Proc. 3rd IEEE Conference on Control Applications,
Glasgow, England, 1994

WA-14

Closed-loop identification of a distillation
column

A.C. van der Klauw!-?

G.E. van Ingen®
P.P.J. van den Bosch?

A. van Rhijn® S. Olivier®

R.A. de Callafon’®

2 Delft Univ. of Techrology, Dept. of Elec. Eng., Control Laboratory. P.O. Box 5031, 2600 GA Delit, The Netherlands,

A.C.VanderKlauw®@et.tudelft.nl

2 ESSO Rotterdam, P.O. Box 5120, 3197 ZG Botlek RT, The Netherlands
4 Eindhoven Univ. of Technology, Dept. of Elec. Eng., Measurement and Control Section, P.O. Box 513, 5600 MB

Eindhoven, The Netherlands

5 Delft Univ. of Technology, Dept. of Mech. Eng., Systems and Control Group, Mekelweg 2, 2628 CD Delft, The

Netherlands

Abstract

To improve the closed-loop operation of a distillation col-
umn, a model is needed for control design. To obtain
data, a closed-loop experiment is designed and executed.
Models are obtained by applying the Direct Identifica-
tion method and the Two-Step method to the closed-loop
data. Both Output Error (OE) models and linear regres-
sion schemes based on orthonormal basis functions (OR-
TFIR) are used. It appears that a combination of the
Two-Step method and an ORTFIR model in the first step
gives good results.

The results are compared with the currently implemented
model, and show considerable improvement in prediction
capability. The new model is currently used to redesign
the control loop.

1 Introduction

In practice we are often confronted with the problem of
closed-loop identification: we need a model of a plant, but
the identification experiment cannot take place in open
loop; a controller must be present during the experiment.
This situation occurs for example when it is dangerous for
the environment to let the plant run unattended, or when
it is too expensive to run in open loop, because of a loss of
yield during the experiment. Consequently, if we want to
identify a plant, the model must be built from closed-loop
data.

In this paper we will focus on closed-loop identification
of a distillation column: given a controlled distillation
column, design and perform an identification experiment
to identify a model from closed-loop data.

The distillation column and its control loops are discussed
in section 2.

In general, the direct application of standard open-loop
identification techniques does not give satisfactory mod-
els, mainly due to a bias, that is introduced by the corre-
lation between inputs and disturbances [1].
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In the past several identification methods for closed-loop
situations have been proposed [1, 6, 8]. Of these meth-
ods we will apply the Direct Identification (DI) method
and the Two-Step (TS) method in this paper. DI [i]
is very straightforward, since a Prediction Error Method
(PEM,[4]) is directly applied to the data, without taking
into account the closed-loop operation. An advantage of
DI is its simplicity, a disadvantage is that the resulting
models are biased in general, and the bias depends on the
specific noise contribution [10]. As a consequence, we do
not have a tunable expression to control the bias of the
model.

The TS method [8] consists of two consecutive open-loop
identification steps, in which 2 PEM is used to obtain
estimates of the loop semsitivity function and the plant,
respectively. The resulting models can be biased, but the
bias does not depend on the noise contribution. Hence we
can directly influence the bias of the model by applying
appropriate filters, independent of the noise. More about
closed-loop identification will be said in section 3, where
we will also discuss the different model parametrizations:
Output Error (OE,[4]) and Orthogonal Finite Impuise Re-
sponse (ORTFIR,[2, 9]).

In section 4 we discuss the experiment design. Consider-
ations include the choice of sampling time, input signal
and data pretreatment. The results obtained from the
measured closed-loop data are presented in section 5. A
comparison will be made between the DI, the TS and the
current model. Finally we draw some conclusions in sec-
tion 6.

