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a b s t r a c t

Standard subspace methods for the identification of discrete-time, linear, time-invariant systems are
transformed into generalized convex optimization problems in which the poles of the system estimate
are constrained to lie within user-defined convex regions of the complex plane. The transformation is
done by restating subspace methods such as the minimization of a Frobenius norm affine in the estimate
parameters, allowing the minimization to be augmented with convex constraints. The constraints are
created using linear-matrix-inequality regions, which generalize standard Lyapunov stability to arbitrary
convex regions of the complex plane. The algorithm is developed for subspace methods based on
estimates of the extended observability matrix and methods based on estimates of state sequences, but
it is extendable to all subspace methods. Simulation examples demonstrate the utility of the proposed
method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

When identifying models of systems from measured data, it
is often desirable that the identified model behave in agreement
with prior knowledge of the system. This is ordinarily limited to
basic knowledge of system stability or an assumed model order,
but other times this knowledge is derived from first-principles
laws that govern the underlying system dynamics. The system
identification literature, however, tends to focus on ‘‘black-box’’
modeling approaches that limit the type of constraints that may
be incorporated into the identification process.

One possible reason for the lack of constrained identification
procedures is that researchers in the field of system identification
are most frequently interested in constructing models for control-
system design, and the idea of artificially constraining the
dynamic behavior of an identified model to match a priori

assumptions appears counterproductive for this purpose. Many
practitioners outside of control design, however, are constrained
to using pre-parameterized models for reasons unrelated to
control. Faced with a lack of robust tools to identify constrained
models, these practitioners often resort to ‘‘white-box’’ approaches
which describe the desired model as a mass–spring–damper
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or resistor–capacitor–inductor network and then identify the
parameters of each network element.

Such ‘‘white-box’’ approaches often excessively limit the ac-
ceptable model set, since only a small number of parameters may
be identified this way before variance issues result in models
with undesirable parameters, such as negative mass. These mod-
els identified with ‘‘white-box’’ methods are frequently provided
to practicing controls engineers with little or no disclosure of their
origin, so the development of constrained identification proce-
dures should benefit the field of control systems as a whole.

An example of how constrained identification methods may be
used to satisfy a priori parameterizations has been recently pub-
lished by the authors and industry collaborators in Miller, Hulett,
Mclaughlin, and de Callafon (in press). A constrained step-based-
realization procedure, originally developed by the authors inMiller
and de Callafon (2012), was used to identify the transient thermo-
dynamic response of power electronics to construct models that
matched an existing industry specification. The method provides
an alternative to the industry-standard method of identifying the
elements of a representational resister–capacitor system by fitting
a curve to a numerically differentiated step response, which has
difficulties with noisy data. The method in Miller and de Callafon
(2012) can be considered a special case of themethod presented in
this paper.

Another possible reason for the lack of constrained identifica-
tion procedures is that the classical prediction-error framework
relies on the optimization of possibly non-convex cost functions.
Such optimizations are already computationally challenging with-
out adding possibly non-convex constraints. Subspace identifica-
tion methods, by contrast, use a fixed number of linear algebra
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operations to achieve consistent estimates even in the presence of
colored noise. While generally non-optimal in a prediction-error
or maximum-likelihood sense, all subspace methods nonethe-
less minimize some Frobenius norm, the argument of which is
affine in the identification parameters. The inherent convexity
of the minimization has so far been largely, though not entirely,
unexploited.

Examples of subspace identification methods which incorpo-
rate convex-optimization techniques include Lacy and Bernstein
(2003), inwhich a linear-matrix inequality (LMI) framework is pro-
posed to constrain the eigenvalues of system estimates to be sta-
ble, and Hoagg, Lacy, Erwin, and Bernstein (2004a) and McKelvey
and Moheimani (2005), which use similar LMI frameworks to re-
strict estimates to positive real systems. In Hoagg, Lacy, Erwin, and
Bernstein (2004b), this framework is extended to provide a lower
bound on the natural frequencies of the poles of the identified
model, creating a convex optimization procedure which restricts
the eigenvalues to a non-convex region of the convex plane; the
parameterization used, however eliminates the possibility of also
restricting the eigenvalues to lie within convex regions of the com-
plex plane, such as the unit circle.

