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Thermal Dynamical Identification of Light-Emitting
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Abstract— A new method for modeling the thermal response
of semiconductor devices such as light-emitting diodes (LEDs)
from temperature measurements is presented. The method uses
a realization-theoretic approach to identification combined with
convex optimization methods. Linear matrix inequalities are
constructed to guarantee that the identified discrete-time model
has strictly real eigenvalues between 0 and 1, so that, when
converted to continuous time, the model will have strictly real
time constants. Additional optional time-domain constraints are
developed to guarantee a predetermined steady-state value,
guarantee no undershoot or overshoot in the transient response,
and/or guarantee a positive time-constant spectrum. The method
is applied to the thermal response of a high-power LED.
Temperature measurements of the semiconductor device are
used to model the time constants of the thermal response and
characterize the relative contribution of each time constant to
temperature increase. Experiments indicate how the proposed
method can be used to detect thermal defects. It is shown that
models with five time constants can model the thermal effects
of the LEDs used with high accuracy. The proposed method is
applicable to larger order systems with multiple simultaneous
temperature measurements.

Index Terms— Convex optimization, light-emitting diodes,
linear-matrix inequalities, realization theory, step response,
system identification, time-constant spectrum.

NOMENCLATURE

DIMENSIONS

n Dimension of state vector/order of linear
model.

ny Dimension of step-response signal.
P Columns in H, H, Y, Y .
r Block-rows in H, H, Y, Y .

LMI REGIONS

f∗ Describing function of LMI region *.
P Region of complex plane such that Re(z) ≥ δp .
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R Region of complex plane such that Im(z)
≤ δr .

S Region of complex plane inside circle of
radius 1–δp.

SIGNALS AND PARAMETERS

(Ac, Bc, Cc) Continuous-time state-space parameters.
(Ad, Bd , Cd ) Discrete-time state-space parameters.
C Extended controllability matrix.
k Discrete-time sample index.
�c, λ

(i)
c Eigenvalues, i th eigenvalue of Ac.

λ
(i)
d i th eigenvalue of Ad .

O Extended observability matrix.
Ri Relative contribution of i th continuous-time

time constant.
t Continuous time variable.
τi i th continuous-time time constant of linear

model.
Ts Sampling time of step-response

measurement.
Vc, v

(i)
c Left eigenvectors, i th left eigenvector of

Ac.
xc(t) Continuous-time state vector.
xd(k) Discrete-time state vector.
y(t) Continuous-time step response signal.
yd(k) Discrete-time step-response signal.

DATA MATRICES

∗ Block-matrix of data (*) shifted up by a
block-row or left by a block-column.

H Block-Hankel matrix of discrete-time
Markov parameters.

M Matrix of step-response data with repeated
columns.

� Estimate of HUp.
� Estimate of HUp .
φ Regressor for Bd .
T Block-Toeplitz matrix of discrete-time

Markov parameters.
U f Matrix of 1 everywhere.
Un,�n, V T

n First n left singular vectors, singular
values, and right singular vectors, of �.

Up Upper-triangular matrix of 1.
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Us,�s , V T
s Remaining s left singular vectors, singular

values, and right singular vectors, of �.
ξ Column-vector of samples of yd (t).
Y Block-Hankel matrix of step-response

measurements.

I. INTRODUCTION

EXPERIMENTAL analysis of thermal transients plays
an important role in the model validation and failure

detection of integrated circuits. Such thermal responses are
typically modeled as resistor–capacitor networks, with the
various resistances and capacitances derived from known
thermal properties of the materials. These networks can be
created from numerical simulations or from experimental
measurements.

One popular framework for analyzing the thermal response
of packaged electronics is that of the time-constant spectrum,
developed by Székely. This framework replaces the finite-
dimensioned resistor–capacitor networks with an infinitely
long network to form a continuum of time constants as a
function of a logarithmic time variable. The step response is
formulated in terms of the convolution of an analytic function
(the spectrum) with a unit exponential rise. The original
method consists of a transformation to a logarithmic time
variable, followed by a differentiation and a deconvolution
to generate a nonparametric estimate of the spectrum func-
tion [1]. Relationships between the impedance of a circuit and
its time-constant spectrum were later derived in [2] and [3].

While an automatically generated graph of the time-constant
spectrum provides an immediate and intuitive interpretation
of the various transient artifacts of the step response, an
additional curve-fitting or discretization procedure is required
in order to define the spectrum with a finite number of para-
meters. Hence estimating the time-constant spectrum function
in this manner is essentially a nonparametric identification
procedure, akin to measuring the frequency response function
of a linear system. Also, the calculation of the spectrum
requires differentiation of the measured step response followed
by deconvolution with a low-pass filter, both of which reduce
the signal-to-noise ratio of the data.

In [4], a weighted-discretization method was proposed that
reduced the number of observed time constants based on
equidistant spacing along the logarithmic time axis, but the
number of time constants derived was between 60 and 120.
In [5], filtering techniques were developed to address loss
of resolution in the time-constant spectrum when two known
constants are relatively close to each other. In [6], the introduc-
tion of material properties was proposed to correct for model
discrepancies due to parasitic heat loss.

Other approaches to modeling the thermal response from
experimental data include applying a constrained nonlinear
least-squares curve-fitting method to minimize the root-mean-
square error for a continuous-time parameterization of a step
response, developed in [7]. The method was applied to mul-
tivariable data, in which the effects of a step on each input
were measured for multiple output signals, forming a step-
response matrix of transients. The method requires careful
model selection beforehand and an initial guess as to the value

of the step-response time constants to avoid becoming trapped
in local minima. Genetic algorithms were applied to a similar
problem in [8].