2 Problem description

The plant under consideration is a controlled two-input
two-output distillation column, as depicted schematically
in figure 1. The outputs, which are to be controlled, are
the impurity of the top-product or distillate y:q and the
impurity of the bottom-product or residue yuq. These
are measured by analyzers, and expressed in [kg/ton] of
the bottom-product, present in the top, and of the top-
product, present in the bottom, respectively. Clearly they
are a measure of the quality of the separation in the dis-
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Figure 1: Distillation control loop with quality controller

tillation column.

The reference values 71 and rbq give the desired or target
impurities in the distillate and in the residue, respectively.
These reference values should be attained with as small a
variance as possible. They should not be exceeded.

To control the outputs we have access to two input vari-
ables: the internal reflux-to-feed ratio uis and the cut-
point ucp. The signal ui¢ is a set point of a ratio-
controller, that controls the actual reflux-to-feed ratio.
The signal ucp is the set point of a temperature controller,
that controls the cutpoint temperature. These, and other,
low-level controllers are represented by Ci,..., Cr in fig-
ure 1. They are mostly of the PID type.

The plant and the low-level controllers C; ... C, are con-
sidered to be the system to be identified, denoted by Gy
and the dashed box in figure 1. It is controlled using the
Internal Model Control (IMC,[5]) principle.

A model G runs parallel to the process. This model pre-
dicts the process behaviour. The predicted output 7 is
compared to the actual output y, and the bias signal
e = y — 9 is fed back into a controller, containing the DC-
gain of the model G, and several constraints. At present
the model consists of four first order SISO transfer func-
tions.

External disturbances influence the process behaviour.
Examples are the external feed, which comes from other
distillation columns. and various other types of non-
controllable inputs, such as feed quality, feed temperature
and environment temperature. The disturbances are rep-
resented by &.

The goal of our study is to provide a model G, that is a
better description of the process Go, to improve the per-
formance of the outer loop: keep the outputs as close as
possible to their reference values. using the internal reflux-
to-feed ratio set point and the cutpoint temperature set
point as control variables.

For identification we make a few simplifving assumptions.
During normal operation the controller can be approxi-
mated by a linear controller C. We introduce an excita-
tion signal 7, added to the output of the controller. Also,
since the reference signals r1q and rpq are constant, they
are not relevant for the dynamic behaviour of the loop,
and they are therefore neglected. The resulting simplified
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scheme 1s shown in figure 2.

Figure 2: Stmplified identification loop

In figure 2 7, u € R™, v0, 3¢, 0. € R®, and C. Gy and G
are transfer function matrices of appropriate dimensions,
depending on the forward shift operator ¢: gqu: = u¢+1.
For readability this dependence is omitted in the equa-
tions.

Note that in our case m = p = 2.

The equations that govern the loop are:

Y _ GoSo
Ug - SO

where I, 1s the p x p-identity matrix. Sp are the tnput loop
dynamics

{I, - GC}5,
] ne + [ —Cgo ] N (])

So = [Im+C{Go - G} (2)

and S are the output loop dynamics

So = [l +1{Go - G}C] ™ (3)

The controller C 1s designed on the basis of the model
G. This model should describe the relation between the
inputs z and the outputs y. The noise effects are not taken
into account in the IMC design. Therefore we will not
identify a noise model. Moreover, it is explicitly assumed
that the plant is not in the model set, and hence a model
is an approzimation of the true plant.



3 Closed-loop identification

We will use the Direct Identification and the Two-Step
methods to obtain models from closed-loop data. Before
discussing these methods, we will give a brief review of
the most important ingredients of the Prediction Error
Method, to define notation. The last part of this section
is devoted to the parametrization problem.

The Prediction Error Method (PEM) [4] is a well-known
open-loop identification method. Given measurements of
a system’s inputs u and outputs y, a loss function is mini-
mized that depends on the difference between real outputs
y and predicted outputs 7.

