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1. Discussion

In the paper by Canale and Milanese the robustness
analysis of a model predictive controller (MPC)
algorithm is presented. The MPC algorithm uses an
approximate model of the actual plant to both esti-
mate states via an observer and formulate an receding
finite horizon regulation control problem. Due to the
use of an approximate model, a modeling error is
unavoidable and the MPC algorithm is labeled robust
by formulating conditions on state contraction and
size of the model error to guarantee stability and
feasibility of the MPC.

1.1. Main Ideas and Contributions

For the presentation of the robust MPC algorithm,
the authors briefly review the main concepts behind a
standard MPC regulation problem as also mentioned
in [2]. The MPC regulation problem is posed as a
constrained (weighted) quadratic optimization that
involves states xy/(k +i|k), i=1,...,h, of a model M
and inputs u(k +j| k), j=0, ..., he over a prediction /i,
and control /. horizon.

The authors acknowledge that in the absence of full
state information x,,(k) or deficiency of the certainty
equivalence principle (M #S), regulation properties
of the MPC cannot be guaranteed. A solution is pro-
posed where an approximate model M of the system S
is used for modeling purposes. Such an approach is
common in the field of (approximate) system identi-
fication [1,6,9], especially when a model needs to be
used for control design purposes [3]. In this paper, the

model M is used to create a standard state observer

)2?5(]() = A)%S(k — 1) + Bu(k — 1)
+ Ko(v(k = 1) = Cxs(k — 1))

to estimate an auxiliary state Xg(k) that reflect partial
or incomplete information of the dynamics of the
system S.

The information of the estimated state xg(k) and
the simulated model state x,,(k) is used to formulate a
MPC algorithm similar to the standard MPC regula-
tion problem. The subtle differences are found in:

e The constrained (weighted) quadratic optimization
that now involves the estimates states xXg(k+i|k),
i=1,..., hyfrom the observer as an extension to the
work by [5] that assumes full state information.

e The state contraction conditions that not only
includes a standard nominal state contraction [7]

[xar(k + 1K)l p, < Vlixae(k| K] p,
0<v<l, (1)

but also the robust state contraction
[Xs(k + 11 K)opy < pllxar(K[K)ll5,p,
0<u<l, (2)
where [ x(k) ||,y = \/x(k)T Wx(k)and Pyin]| - ||2,pQ
is the positive definite solution to the Lyapunov
equation A" PpA — Pp=—0Q.

To discuss further the effect of partial or incomplete
state information, modeling/estimation errors in
the estimated state Xg(k) are characterized by an
additive perturbation Xg(k)=xy/(k)+ 6(k). The
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perturbation (k) is modeled by an unknown, but
bounded unstructured additive uncertainty 6 = Agu
from input u to the model states x,= Mou. The
bound on the unstructured additive uncertainty Ay is
defined via an induced oo-norm

| Aot p,

[A0llg <2(Q), (@) = sup

u

where P is again the positive definite solution to the
Lyapunov equation ATPQA — Po=—Q. Similarly, the
size of a nominal model M, is characterized by

| Mot p,

ullo

and the ratio of the size ~o(Q) of the unstructured
uncertainty and the model size ||M,||o plays a role in
the establishment of the robustness results for the
MPC algorithm. The authors indicate that informa-
tion with respect to the size vo(Q) of the unstructured
uncertainty can be obtained via set membership
identification methods [4,8] and details are not
discussed further in the paper.

The main technical contributions of the paper are
summarized in two propositions that formulate con-
ditions on the size vo(Q) of the unstructured additive
uncertainty A, and the state contraction of both
the estimated states Xgs(k) and the states x,,(k) of the
approximate model M to guarantee feasibility and
stability of the MPC. The most important result lists
the sufficient feasibility condition

20) (. 1(0)
- (PQ><1 y ||M0|Q> < ©)

[[Mol|g = sup
u

which is a multiplication of the standard (nominal)
state contraction and the effect of the worst case error
due to the unstructured additive uncertainty. This
result is followed by a sufficient condition on the
existence of a matrix Q in the Lyapunov equation 4"
PpA — Py =—0 so that (3) can be met. The technical
contribution of the paper is ended with a proof of the
stability of the proposed robust MPC that heavily
relies on the previously derived results. As a final
motivation for the use of the proposed MPC algo-
rithm, the results of the robust MPC is illustrated with
a small simulation example.