A number of methods which enforce stability for subspace
estimates without convex optimization techniques have been
proposed. In VanGestel, Suykens, VanDooren, andDeMoor (2001),
a regularization-based method was proposed to iteratively adjust
an initial estimate until its spectral radius reached a given bound.
This was also shown to be equivalent in a special case to the
data-augmentation approach of Chui and Maciejowski (1996), in
which block rows are appended to the estimate of the extended
observability matrix to ensure the stability of a least-squares
estimate from its row space. In Goethals, Van Gestel, Suykens, Van
Dooren, and De Moor (2003), a regularization-based approach is
used to guarantee that the resulting estimate of the stochastic
subsystem is positive real.

Additional subspacemethods that incorporate prior knowledge
of the system include Okada and Sugie (1996), which develops
a method for the case in which some of the pole locations of
the system are known beforehand. In Trnka and Havlena (2009),
constraints were developed to fix the steady-state gain of the
system and minimize a form of numerical derivative of the system
step response. In Alenany, Shang, Soliman, and Ziedan (2011),
an equality-constrained quadratic program was developed to
enforce a lower-block-triangular structure of a matrix of Markov
parameters, guaranteeing causality of the system, and to constrain
the steady-state gain.

In this paper, we propose a new framework to impose general
eigenvalue constraints for subspace identification problems. The
eigenvalue constraints are constructed using the concept of LMI
regions (Chilali & Gahinet, 1996), which generalize standard
Lyapunov stability to convex regions of the complex plane. The
generality of ourmethod allows for the eigenvalues of the estimate
to be constrained to any convex region of the complex plane that
can be expressed as the intersection of ellipsoids, parabolas, or
half-spaces symmetric about the real axis.

Our approach generalizes the methods proposed in Hoagg et al.
(2004a) and Lacy and Bernstein (2003), which over-constrain
the discrete-time Lyapunov inequalities. We also present a
stability criteriawhich over-constrains thediscrete-time Lyapunov
inequalities as a special case of the general method, but our
constraint has an exact geometric interpretation in the complex
plane. In addition to a stability constraint, we also provide
constraints that require eigenvalues to have positive real parts
and/or zero imaginary parts.

Formulas are developed for incorporating eigenvalue
constraints into two popular general methods of subspace iden-
tification: identification from an estimate of the extended observ-
ability matrix, and identification from an estimate of a sequence of

states. Though constraints for only two methods are proposed, the
methods presented in this paper are straightforward to extend to

any method in which the estimate Â can be formulated as the so-
lution to a Frobenius-norm minimization. This includes standard
subspace methods such as the ones found in Katayama (2005) and
Verhaegen and Verdult (2007) as well as realization-based meth-
ods such as the Eigensystem Realization Algorithm/OKID (Juang,
1997) and methods which use dynamic invariance of the output
(Miller & de Callafon, 2010).

The rest of this paper is outlined as follows: In Section 2, some
basic notation and Frobenius-norm interpretations for subspace
identification are introduced. Formulas for subspace identification
methods that identify estimates from both the extended observ-
ability matrix and a sequence of states are derived. In Section 3,
Linear Matrix Inequality regions are introduced and some useful
constraints for identification are discusses and formulated. Sec-
tion 4 incorporates the constraints into the identification problem.
Section 5 presents some numerical examples, and Section 6 con-
cludes the discussion.

2. Subspace identification

We consider the identification of the parameters of a linear,
time-invariant, discrete-time system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

in which u(t) ∈ R
nu , x(t) ∈ R

n, y(t) ∈ R
ny , A ∈ R

n×n, B ∈ R
n, C ∈

R
ny×n, and D ∈ R

ny .
While deriving the methods in this paper, we will assume that

either an estimate of the extended controllability matrix or an
estimate of a state sequence has beenmade in an unbiasedmanner
from adequately exciting data.

The standard notation of indicating positive definiteness and
semi-definiteness of amatrixM asM > 0 andM ≥ 0, respectively,
is used; ‖·‖F denotes the Frobenius matrix norm; (·)Ď denotes the
pseudoinverse, left or right when appropriate.