In [9], automatic model reduction for deterministic elec-
trothermal models of semiconductor devices was studied.
A balanced-truncation method for reducing the order of linear
systems, which shares some qualities with the identification
method to be presented in this paper, was shown to be an
effective way of reducing model order but was concluded
to be computationally unattractive due to the extremely large
order of the deterministic models. The application of model
reduction to systems identified from simulated or measured
data was not studied.

In this paper, we propose a novel method of parametrically
identifying a linear finite-order step-response model from
discrete-time measured data, which is a significant departure
from existing methods in the literature. It is rooted in the
realization-theoretic framework of linear systems established
by Kalman in the 1960s, and in particular, the Ho–Kalman
algorithm [10], which uses a block-Hankel matrix of impulse
response coefficients to compute a state-space realization of
a linear time-invariant system. The Ho–Kalman algorithm
was later improved by Zeiger and McEwen [11] and Kung
[12] to use the singular-value decomposition (SVD) to factor
the block-Hankel matrix, which resulted in a certain type of
optimality in a model-reduction framework [13].

Helmont et al. [14] derived a little known and underappre-
ciated extension of the Ho–Kalman algorithm to step-response
measurements was for the purpose of developing an optimal
control law for a coal-fired Benson boiler. This step-based
realization (SBR) method was later reintroduced in a subspace
identification framework in [15]. The SBR provides an exact
minimal-order model of a linear time-invariant system when
applied to deterministic data and very good estimates when
applied to noise-corrupted data.

This paper extends the SBR to include convex constraints,
transforming the SBR into a semidefinite program. This new
method has a number of key advantages: 1) no differentiation
of the step-response is required, allowing for application to
measurements with low signal-to-noise ratios; 2) the model
order is chosen during the identification procedure, and no
prior assumptions must be made regarding the number or
location of time constants; 3) the relationship of the algorithm
to model-reduction procedures inherently produces low-order
models; 4) the step response can be possibly vector-valued,
although multivariable measurements do not necessarily
increase the system order; 5) the time constants of the model
are guaranteed to be real and stable; 6) the steady-state value of
the step response may optionally be constrained during iden-
tification; and 7) the method involves no nonconvex optimiza-
tion. The calculation of the model parameters requires only
standard operations of linear algebra, a linear programming
problem, and a quadratic programming problem, for which
robust numerical tools that guarantee a solution are freely
available.

The rest of this paper is structured as follows. Section II for-
mulates the identification problem. Constraints on a discrete-
time state-space model are constructed to guarantee that the
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model has an equivalent representation as a time-constant
series model. Section III presents the unconstrained SBR
method, which identifies discrete-time linear systems from
measured step responses. Section IV restates the constraints
given in Section II in terms of linear matrix inequalities (LMIs)
that may be used to form a constrained convex optimization
problem. Section V applies the method to an experimentally
measured thermal response of an light-emitting diodes (LED).

In this paper, > and < represent elementwise greater-
than and less-than, respectively, when applied to vectors or
matrices, and � and ≺ represent positive definiteness and
negative definiteness. Nonstrict inequalities should be read
similarly.

II. PROBLEM FORMULATION

We begin with the assumption that the true noisefree step
response of the thermal system has the form

y(t) =
n∑

i=1

Ri (1 − e−t/τi ) (1)

where y(t) ∈ R
ny is a possibly vector-valued signal, τi are

the time constants of the response, and Ri ∈ R
ny×1 are

the relative contribution of each time constant to the total
response. The pairs (τi , Ri ) form the time-constant spectrum.
Such models may also be represented as canonical forms
of resister–capacitor networks [2], though we will focus on
identification of the parameters τi and Ri in this paper.

We assume that the response is nonoscillatory to avoid a
possible overshoot in temperature, which would imply the
temperature might exceed the steady-state value and possibly
violate the laws of thermodynamics. This requires that τi be
real, or

Im(τi ) = 0. (2)

Allowing for complex τi would also require that the time
constants come in complex conjugate pairs; otherwise, y(t)
will not be real-valued. We also assume that the system is
stable so that the step response is bounded, and thus

τi > 0. (3)

An alternative step-response model proposed by Székely
defines the time-constant spectrum as an analytical function
R(τ ) derived from the convergence of the (Ri , τi ) pairs
as τi+1 − τi → 0. The step response is then given by the
convolution integral

y(t) =
∫ ∞

−∞
R(ζ )(1 − exp(−t/eζ )dζ (4)

where ζ is a dummy variable in logarithmic time. The two
definitions, though conceptually similar, are not interchange-
able, since the integral (4) is always 0 if R(τ ) is bounded and
nonzero for a finite number of τ , which is the case for (1).
In this paper, we focus exclusively on identifying parametric
models of the form (1).

A. Discretization of the Step-Response Model

Because (1) is a finite-dimensional linear time-invariant
system, it has an alternative state-space representation

ẋc(t) = Acxc(t) + Bc

y(t) = Ccxc(t) (5)

in which xc(t) ∈ R
n is the state of the system, and Ac ∈ R

n×n ,
Bc ∈ R

n×1 and Cc ∈ R
ny×n are the state-space parameters.