Let the model set be parametrized by a parameter vector
6 and let an arbitrary model be denoted by G(8). We will
assume that no noise model is identified, and hence the
prediction § can be written as

3:(6) = G(f)ue (4)

Thg parameter estimate 4, and accordingly the model
G(9), is obtained as

N

- A 1 B

§ = argmin Z OO (52)
t=1

€:(8) = y: — §:(9) (5b)
where ' denotes the transpose of a matrix, and N is the
number of measurements of inputs and outputs.
It is interesting to see what happens if N — co. We then
obtain the asymptotic parameter estimate 6 [4]. Using
Parseval’s relationship, a frequency-domain expression for
8., is obtained:

foo = argmein tr/ P, (w; ) dw (6)
where ®.(w;0) is the spectrum of the prediction error ¢,
and tr is the trace of a2 matrix.

For notational convenience we introduce the induced 2-
norm || X}}, of a system X(g) as the 2-norm of the output
of X, when the input is white noise with unit variance:

kL 1/2
IX1l, £ (“21? / X)X (e dw) ©)

where * denotes the conjugated transpose of a complex
matrix.

Any quasi-stationary signal € can be written as the result
of filtering white noise with unit variance by a filter with
transfer function ®2/%(q). Hence, (6) can be rewritten as

foo = arg mein “<I>§/2(0)”2 (8)

A key requirement for PEM to produce meaningful results
is that inputs and noise are uncorrelated. Therefore it is
an open-loop identification method.

When the experiment is carried out in closed loop we can
encounter identifiability problems [1]: it is not guaran-
teed that there is a unique solution of (52) and (8). By
applying an external excitation signal 5. (see figure 2), in
general these problems are solved. Moreover, the signal-
to-noise ratio is improved, and the loop is guaranteed to
be sufficiently excited. However, correlation between in-
puts and noise cannot be avoided, possibly resulting in
biased estimates. Special care must be taken to handle
this.
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3.1 Direct Identification (DI)

In Direct Identification (DI) the correlation is neglected.
The inputs z and outputs y are processed just as if they
were obtained in open loop. When a PEM is applied, the
asymptotic estimate 8 is given by [10]:

o = (9)
argmin || {Go — G(9)}50%3/ 57958 |,

where 5(9) is defined as

5(6) = [I, + {G(6) - G}C] (10)
The 7-dependent term in (9) shows that the difference be-
tween Go and the model G(f ), the bias, is minimized in
a frequency-weighted norm. The v-dependent term shows
that the result is influenced by the noise term ®,(w), in an
unknown way. Therefore the bias is not directly tunable.

3.2 Two-Step identification (TS)

A method that does not have this disadvantage is the
Two-Step method (TS) [8]. It is based on the definition
of a signal u] by rewriting (1) as

u:’ = Sone {11a)
e = uy — SoCu: (11b)
Y = Go‘u,;7 + [1 - GoSoC]’U: (llc)

The signal ] is the noise-free part of u., and is therefore
uncorrelated with the noise v.. Hence (11c) shows that if
we have u? available, a model G of Go can be obtained
by standard open-loop techniques, such as PEM.

How do we obtain u;? From (11a)-(11b) it follows that
this can be done by estimating a model S(8) of So by a
PEM, with 7. as input and u. as output, since 5 and the
noise v are uncorrelated. The asymptotic estimate foo is
then given by

Beo = arg min [l(so = 5(8))83%|, (12)
We then reconstruct u; according to
a7 = S(B)n. (13)

In the second step we identify § from {y(t),&"(¢)}~. The
asymptotic estimate 8 is given by

8o = arg min [(GoSo — G(8)S(BNY?], (19
Clearly, as opposed to DI, the asymptotic model G(Goo)
is independent of the noise. If the error So — S(8) is
sufficiently small, the bias Go —G(8) is directly influenced
by ®,, and possible weighting filters. We thus have a
tunable expression for the bias distribution.

3.3 Parametrization

So far we have not discussed the parametrization of G and
S (in the TS method). We will not identify noise models,
so possible parametrizations are Output Error (OE) and
Finite Impulse Response (FIR).