1.2. Discussion of Results

The role of the weighting matrix Py in (1) and (2) is at
first unclear, but the proof of the main results in the
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paper indicate that the specific choice of Py related to
the Lyapunov equation

A"PypA — Py =—-Q

helps in formulating the state contraction conditions.
This is seen by setting u(k) =0, making x,,(k+1)=
Ax (k) and

sk + D)3 5, = 14 X0 ()15,
= xu(k) AT P A xp (k)

with Py as the positive definite solution to the
above mentioned Lyapunov equation it can be seen
that x (k)" A" PoAx (k) = x (k)" [Pp — Qlxa(k) and
removes the matrix 4. This makes

lxar(k + DI, = lar (k)15 p, = Iar(K) 20

and allows a state contraction to be formulated by
combining

lxar(k + DI, p, = 621 5,

2
( HXM(k)”Z,Q)
<\ 1=
TGS
with the result

_ Bz ~(9)
<1 ||xM<k>|§,PQ>S<1 a(l@)

to guarantee

a(0)

a(Po) <!

for the nominal state contraction of x,, (k).

The same idea is also applied to prove robust state
contraction of the estimated state Xg (k) by concluding
that

):AA()
cohe—1

sk + if u(k) = 0,
k =

Although this seems a viable argument, Xg(k) is an
estimated state, obtained from input u(k) and output
measurements y(k) of the system S. Clearly, in case of
state estimation errors 6(k)#0 for wu(k)=0,
k=0,...,h.—1 (due to initial conditions) or possible
noise on the output measurements y(¢), we might find
that Xg(k+1)# AXs(k) making the robust state
contraction slightly more complicated.

The use of the estimated state Xg(k) in the con-
strained (weighted) quadratic optimization over a
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prediction /i, also introduces a small complication in
the MPC algorithm. Not only does the state X5 (k| k)
have to be estimated, the future states Xg(k+i|k),
i=1,...,h. also have to be predicted in order to be
used in the optimization. The authors propose to use
the relationship

Xs(k+ 1|k) = Axs(k | k) + Bu(k | k)
recursively to predict the future state Xg(k+i|k) by

sk +i| k) = A'zs(k | k) + A" Bu(k)
tot Bulk+i—1)

and indicate that Xg (k + i | k) only depends on X (k | k)
and future inputs. Unfortunately, Xg is an estimated
state based on an observer structure and (k + i)th step-
ahead predictions of the state should involve not only
involve the current state %(k | k) and future input pre-
dictions, but also the (k 4+ i)th step-ahead predictions
of the output. Unfortunately, in the simulation
example these problems are not illustrated, as predic-
tion horizon /4, and control horizon A, are set to 1.

1.3. Concluding Remarks

The authors have given a detailed analysis that
addresses the problem of imperfect model knowledge
in MPC regulatory problems. The main idea to use an
approximate model of the actual plant to both esti-
mate states via an observer and formulate an receding
finite horizon regulation control problem is a pro-
mising suggestion. The conditions on state contrac-
tion and size of the model error to guarantee stability
and feasibility of the MPC are intuitive and under-
standable to the reader. Special care has to be given to
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the use of the estimated states in the MPC in case
longer prediction horizons are used. Additionally, the
unstructured additive uncertainty description to
model state estimation errors might be slightly con-
servative in case state estimation errors are correlated
for different states. A structured uncertainty structure
would then be better suited to limit conservatism of
the uncertainty model.
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Final Comments by the Authors
M. Canale and M. Milanese

The paper discussion is based upon the following main
points:

(a) robustness aspects with respect to measurements
noise;

(b) effects of the model uncertainty on the computa-
tion of the control law; and

(c) conservativeness of the performances results due
to the unstructured nature of the model uncer-
tainty.