The initial state is xc(0) = 0, and the subscript c denotes that
the parameters are from a continuous-time model. We assume
that (5) is controllable, observable, and minimal, so that the
state dimension n cannot be reduced. These assumptions are
consistent with (1). The step response y(t) may be expressed
in terms of (5) as

y(t) = Cc A−1
c (eAct − I )Bc (6)

where e(·) is the matrix exponential.
The parameterization (Ac, Bc, Cc) is unique only with

respect to a specific state basis, but the eigenvalues of Ac are
invariant. Suppose Ac has the eigenvalue decomposition

Ac = Vc�cV −1
c .

If λ
(i)
c is an eigenvalue of Ac, and v

(i)
c its associated

eigenvector, then (1) may be derived from (5) via the identities

τi = −1/λ(i)
c (7)

Ri = τi Cc M(i)
c Bc (8)

where M(i)
c is the rank-1 matrix

M(i)
c = v(i)

c (V −1
c )(k,:) ∈ R

n×n (9)

in which “MATLAB-style” indexing notation has been used in
the subscript. Note that M(i)

c is strictly real because τi are real.
Suppose y(t) is measured in discrete time with a sampling

rate of Ts . Let yd(k) � y(kTs) be the discrete-time step-
response measurement, assuming a zero-order hold for each
sample. Letting the subscript d denote discrete-time state-
space parameters, the discrete-time equivalent of (5) is then

xd(k + 1) = Ad xd(k) + Bd

yd(k) = Cd xd(k) (10)

and the equivalent of (6) is

yd(k) =

⎧
⎪⎪⎨

⎪⎪⎩

0, k = 0
k∑

l=0

Cd Al−1
d Bd , k > 0

(11)

where

Ad = eAcTs , Bd = A−1
c (Ad − I )Bc, Cd = Cc.

The parameters Cd Ak
d Bd are the discrete-time impulse

response coefficients, also known as the system Markov
parameters.

If the eigenvalues of Ac are strictly real, then they will
have a unique equivalent in the complex plane regardless
of the sampling frequency. This is because each eigenvalue
introduces an exponential lag to the step response that decays
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asymptotically, and so it is theoretically impossible for its
effects to be hidden by aliasing. It is possible, however, for its
effects to be hidden by noise, and so it is generally desirable
that the eigenvalues be less than half the sampling frequency
or, equivalently, that the time constants be at least twice the
sampling time.

Because our data is measured in discrete time, we first iden-
tify the parameters (Ad , Bd , Cd), convert them to continuous
time to find (Ac, Bc, Cc), and finally use (7) and (8) to
convert the model to the form of (1).

III. STEP-BASED REALIZATION

The following outlines the steps of the SBR method. Read-
ers familiar with subspace identification methods will notice
similarities with the SBR method, as both share a common
ancestor in the Ho–Kalman realization algorithm. Standard
subspace identification techniques are not applicable to mea-
sured step response data because the input is nonstationary.
(See [16] for details regarding subspace identification methods
and persistence of excitation.)

A. Formulation of the Data-Matrix Equations

Let H be a block-Hankel matrix of discrete-time Markov
parameters with r block rows and p columns

H =

⎡
⎢⎢⎢⎢⎣

Cd Bd Cd Ad Bd · · · Cd A p−1
d Bd

Cd Ad Bd Cd A2
d Bd · · · Cd A p

d Bd
...

...
...

Cd Ar−1
d Bd Cd Ar

d B · · · Cd Ar+p−2
d Bd

⎤
⎥⎥⎥⎥⎦

(12)

and let H be H shifted by one block-row or block-column to
form

H =

⎡
⎢⎢⎢⎢⎣

Cd Ad Bd Cd A2
d Bd · · · Cd A p

d Bd

Cd A2
d Bd Cd A3

d Bd · · · Cd A p+1
d Bd

...
...

...

Cd Ar
d Bd Cd Ar+1

d Bd · · · Cd Ar+p−1
d Bd

⎤
⎥⎥⎥⎥⎦

.

Assume p and r are large enough so that p > n and r > n.
The block-Hankel matrices H and H may be written in terms
of the extended observability matrix O and the extended
controllability matrix C, where

O =

⎡
⎢⎢⎢⎣

Cd

Cd Ad
...

Cd Ar−1
d

⎤
⎥⎥⎥⎦, C =

[
Bd Ad Bd · · · A p−1

d Bd

]

so that
H = OC, H = OAdC.

Let Y be a block-Hankel matrix of step-response measure-
ments yd(k) with r block rows and p columns starting at
k = 1

Y =

⎡

⎢⎢⎢⎣

yd(1) yd(2) · · · yd(p)
yd(2) yd(3) · · · yd(p + 1)

...
...

...
yd(r) yd(r + 1) · · · yd(p + r − 1)

⎤

⎥⎥⎥⎦.

This matrix may be expressed in terms of H and a block-
Toeplitz convolution matrix

T =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 · · · 0

Cd Bd 0
...

Cd Ad Bd Cd Bd
. . .

...
...

. . . 0
Cd Ar−2

d Bd Cd Ar−3
d Bd · · · Cd Bd 0

⎤

⎥⎥⎥⎥⎥⎥⎦

which satisfy the data-matrix equation

Y = HUp + T U f = OCUp + TU f (13)

in which Up and U f represent “past” and “future” input,
respectively. To understand this terminology, note that in the
case of measuring arbitrary input–output data, if a column
of Y starts with some sample yd(k0), then the corresponding
column of Up contains input for k < k0, and the corresponding
column of U f contains input for k ≥ k0.