2.1. Identification from an estimate of the extended observability

matrix

The first type of subspace identification methods considered
are those that generate estimates of A from a shift-invariant
property of the extended observability matrix, typically referred
to as MOESP-type methods (Verhaegen & Verdult, 2007). Given an
estimate the extended observability matrix of a system

O
T =

[

CT (CA)T · · · (CAk)T
]

,

with respect to an arbitrary state basis, define

O0 = O(1:ny(k−1), :) and O1 = O(ny+1:nyk, :) (2)

in which the subscripts of O denote Matlab-style indexing. Since

O0A = O1, we may compute an estimate Â from an estimate Ô by
minimizing the cost function

J0
O
(A) =

∥

∥Ô0A − Ô1

∥

∥

F
, (3)

which is convex inA. In the unconstrained case, this is a linear least-
squares problem with the analytic minimum

Â = Ô
Ď

0Ô1. (4)

2.2. Identification from an estimate of a sequence of states

Alternatively, an estimate of Amay be found from an estimated
state sequence. Given a state sequence

X =
[

x(0) x(1) · · · x(j)
]

,
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define

X0 = X(:, 1:j), and X1 = X(:, 2:j+1),

in which the subscripts again denote Matlab-style indexing. Also
define an input sequence

U =
[

u(0) u(1) · · · u(j − 1)
]

.

Since

X1 =
[

A B
]

[

X0

U

]

,

we may compute estimates Â and B̂ from an estimate X̂ by
minimizing the cost function

J0X (A, B) =

∥

∥

∥

∥

[

A B
]

[

X̂0

U

]

− X̂1

∥

∥

∥

∥

F

, (5)

which is also convex in [A B] and in the unconstrained case has the
analytic minimum

[

Â B̂
]

= X̂1

([

X̂0

U

])Ď

. (6)

3. Formulating eigenvalue constraints

To develop eigenvalue constraints, we use the concept of LMI
regions, first introduced in Chilali andGahinet (1996),which define
convex regions of the complex plane as LMIs. We then provide
some example regions that are useful for identification purposes.

3.1. LMI regions

An LMI region is a convex region D of the complex plane,
defined in terms of a symmetric matrix α and a squarematrix β , as

D = {z ∈ C : fD(z) ≥ 0} (7)

where

fD(z) = α + βz + βT z̄. (8)

LMI regions generalize standard notions of stability for
continuous anddiscrete time systems, and the functionparameters
α and β may be used to form Lyapunov-type inequalities.

We repeat the central theorem of Chilali and Gahinet (1996)
here for future reference.

Theorem 1. The eigenvalues of a matrix A lie within an LMI region

given by (7) if and only if there exists a matrix P ∈ R
n×n such that

P = PT > 0, MD(A, P) ≥ 0 (9)

in which

MD(A, P) = α ⊗ P + β ⊗ (AP) + βT ⊗ (AP)T . (10)

The original definition of an LMI region in Chilali and Gahinet
(1996) has < in place of ≥ for (7) and (9). We adopt the above
definition instead so that our results are straightforward to imple-
ment as a semi-definite program and because the real and imag-
inary axes cannot be parameterized as LMI regions if (7) uses a
strict inequality. This change does not affect the proofs of Chilali
and Gahinet (1996), since they are based on the relationship
(

I ⊗ vH
)

MD(A, P) (I ⊗ v) =
(

vHPv
)

fD(λ)

where λ is an eigenvalue and v is the corresponding left eigenvec-
tor of A. Because P is positive definite, the signs ofMD and fD need
only to be equal, not necessarily negative, as they are in Chilali and
Gahinet (1996).

The intersection of two LMI regions D1 and D2 is also an LMI
region, described by the matrix function

fD1∩D2
(z) =

[

fD1
(z) 0
0 fD2

(z)

]

. (11)

Note that in general the (α, β) pair that describes an LMI region is
not unique.

3.2. Some LMI regions useful for identification

In the following we derive some LMI regions useful for identi-
fication purposes. Of course the user need not be limited by these;
LMI regions can be constructed for any convex intersection of half-
spaces, ellipsoids, and parabolas symmetric about the real axis.

3.2.1. Discrete-time stable eigenvalues

Stable system estimates are often desirable in the identification
problem. Standard subspace methods, however, do not guarantee
stability of the identified model. To provide some known degree of
stability for the identified model, we may constrain eigenvalues to
the disc of radius 1 − δs.

Fact 1. The set

S = {z ∈ C : |z| ≤ 1 − δs, 0 ≤ δs ≤ 1}

is equivalent to the LMI region fS(z) ≥ 0,

fS(z) = (1 − δs)I2 +

[

0 1
0 0

]

z +

[

0 0
1 0

]

z̄. (12)

This region applied with Theorem 1 results in the discrete-time
Lyapunov stability condition if δs = 0. It is also similar, though
not identical, to the LMI constraint proposed in Lacy and Bernstein
(2003). In (12), however, the relaxation parameter δs has a specific
interpretation in the complex plane.

