are the bode plots of the

identified plant and noise models, compared with real

system using direct method, two stage method and

extended two-stage method respectively. By analyzing

and comparing the characteristics of these methods,

the following results can be summarized.
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M Low order approximation with the direct method

gives biased estimation results for both the plant and

the disturbance dynamics.M A low order approximation of plant dynamics is

successful for the two-stage method. However, the

method yields biased results for the noise filter.M The extended two-stage method can be used to

obtain low order approximations of both the plant

model and the noise dynamics.
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Fig. 4. Application of direct identification. Left: Bode

plot of plant N�O (solid) and the 4th order modelN�P (dashed). Right: Bode plot of QRO (solid) and
the 4th order noise model QSP (dashed).
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Fig. 5. Application of two-stage method. Left: Bode

plot of plant N�O (solid) and the 4th order modelN�P (dashed). Right: Bode plot of QRO (solid) and
the 4th order noise model QSP (dashed).
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Fig. 6. Application of extended two-stage method.

Left: Bode plot of plant NTO (solid) and the 4th
order model NTP (dashed). Right: Bode plot ofQ	O (solid) and the 4th order noise model QAP
(dashed).

7. CONCLUSIONS

In this paper, several methods for low order plant

model and noise model identification are discussed

and compared in terms of the bias distribution of

the approximate estimation. A new extended two-

stage estimation method is proposed to improve the

approximate estimation of both plant and noise model

dynamics. The method is evaluated on the basis of

simulated closed-loop data from a hard disk drive

experiment and shows improvements with respect to

low order approximation of plant and noise models.
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