For a step response, the input to the system is 0 for all
k < 0 and 1 for all k ≥ 0, so Up is an upper-triangular matrix
with all elements equal to 1 on and above the diagonal, and
U f is a matrix of 1 everywhere

Up =

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 · · · 1

...
. . .

...
0 · · · 1

⎤
⎥⎥⎥⎦, U f =

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎤
⎥⎥⎥⎦.

Let Y be a block-Hankel matrix of step-response measure-
ments yd(k), also with r block rows and p columns, but shifted
forward by one sample

Y =

⎡
⎢⎢⎢⎣

yd(2) yd(3) · · · yd(p + 1)
yd(3) yd(4) · · · yd(p + 2)

...
...

...
yd(r + 1) yd(r + 2) · · · yd(p + r)

⎤
⎥⎥⎥⎦.

This can be expressed in terms of H and a forward-shifted
block-Toeplitz matrix

T =

⎡
⎢⎢⎢⎢⎢⎣

Cd Bd 0 · · · 0

Cd Ad Bd Cd Bd
. . .

...
...

...
. . . 0

Cd Ar−2
d Bd Cd Ar−3

d Bd · · · Cd Bd 0
Cd Ar−1

d Bd Cd Ar−2
d Bd · · · Cd Ad Bd Cd Bd

⎤
⎥⎥⎥⎥⎥⎦

to form a forward-shifted data-matrix equation

Y = HUp + T U f = OAdC + T U f (14)

in which the matrices Up and U f are unchanged.
Our goal is to estimate Ad using the shifting property of

(13) and (14). First, however, we must isolate the system
Hankel matrices H and H by removing the products T U f

and T U f .



MILLER et al.: THERMAL DYNAMICAL IDENTIFICATION OF LEDs 1001

B. Isolation of the System Hankel Matrix

Because T and T are multiplied on the right by a matrix
in which all entries are 1, the products T U f and T U f are
column-identical matrices in which each column is a sum of
all the columns of T and T , respectively. Hence

T U f =

⎡

⎢⎢⎢⎣

0 0 · · ·
Cd Bd Cd Bd · · ·

...
...∑r−2

l=0 Cd Al−1
d Bd

∑r−2
l=0 Cd Al−1

d Bd · · ·

⎤

⎥⎥⎥⎦

and

T U f =

⎡

⎢⎢⎢⎣

Cd Bd Cd Bd · · ·
Cd(Ad + I )Bd Cd (Ad + I )Bd · · ·

...
...∑r−1

l=0 Cd Al−1
d Bd

∑r−1
l=0 Cd Al−1

d Bd · · ·

⎤

⎥⎥⎥⎦.

In the noisefree case, these matrices are equal to matrices of
output data

M =

⎡

⎢⎢⎢⎣

yd(0) yd(0) · · · yd(0)
yd(1) yd(1) · · · yd(1)

...
...

...
yd(r − 1) yd(r − 1) · · · yd(r − 1)

⎤

⎥⎥⎥⎦

and

M =

⎡

⎢⎢⎢⎣

yd(1) yd(1) · · · yd(1)
yd(2) yd(2) · · · yd(2)

...
...

...
yd(r) yd(r) · · · yd(r)

⎤

⎥⎥⎥⎦.

For noise-corrupted measurements, this will not be true
exactly, but we may still use the approximations M ≈ T U f

and M ≈ T U f to form the estimates

� = Y − M = HUp + E ≈ OC
� = Y − M = HUp + E ≈ OAdCUp (15)

where E and E are error terms on the estimates of HUp and
HUp , respectively, due to the noise on yd(k).

We could multiply � and � by the inverse of Up to
try and estimate H and H directly, but this has the effect
of numerically differentiating the output, thereby amplifying
high-frequency noise on the measurements. (This may be seen
by computing the inverse of Up .) Instead, we use the SVD of
� to estimate O and CUp .

C. Computing the System Estimate

Because the system is controllable and observable,
rank(C) = rank(O) = n, which implies that
rank(HUp) = rank(HUp) = n, since Up is of full rank.
If the output measurements are noisefree, then � = HUp,
implying rank(�) = n. Because in reality the output
measurements contain nondeterministic components, � will
have full rank, and we must construct a rank-n estimate of �
instead.

Let � have the SVD

� = U�V T = [
Un Us

] [
�n 0
0 �s

] [
V T

n
V T

s

]
(16)

in which the matrices U and V are orthogonal, � is a diagonal
matrix of nonnegative singular values in descending order

· · · ≥ σi−1 ≥ σi ≥ σi+1 ≥ · · ·
Un has the first n columns of U , V T

n has the first n rows of
V T , and �n has the first n rows and first n columns of �.

If rank(�) = n, then � would have only n nonzero singular
values so that �s = 0. If the system order n is known
beforehand, a rank-n approximation �n of � for which

�n = arg min rank(�n) = n ||�n − �||2
is given by [17] as

�n = Un�n V T
n . (17)

Any rank-preserving factorization of �n with valid dimen-
sions may be used to estimate O and CUp in the deterministic
case. In the nondeterministic case, however, a numerically
attractive choice is

Ô = Un�
1/2
n , ĈUp = �

1/2
n V T

n

since the 2-norms of Ô and ĈUp are equal for this choice. An
estimate of Ad may then be solved via the minimization

Âd = arg min Ad

∣∣∣
∣∣∣ÔAd ĈUp − �

∣∣∣
∣∣∣
F

(18)

in which F indicates the Frobenius norm. If no constraints are
placed on Âd , this has the analytical solution

Âd = Ô†�(ĈUp)
† = �

−1/2
n U T

n �Vn�
−1/2
n . (19)

Cd may be then estimated from the top ny rows of the extended
observability matrix as

Ĉd = Ô(1:ny ,:) (20)

where “MATLAB-style” indexing notation has been used in the
subscript.