3.2.2. Eigenvalues with positive real parts

Discrete-time systems with negative real poles cannot be
transformed into continuous systems that generate real-valued
signals without increasing the model order (Kollár, Franklin, &
Pintelon, 1996). Thus if the intention is to identify a continuous-
time model of a pre-specified order, it is generally desirable to
restrict the eigenvalues of the identified discrete-time model to
have positive real parts. Consequently, we wish to construct an
LMI region that describes the positive right-half plane. This region
should also be parameterized so that the region begins some
distance away from the imaginary axis.

Fact 2. The set

P = {z ∈ C : Re(z) ≥ δp, δp ≥ 0}

is equivalent to the LMI region fP (z) ≥ 0,

fP (z) = δp

[

2 0
0 −2

]

+

[

0 0
0 1

]

z +

[

0 0
0 1

]

z̄. (13)

3.2.3. Eigenvalues with zero imaginary parts

Many thermodynamic processes are known to have strictly
real eigenvalues. A simple example is the warming and cooling
of the ambient air temperature in a room. Both intuition and the
laws of thermodynamics tell us that the air temperature of the
room cannot exceed the temperature of any heat source. However,
a model identified from noisy data may have eigenvalues with
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nonzero imaginary parts, effectively allowing the air accumulate
heat potential and to overshoot the temperature of its heat sources,
which is impossible in living conditions. Thus we would like to
construct an LMI region that describes the real number line.

Fact 3. The real number lineR is equivalent to the LMI region fR(z) ≥
0,

fR(z) =

[

0 1
−1 0

]

z +

[

0 −1
1 0

]

z̄.

This constraint, however, is computationally unfriendly for many
numerical optimization procedures, since it is effectively using
two inequalities to define an equality, which can create problems
for interior-point-based solvers. Instead, we include a parameter
to describe an arbitrarily small band around the real axis in the
complex plane.

Fact 4. The set

R = {z ∈ C : |Im(z)| ≤ δr , δr ≥ 0}

is equivalent to the LMI region fR(z) ≥ 0,

fR(z) = 2δr I2 +

[

0 1
−1 0

]

z +

[

0 −1
1 0

]

z̄. (14)

4. Subspace identification with eigenvalue constraints

We now show how constraints based on LMI regions may be
incorporated into the subspace identification problem. We first
incorporate the constraints into methods based on the extended
observability matrix, and then into methods based on estimated
state sequences.

4.1. Extended observability matrix approach

The goal is to formulate a convex cost function similar to (3)
that can be solved subject to constraints of the form (9). Though
(3) is convex in A, the constraint (10) contains the product AP . We
therefore modify (3) to also contain the product AP by adding P as
a right-hand weighting matrix to (3), forming the cost function

J1
O
(A, P) =

∥

∥Ô0AP − Ô1P
∥

∥

F
. (15)

Note that the unconstrained minimizer of (15) is still given by (4),
regardless of the value of P . This is not necessarily true, however,
when A is constrained to bewithin an arbitrary convex set. This can
be seen from the gradient of J1

O
(A, P) with respect to vec(A),

∂ J1
O
(A, P)

∂vec(A)
=

1

2

1

J1
O
(A, P)

vec
[

Ô
T
0

(

Ô0A − Ô1

)

P2
]T

.

This is zero if A = Ô
Ď

0Ô1; otherwise, it depends on P . Thus (15) is
only guaranteed to have the same optimality conditions as (3) at
every point in a set if P = I , which is not guaranteed to satisfy the
constraint (9). The effects of this change in optimality conditions
were observed in the simulation examples in Lacy and Bernstein
(2003), though the cause was left unexplained.

We still must re-parameterize (15) to be affine in the
parameters in order to formulate the constrained optimization as
a convex optimization. Letting Q = AP , we form the following
convex optimization problem with convex constraints:

Given an estimate Ô and an LMI region described by parameters
α and β ,

minimize Jc
O
(Q , P)

subject to M(Q , P) ≥ 0,

P = PT > 0

(16)

in which

Jc
O
(Q , P) =

∥

∥Ô0Q − Ô1P
∥

∥

F
,

M(Q , P) = α ⊗ P + β ⊗ Q + βT ⊗ Q T ,

and the subscripts of Ô are given by (2).

Once Q and P are solved for, we let Â = QP−1. This solution,
however, allows for arbitrarily smallQ and P , whichmay introduce

errors in the computation of Â. To improve numerical conditioning
of the problem, we add the constraint

trace(P) = C (17)

where C is some constant. Although any C is valid, we recommend
choosing C = n to allow for the possible solution P = I .