An OE-model is nonlinear in the parameters, so (5a) needs
a nonlinear optimization procedure. The solution can
then be a local minimum. A FIR-model is linear in the pa-
rameters, so (5a) has a unique global minimum, which can
be calculated analytically. However. a very large number
of parameters M needs to be estimated (typically around
50). For chemical processes we do not have a large number
of measurements N. Since the variance of the estimated
parameters is proportional to M /N, this implies that the
variance of the estimated FIR-parameters will be high.
This will not be the case if we use orthonormal basis func-
tions as a basis in our FIR description [2, 9]. It is this
parametrization that we are going to use in the estima-
tion of the loop dynamics.

A classical FIR parametrization of S Is a series expansion
of S(z;b):

(15)

~* are the basis func-

where M € N is large. and where =
tions.
In [2. 9] orthogonal basis functions Vik{z) are used, con-

taining dvnamics. The series expansion then becomes:

d
S(z=8)=3 3Vle) (16)
—

The basis functions Vi(z) are generated by a so-called ba-
sis generating system. It has been shown in [3] that if the
dynamics of the basis generating system approach the dy-
namics of the plant to be modelled, the convergence rate
of (16) becomes very high. As a consequence, the num-
ber of parameters d that need to be identified is smaller
than M, resulting in a smaller variance of the estimated
parameters. For a more detailed discussion of the orthog-
onal FIR representation we refer to [2, 3. 9].

We will use the standard and the orthogonal FIR (ORT-
FIR) parametrization in the first step of TS. In the second
step of TS and in DI we will use an OF parametrization
to estimate Gif).

4 Experiment design

In the identification experiment design phase we choose
the sample time for data acquisition, the sample time
for identification, the input signals and the experiment
length. Currently the controller calculates a new control
action every 7. seconds. The output impurity is deter-
mined by analyzers, that give a sample every T, seconds.
Since there is no synchronization in the loop, the model,
that runs parallel to the process. is updated every T sec-
onds (7. < T < T.). These sample times cannot be
chosen freely. since they are induced by the process.

Several free-run experiments (no external excitation) are
done to determine the frequency contents of the signals.
It is decided to choose a sample time for data acquisition
equal to Ts. To have the model run at the same rate as the
analyzers. a model will be estimated with a sample time
for identification of T,. This immediately shows some
of the data preprocessing necessary: decimation of the
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measured signals, i.e. filtering the data through an anti-
aliasing filter, and taking every T,/7. sample.

The model is built with a sample time of 7,, and hence
the input signal 7: should be based on this sample time.
Because of the easy tuning, we choose two independent
Generalized Binarv Noise (GBN) [7] sequences as input
signals. A GBN signal has a basic switching time Tiw.
where it switches between two values with a non-switching
probability p. This p is the tuning parameter. Choosing
p large will result in a larger spectrum at low frequen-
cies. Choosing p small results in a larger spectrum at
high frequencies. Note that if p = 0.5 we obtain a Pseudo
Random Binary Noise (PRBN) sequence.

In [7] some rules-of-thumb are given for choosing p. For
our distillation column we choose p = 0.82 for i and
p = 0.87 for ncp, with a basic switching time (shortest
period between two switches) of 7,, to match the sample
time with which the model is built.

The experiment length is approximately 48 hours, result-
ing in a data set of N = 360 samples after decimation.

Besides decimating the data set. the following data pre-
processing s performed:

o the outliers are removed;
o the mean values of the signals are subtracted;

e the signals are high-pass filtered to remove low-
frequency trends;

e the signals are scaled to obtain equal variance of 1 for
all signals.

With the preprocessed data set we start the identification
of models of Go.

5 Experimental results

5.1 Time delay estimation

First we estimate the time delays of the plant. Note that
these are the same as the time delays from the excitation
signals to the outputs. The estimated time delays are
given in table 5.1. They are incorporated in the models.