D. Model-Order Selection

Generally, n is not known beforehand. The error between
�n and � is, however, equal to the first singular value of �s

σn+1 = ||�n − �||2
and we can estimate n from the drop-off of the singular values
of � due to (15) and the system-theoretic interpretation of the
singular values of H . The reasoning behind this is as follows.
The singular values of H correspond to the magnitudes of each
element of the state vector xd(k) in an “internally balanced”
state-basis. Consequently, the singular values of H can be
interpreted as a set of gains for (10), and reducing the rank
of H by truncating its singular values in the deterministic
case is in fact a form of optimal model reduction. (Further
discussions on the various meanings of the singular values
of H can be found in the literature of robust control. See
[18, Ch. 8].) Additionally, because the inverse of Up is the
bidiagonal matrix

U−1
p =

⎡
⎢⎢⎣

1 −1 0

0 1 −1
. . .

. . .
. . .

. . .

⎤
⎥⎥⎦
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it can be verified by inspection that
∣∣∣
∣∣∣U−1

p

∣∣∣
∣∣∣
1

= 2,
∣∣∣
∣∣∣U−1

p

∣∣∣
∣∣∣∞ = 2

where ||·||1 is the induced 1-norm and ||·||∞ the induced
∞-norm. The maximum singular value of U−1

p then has the
upper bound [19, Fact 9.8.23]

σmax(U
−1
p ) <

(∣∣∣
∣∣∣U−1

p

∣∣∣
∣∣∣
1

∣∣∣
∣∣∣U−1

p

∣∣∣
∣∣∣∞

)−1/2 = 2.

From the identity [19, Corollary 9.5.5]

σmin(Up) = [
σmax(Up)

]−1

we have
σmin(Up) > 1/2.

Finally, the identity [19, Proposition 9.6.4]

σi (H )σmin(Up) ≤ σi (HUp)

leads to
1

2
σi (H ) < σi (HUp)

and so the multiplication of H on the right by Up will not
reduce its singular values by more than half. Indeed, they may
be increased.

Additionally, if the content of E in (15) is Gaussian, then
the singular values of E are equal to the variance of the noise.
If E is colored, then it can be represented as filtered white
noise, and its singular values will be equal to the product of
the noise variance and the system 2-norm of the noise filter
[16]. For reasonable signal-to-noise ratios, the singular values
of HUp will be greater than those of E . Thus a suitable n can
be chosen by examining the singular values of � and selecting
a value of n for which σn − σn+1 is large.

E. Estimation of the Parameter Bd

At this point, an estimate B̂ could be taken from the first
column of ĈUp , but an improved estimate can be calculated by
solving a linear least-squares problem, which will also allow
the incorporation of constraints later. Given estimates Âd and
Ĉd and N samples of a measured step response, let B̂d be the
solution of

B̂d = arg min B ||ξ − φB||2 (21)

where

ξ =

⎡

⎢⎢⎢⎣

yd(0)
yd(1)

...
yd(N − 1)

⎤

⎥⎥⎥⎦, φ =

⎡

⎢⎢⎢⎣

φ(0)
φ(1)

...
φ(N − 1)

⎤

⎥⎥⎥⎦ (22)

and

φ(k) =
k−1∑

l=0

Ĉd Âk−l−1
d . (23)

In the unconstrained case, this has the analytical solution

B̂d = φ†ξ. (24)

Note that N does not have to be equal to the number of
samples used to construct the data matrices of (13). Thus,
given a step response measurement yd(k), an estimate of the

state-space parameters (Ad , Bd , Cd ) may be found from (19),
(20), and (24). Computing φ(k) directly from (23) is often
the most computationally expensive step of the identification
algorithm, but it can be very efficiently calculated as a specific
state sequence of the dual system of (10). See [20] for details.

IV. CONSTRAINING THE ESTIMATE

When noise-free data is used, the SBR method gives an
exact reconstruction of multioutput systems of (10) up to a
change of state basis. Even in the case of noise-corrupted
estimates, the method allows the model order to be selected
during the identification process, and because the order of
the model is equal to the rank of (12), the system is also
guaranteed to be minimal, so that n cannot be reduced [10].

The model structure (10), however, allows a great deal
more freedom than (1). If noise-corrupted measurements are
used, the SBR method might not produce a model compatible
with the step-response representation (1) unless additional
constraints are in place. In the following section, we add
semidefinite constraints to the parameters (Ad , Bd, Cd ) to
ensure that the identified model is consistent with (1).

Overlooked until recently is the fact that, although the
original SBR estimate is solved analytically, the solution is
the minimizer of a cost function that is strictly convex [21].
In fact, it is an affine parameterization inside a Frobenius
norm, which may be transformed into a linear-programming
cost function [22]. The convexity of this cost function allows
the incorporation of convex constraints on the location of the
poles of the estimate in the complex plane. These constraints
are stated as LMIs. In our proposed method, we formulate
LMIs that constrain the poles of a discrete-time system esti-
mate to lie on the real number line between 0 and 1, which
guarantees continuous-time poles that are real, stable, and may
be realized in continuous time. This results in a semidefinite
program which is solvable via linear programming interior
point methods.