1. Point (a)

In the recent years important results have been
achieved in the field of Model Predictive Control

(MPC). In particular, starting from nominal stability
and performance properties of MPC, the researchers’
attention has been focused on robustness issues. In
such context, the stability characteristics of predictive
control laws have been investigated under two dif-
ferent settings (see [1] and the references therein):

1. robustness against certain classes of non decaying
disturbances;
2. robustness in presence of model uncertainty.

The present paper deals with the second of the above
settings and, in particular, on the design of a robust
predictive control law in face of an unstructured
model set. Indeed, the problem of dealing robust
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stability properties considering both model uncer-
tainty and non-decaying output disturbances is an
important issue and it is at present under
investigation.

2. Point (b)

The proposed predictive control design relies on the
constrained minimization of the following functional
cost:

hy
min Sslk+i| k)3
U[u(kk)...u(kHulk)]{;” s )2,

he
+Z|Iu(k+ik)||§m}, (1)

i=0

which depends on the ahead predictions of the “esti-
mated state” Xg. As the state Xg can not be computed
exactly due to the model uncertainty, two different
approaches may be followed to evaluate its predic-
tions inside the functional cost:

1. use the nominal model equations to propagate the
state evolution (i.e. Xg(k+i|k) =~ xpdk+i|k));

2. evaluate, on the basis of the model uncertainty, an
upper bound of the functional cost as done in [2].

In the first case the predictions of Xg are made by
means of the nominal model M:

xu(k+1) = Axpy (k) + Bu(k)

and starting from the value Xg5(k | k):

Xs(k+ilk) = xpu(k+i|k)
= A'xs(k | k) + A" Bu(k)
4+ Bu(k+i—1). (2)

This approach is analogue to what is usually done in
standard synthesis procedures in the robust control
literature (see e.g. the robust H,, methodologies) and
it is performed via the optimization of a nominal cost
under robust stability constraints. On the other hand,
it has also to be noticed that such “nominal” predic-
tions of Xg do not take into account, according to the
observer equation, the effects of the future output
predicted values. In order to take into account the
influence of the modeling errors via the output pre-
dictions on Xy inside the functional cost, the following
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min—max problem can be considered:

min sup
Ulu(k | k) ...u(k+h.—1k)] l180]l9<70(0)

hy he
x {213 sk +i 1K) 3, +§ ||u<k+i|k>||§Wl}.
(3)

Using the same arguments as in the proof of Propo-
sition 1 it can be proved that:

sup || %s(k | k)”zPQ
[[Aollg<70(Q)

_ Y0(Q) .

so that the optimization problem (5a) in the paper can
be replaced as

hy

min k+i1K)13 5500
U[u(kk)“.u(kwtlu—lk)]{;|XM( +l| )||2W17h

he
+leu(k+ik)llim}, ()

i=0

where W;"” is a suitable weighting matrix which
depends on W, v and |My| . This way, the design
can be again casted to a nominal optimization
problem as stated in the paper.

3. Point (c)

As a final comment, it has to be remarked that the
purpose of the present paper was to investigate the
possibility of designing a predictive controller by using
approximated models expressed as unstructured
additive model set and to evaluate its achievable per-
formances. Anyway we agree to the fact that the
unstructured nature of the uncertainty may lead to
more conservative results both for the more general
description and for the correlation errors present in
state estimation. Indeed, the identification procedure
may be worked out in order to derive different
uncertainty models from the system input to each of
the estimated state. The design procedure performed
on the basis of this structured uncertainty model could
lead to less conservative results. On the other hand,
the derivation of such model appears, at the moment,
a quite difficult non-trivial task.
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