] I from uirs I from ucp |

tO Yiq 2 4
10 Ybg 2 6

Table 1: Estimated time delays from inputs to outputs

5.2 Identification of loop dynamics

First we estimate a model 5 of the loop dynamics from
the data set {u:,n:}. A non-parametric spectral estimate

Sipec is obtained as

Sipec = ®un @3
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Figure 3: Amplitude vs. frequency of the loop dynamics

S: spectral estimate (solid), FIR estimate (dashed) and
ORTFIR estimate (dotted)

In figure 3 the solid lines are the amplitude of S;pec of the
different transfers from inputs 7 to outputs u. This esti-
mate is used to compare the parametric estimates with: a
MIMO FIR model (dashed lines) and a MIMO ORTFIR
model (dotted lines).

From this figure we conclude that the ORTFIR model
has smaller variance than the FIR model, as expected,
because of the smaller number of parameters. Therefore
we calculate u”; (13) with the ORTFIR model.

Note that for low frequencies the spectral estimate has a
small number of points, and a high variance. Therefore
a qualitative judgement of the models for low frequencies
has little significance.

5.3 Identification of plant model

A plant model is obtained using three techniques. For
comparison, a spectral estimate Gpec is calculated as

Gspec = Qynéx:; (17)

The solid lines in figure 4 represent the amplitude of the
spectral estimate. Again the low-frequency part has little
significance.

Parametric models are obtained with DI and TS. The DI-
model Gp; is given by the dashed lines in figure 4. The
dotted lines correspond to the TS-model Grs. From this
figure we conclude that the model Grs is closer to the
spectral estimate than Gpj in the region of the dynamics
of the plant.

5.4 Model evaluation

The (scaled) step responses of the different models are
shown in figure 5, where the solid lines correspond to the
model that is currently used, the dashed lines correspond
to the DI model, and the dotted lines are the TS model.
From this figure we conclude that the current model does
not contain enough dynamics; there are higher order dy-
namics that need to be taken into account. The DC-gain
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Figure 4: Amplitude vs. frequency of the model G:
spectral estimate (solid}, DI model (dashed) and TS
model (dotted)
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Figure 5: Step responses of the model G: current model
(solid), DI model (dashed) and TS model (dotted)

of the TS-model Grs corresponds to values, obtained from
other experiments. Therefore the TS-model seems reason-
able, and is preferred to the DI-model Gpi.

Finally, we compare the measured outputs with the model
responses in figure 6. The upper graph corresponds to 4,
and the lower graph corresponds to ybq. The solid lines
are the measured outputs, the dashed lines correspond to
the DI-model, and the dotted lines correspond to the TS-
model. We can hardly see any difference between the two
models, although we have seen that there is a considerable
difference in their frequency plots (figure 4) and their step
responses (figure 5). The measured outputs are matched
reasonably well by both the DI- and the TS-model.

The dash-dotted lines in figure 6 correspond to the cur-
rently implemented model. Clearly this model is not very
good, and a considerable improvement can be expected
when using the TS-model for control design, since this
model is a better approximation of the real plant.



Figure 6: Measured outputs (solid) and predicted outputs
with DI model (dashed), TS model (dotted) and current
model (dash-dotted)

6 Conclusions

In this paper we have discussed a closed-loop identifica-
tion experiment. Two closed-loop identification methods,
Direct Identification (DI} and the Two-Step (TS) method,
were discussed, and applied to closed-loop data of a dis-
tillation column.

The TS-model is better than the DI-model, following from
both a frequency-domain and a time-domain (step re-
sponse) analysis. It appears advantageous to use an OR-
TFIR parametrization in the first step of the TS method,
rather than a FIR parametrization, to obtain an accurate
estimate of the loop dynamics.

The results were compared to the currently implemented
model, and it appeared that a considerable improvement
1s made in the prediction capabilities of the model. At
present, the insights gained in the experiment are used to
redesign the control loop.
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