If (10) is the discretization of (1), then the assumptions of
τi require constraints to be placed on the eigenvalues of Ad .
These are stated in the following.

Proposition 1: System (10) is a discretization of (1) if
and only if all eigenvalues λ

(i)
d of Ad satisfy the following

constraints:

|λ(i)
d | < 1 (25)

Im(λ
(i)
d ) = 0 (26)

Re(λ(i)
d ) > 0. (27)

Proof: Noting that λ
(i)
d = e−Ts/τi , (25) and (26) follow

directly from (2) and (3) = 0, respectively. Equation (27) is
required so that the zero-order hold discretization formulas are
invertible.

Thus in order for (10) to be converted to (1), (25)–(27), must
be satisfied. The eigenvalues λ

(i)
d are a nonlinear function of

the entries of Ad , however, so a cost function that includes
Ad cannot be minimized over a convex set if the eigenvalues
are constrained directly. To translate the eigenvalue constraints
into convex constrains on Ad , we introduce the concept of LMI
regions, originally developed in [23].
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A. LMI Regions

An LMI region is a convex region D of the complex
plane, defined in terms of a symmetric matrix α and a square
matrix β, as

D = {z ∈ C : fD(z) � 0} (28)

where
fD(z) = α + βz + βT z̄. (29)

We will call fD(z) for a given D the describing function of D.
LMI regions generalize Lyapunov stability for continuous and
discrete time systems. We repeat the central theorem of [23]
here for future reference.

Theorem 1: The eigenvalues of a matrix A lie within an
LMI region with describing function (29) if and only if there
exists a matrix P ∈ R

n×n such that

P = PT � 0, MD(A, P) � 0 (30)

in which

MD(A, P) = α ⊗ P + β ⊗ (AP) + βT ⊗ (AP)T . (31)

The original definition of an LMI region in [23] has ≺ in
place of � for (28) and (30). We adopt the above definition
instead so that our results are straightforward to implement
as a semidefinite program and because the real axis cannot be
parameterized as an LMI region if (28) uses a strict inequality.

The intersection of two LMI regions D1 and D2 is also an
LMI region, described by the matrix function

fD1∩D2(z) =
[

fD1(z) 0
0 fD2(z)

]
. (32)

In general, the (α, β) pair that describes an LMI region is not
unique.

The following three LMI regions correspond to the three
constraints on λ

(i)
d in (25)–(27). Each proposition may be

proven by analytically solving for the eigenvalues of describ-
ing function.

The constraint |λ(i)
d | < 1 is equivalent to saying λ

(i)
d

must lie within the unit circle. To provide some additional
degree of stability for the identified models, we may constrain
eigenvalues to the disc of radius 1 − δs .

Proposition 2 (Discrete-Time Stable Region): The set

S = {z ∈ C : |z| ≤ 1 − δs, 0 ≤ δs ≤ 1}
is equivalent to the LMI region fS (z) � 0

fS (z) = (1 − δs)I2 +
[

0 1
0 0

]
z +

[
0 0
1 0

]
z̄. (33)

If δs = 0, this region applied with results in the standard
discrete-time Lyapunov stability condition when applied with
Theorem 1.

The real number line R is equivalent to the LMI region
f
R
(z) � 0

fR(z) =
[

0 1
−1 0

]
z +

[
0 −1
1 0

]
z̄.

This constraint, however, uses two inequalities to define an
equality, which can create problems for interior-point-based

numerical solvers. Instead, we include a parameter to describe
a small band around the real axis in the complex plane.

Proposition 3 (Constrained Imaginary Region): The set

R = {z ∈ C : |Im(z)| ≤ δr , δr ≥ 0}
is equivalent to the LMI region fR(z) � 0

fR(z) = 2δr I2 +
[

0 1
−1 0

]
z +

[
0 −1
1 0

]
z̄. (34)

The parameter δr can be made very small while still resulting
in a numerically robust optimization. Any remaining imagi-
nary part of z can then be truncated with a negligible effect
on the response of the model.

If the eigenvalues of Ad are allowed to have negative
real parts, then inverting a zero-order hold via the matrix
logarithm will result in a complex-valued Ac. To guarantee
that log(Ad) is real and unique, we construct an LMI region
that describes the positive right-half plane. This region is also
parameterized so that the region begins some distance away
from the imaginary axis.

Proposition 4 (Positive Real Region): The set

P = {z ∈ C : Re(z) ≥ δp, δp ≥ 0}
is equivalent to the LMI region fP (z) � 0

fP (z) = δp

[
2 0
0 −2

]
+

[
0 0
0 1

]
z +

[
0 0
0 1

]
z̄. (35)

Combining Theorem 1 with (32), we formulate an LMI
region to satisfy all three constraints on λ

(i)
d and state the

following Lyapunov-type condition for λ
(i)
d , which may be

incorporated into a convex optimization program. A diagram
of the LMI region is shown in Fig. 1.

Corollary 1: The discrete-time state-space model (10) is the
discretization of a continuous-time model (1) if and only if
there exists a matrix P ∈ R

n×n such that

P = PT � 0, Md (Ad , P) � 0

in which

Md(Ad , P) = αd ⊗ P+βd ⊗ (Ad P)+βT ⊗ (Ad P)T

αd =
⎡

⎣
(1 − δs)I2 0 0

0 2δr I 0
0 0 2δp I2

⎤

⎦

βd =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

with δs = δr = δp = 0.
The corollary results in sufficient conditions for Ad for any

δs, δp ∈ [0, 1), and we may still use a nonzero δr , provided
any remaining imaginary components of λ

(i)
d are neglected.

In practice, δr can be very small so that the imaginary
components are near machine precision.
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Fig. 1. LMI region used for identification. Poles of the system estimate are
constrained to the shaded region.

B. Additional Constraints on the Discrete-Time State-Space
Parameters

Additional assumptions may be made regarding (1), such
as the assumption that steady-state value of the step-response
is equal to some value determined from prior knowledge. For
example, if the ambient temperature or steady-state behavior
of the system is known with high precision, then the value of
the sum of Ri can be assumed beforehand.

Suppose y(∞) is the steady-state value of (1). Because the
continuous- and discrete-time systems have the same steady-
state value, we may form the following constraint.

Proposition 5: If (1) satisfies

n∑

i=1

Ri = y(∞) (37)

then (10) is a discretization of (1) if and only if

Cd (I − Ad)−1 Bd = y(∞). (38)
In thermal analysis, it is generally required that the transient

thermal response to a step change be monotonically increasing.
It is therefore necessary that its discretization also be monoton-
ically increasing, and so the difference between one time step
ahead and the current time step must be positive. From the
discrete-time step response (11), this may be stated as the
following inequality constraint.

Proposition 6: If y(t) in (1) is monotonically increasing,
then (10) is a discretization of (1) only if

Cd Ak
d Bd > 0 ∀ k. (39)

At times, it is possible to assume that all Ri in (1) are
positive. This may also be translated into a constraint on the
discrete-time state-space model.

Proposition 7: If (1) satisfies

Ri > 0

then (10) is a discretization of (1) if and only if:

1) Ad satisfies (26) and (27):

2)

(�−1
c ⊗ Cd )

⎡
⎢⎢⎢⎢⎣

M(1)
c

M(2)
c
...

M(n)
c

⎤
⎥⎥⎥⎥⎦

(Ad − I )−1 Ac Bd > 0 (40)

where (using the matrix logarithm)

Ac = 1

Ts
log(Ad). (41)

Ac = Vc�cV −1
c is the eigenvalue decomposition, M(i)

c is
given by (9), and ⊗ is the Kronecker product.

Proof: From (8), we know that Ri are real if and only
if Im(λ

(i)
d ) = 0. Also, (41) exists if and only if Re(λ(i)

i ) > 0.
Then using (8), (40) reduces to

⎡
⎢⎢⎢⎣

R1
R2
...

Rn

⎤
⎥⎥⎥⎦ > 0

which is the required constraint.
It should be emphasized, however, that these constraints are

independent of the eigenvalue constraints and do not need to
be included if the experimenter desires a model with a step
response that is not strictly monotonically increasing.

C. Incorporating Constraints into the SBR Method

The LMI constraint (36) is convex since it is linear in Ad ,
and if we have estimates of Ad and Cd , then (38)–(40) are
also convex since they are linear in Bd . Thus if a convex min-
imization of Ad and Cd is followed by a convex minimization
of Bd , the full problem may be stated as a convex optimization
which guarantees that the resulting estimate is a discretization
of (1). The SBR method, introduced in the previous section,
provides just such a sequence of optimizations.

Though (18) is convex in Ad , the general constraint form
(31) contains the product Ad P . We therefore modify (18) to
also contain the product Ad P . Let Wr = (ÔUp)

† P be a right-
hand weighting matrix to form the augmented cost function

J ′(A, P) =
∣∣∣
∣∣∣ÔAd ĈUpWr − �Wr

∣∣∣
∣∣∣
F

=
∣∣∣
∣∣∣ÔAd P − �(ĈUp)

† P
∣∣∣
∣∣∣
F

. (42)

Note that the unconstrained minimizer of (42) is still given
by (19), regardless of the value of P . This is not necessarily
true, however, when Ad is constrained to be within an arbitrary
convex set, unless P = I . To reduce any errors this may cause,
as well as to increase the numerical stability of the problem,
we provide as a constraint

trace(P) = n

which still allows for the possibility of P = I while not
overconstraining the problem.

We still must reparameterize (42) to be affine in the para-
meters in order to formulate the constrained optimization as a
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convex optimization. Letting Q = Ad P , we form the follow-
ing convex optimization problem with convex constraints.

Given estimates Ô, ĈUp , and �

min J (Q, P)

s.t. M(Q, P) � 0

P = PT � 0

trace(P) = n (43)

in which

J (Q, P) =
∣∣∣
∣∣∣Ô0 Q − �(ĈUp)

† P
∣∣∣
∣∣∣
F

and
M(Q, P) = αd ⊗ P + βd ⊗ Q + βT ⊗ QT .

This is equivalent to a linear program with mixed equality,
quadratic, and semidefinite constraints [24]. Once Q and P
are solved for, let Âd = Q P−1. With Ĉd taken from (20),
(38)–(40) are linear in B̂d and can be incorporated into (21),
forming a second convex optimization problem with convex
constraints.

Given ξ and φ from (22)

min
∣∣∣
∣∣∣ξ − φ B̂d

∣∣∣
∣∣∣
2

(optionally) s.t. (38) − (40). (44)

Thus by solving two convex optimization problems, an esti-
mate of a discrete-time state-space system (10) which is
guaranteed to be a discretization of a model of (1) is
found.

V. APPLICATION TO THE THERMAL RESPONSE OF AN LED

To demonstrate its effectiveness, the proposed algorithm
was applied to the measured thermal response of a Cree
XLamp XP-E LED [25].

A. Experimental Setup

The junction temperature of the device was measured indi-
rectly as recommended in the Electronic Industries Associa-
tion specification EIA/JEDEC JESD51-1. In the specification,
junction temperature is assumed to be proportional to the
forward voltage. The scaling between junction temperature
and forward voltage, or K-factor, was determined by first
driving the forward voltage above the diode’s cut-in voltage
using a measurement current low enough so as not to induce
significant self-heating. The K-factor was then be found by
adjusting the temperature of the device and measuring the
forward voltage. For these experiments, the LED was driven by
a Vektrex SpikeSafe current source, voltages were measured
with an Agilent 34411A digital multimeter, and temperature
was controlled by a prototype Vektrex Thermal Platform
Controller. A schematic of the experimental configuration can
be seen in Fig. 2.

A 600-mA step was applied to the LED and 2 s of the
step response was measured at 50 kHz. The measured change
in forward voltage was approximately 2.6 V. A plot of the
measured voltage after conversion to temperature can be seen
in Fig. 4.

Fig. 2. Experimental setup for thermal step-response measurements.
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σ
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Slow Model Singular Values

Fig. 3. Singular values of (16) for fast and slow datasets. The chosen model
order for each is marked by ◦. The scale of the y-axis is arbitrary and was
intentionally omitted.

B. Analysis of the Response

The data was analyzed in MATLAB using the method
described above.1 Because the system itself contains both fast
and slow dynamics, the system is “stiff” in the sense that the
underlying differential equations are ill-conditioned. Thus to
keep the identification procedure computationally feasible, two
models were identified. The first was a “fast” model identified
from 0 to 0.002 s (the first 100 samples of data). The fast-
model estimate was not sensitive to the number of samples
used so long as the end of the fast response was chosen to be
in a region of the response where the slope of the log-time plot
was fairly constant (see Fig. 4). The number of block-rows for
the data matrices was chosen to be 9.

The second model was a “slow” model identified from a
dataset downsampled by a factor of 1000. Before downsam-
pling, the data was filtered forward and backward through
a fourth-order Butterworth filter with a cutoff frequency of
0.1 rad/s. The number of block rows for these data matrices
was chosen to be 11.

Singular values of (16) for each dataset are shown in
Fig. 3. For each, there is a sharp drop off in magnitude

1As of publication, MATLAB software for identifying constrained models
can be found at http://sites.google.com/site/dnmiller/.
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Fig. 4. (a) Simulations of fast, slow, and total models together with measured
data. (b) Time-constant spectrum, with constants from fast and slow models.
The x-axes on both plots are equal. A line in the time plot denotes where the
domain of the fast model ends.

within the first few singular values. This implies the order
of the underlying dynamics. It also suggests that increasing
the model order any higher would not significantly reduce the
error between the data and the model. Additionally, increasing
the model order would result in (Ri , τi ) pairs that show signs
of linear dependence on one another, so that the number of
time constants would not be minimal.

Estimates of Âd and Ĉd were found for fast and slow
models by solving (43) with YALMIP [26] using SDPT3 [27]
as the selected solver. B̂d was solved for each model using
the unconstrained solution in (24). Note that these estimates
of Bd are only used to simulate the fast and slow mod-
els and are not used to construct the final model. Simula-
tions of both models together with raw data are shown in
Fig. 4.

To combine the two models into one, the sampling time of
the slow model was adjusted to match the fast model, and the
total model Ad and Cd were taken to be

A(total)
d =

[
A(fast)

d 0

0 A(slow)
d

]
, C(total)

d =
[

C(fast)
d

C(slow)
d

]
.

B(total)
d was found by solving (44) with (38) and (39). To avoid

calculating to product of C(total)
d and

[
A(total)

d

]k
for k = 0 to

k = 980 000, 150 values of k spaced logarithmically along
the time axis were chosen. Of these calculated products, 101
had very small magnitudes (less than 0.01) and were not
used for the regressor for calculating B(total)

d . The steady-state
value y(∞) was constrained to be the average of the last
400 000 samples. For (39), 150 values of Cd Ak

d were cal-
culated corresponding to the 150 data points. Of the 150
calculated values of Cd Ak

d , 101 had very small magnitudes
and were discarded. Values of Cd Ak

d which had an entry of
magnitude less than 0.01 were discarded to prevent numerical
issues, resulting in 49 total inequality constraints of (39).

A simulation of the total model is shown in Fig. 4. The
time-constant spectrum of the model is shown underneath. Of
note is that the entire model is described by only 10 parameters
and required no nonlinear optimization.

VI. CONCLUSION

We presented a new method for the identification of thermal
responses of semiconductor devices that used a realization-
based procedure with a fixed number of linear algebraic
operations combined with convex optimization methods. The
method guarantees real and stable solutions for the time
constants and their relative contributions, and may optionally
include constraints to fix the steady-state value of the response,
i.e., the total contribution of the time constants, as well as
positivity of the time-constant contributions.

Because the numerical procedure is based on a fixed number
of linear algebraic operations and convex optimization tech-
niques, solutions for the time constants and their contributions
are guaranteed to be found. Changes in the values of Ri and τi ,
such as those shown in Fig. 4, allow the detection of physical
changes in thermal resistance of the elements of the system.
Additionally, changes in the singular values, such as those
shown in Fig. 3, can be used to detect for change in the
model order, which would indicate the presence of additional
time delay in the response. This makes the method particularly
well suited for defect detection in semiconductor devices.
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