At this point we should remark that although the global mini-
mizer (4)might be in the set of feasible points, numerical optimiza-
tion tools may not be able to find it exactly. Optimization routines
based on primal–dual gap methods (Boyd & Vandenberghe, 2004)
may deviate from (4) even when it is feasible and supplied as an
initial value. This is because, although the analytic solution to pri-
mal and dual problems is the same, the numerical solution might
not be. Such numerical difficulties become more common when
the row dimension of Ô becomes very large. In practice, it is best
to confirm that the eigenvalues of (4) do not satisfy the LMI re-
gion’s characteristic equation before solving the convex optimiza-
tion problem.

4.2. State sequence approach

Similar to the approach used in the extended observability case,
we wish to modify (5) so that it contains the product AP instead of
A alone. We again take the approach of modifying the expression
inside the Frobenius, this time with a right-hand weighting

R =

[

X̂0

U

]Ď [

P 0
0 I

]

.

The right-hand weighted cost is then

J1X (A, B) =

∥

∥

∥

∥

(

[

A B
]

[

X0

U

]

R − X̂1

)
∥

∥

∥

∥

F

=

∥

∥

∥

∥

[

A B
]

[

P 0
0 I

]

−
[

A∗ B∗
]

[

P 0
0 I

]
∥

∥

∥

∥

F

where

[

A∗ B∗
]

= X̂1

([

X̂0

U

])Ď

is the solution to the unconstrained minimization problem. Since
the constraints do not depend on the parameter B, we let B = B∗,
resulting in the constrained cost function

J2X (A) =
∥

∥AP − A∗P
∥

∥

F
. (18)

Hence in the state-sequence case the optimization is equivalent
to finding the closest estimate in the Frobenius norm sense that
satisfies the constraints. In this case, the gradient of (18) is

∂ J2X (A)

∂vec(A)
=

1

J2X (A)
vec

[

(A − A∗)TP2
]T

,

which again has dependence on P that may prevent the gradients
of the weighted and unweighted costs from being equal.

To form an affine parameterization of (18), we again let Q =
AP , and provide the following convex optimization problem with
convex constraints:
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Fig. 1. Poles of constrained estimates (left) and unconstrained estimates (right)

generated from 100,000 realizations of data. The shaded regions indicate the

concentration of the pole estimates, and ‘+’ marks the location of the system poles.

Only the top-half of the complex plane is shown.

Given an unconstrained estimate Â∗ found from (6) and an LMI
region described by parameters α and β ,

minimize JcX (Q , P)
subject to M(Q , P) ≥ 0,

P = PT > 0

(19)

in which

JcX (Q , P) =
∥

∥Q − A∗P
∥

∥

F
,

M(Q , P) = α ⊗ P + β ⊗ Q + βT ⊗ Q T .

It is again wise to improve numerical conditioning by including

the constraint (17). Once Q is found, we then solve for Â by letting

Â = QP−1.

5. Examples

The following examples demonstrate the usefulness of the
proposed method. Unconstrained estimates were generated using
PI-MOESP as described in Verhaegen and Verdult (2007) with both
future and past horizons of 20. The constrained estimates were
generated with the same identification method modified to the
form of (19). YALMIP (Löfberg, 2004) was used to solve the convex
optimization problems with SeDuMi (Sturm, 2001) as the selected
solver.

5.1. Identification with stability constraint

We first consider a second-order, single-input, single-output
system with poles at 0.6± 0.6i and a steady-state gain of 1. White
noise of variance 1 is added to the input so that deterministic and
nondeterministic subsystems have the same poles.

Supposewe desire the poles of the system estimate to liewithin
the circle of radius 0.87 centered at the origin. The poles of the
system are then within the LMI region described by (12) with δs =
0.13. Results of both constrained and unconstrained identification
methods for 100,000 realizations of datasets with 500 samples
each are shown in Fig. 1. The poles of the constrained estimate
indeed lie within the described LMI region.

5.2. Identification with stable, positive, real constraint

As a second example, consider a third-order, single-input,
single-output system with strictly real poles at 0.6, 0.9, and 0.95
and a steady-state gain of 1. A noise signal is added to the output
that is generated by white-noise of variance 10 filtered through a
system with poles at 0.6 ± 0.15i and a steady-state gain of 1.

Supposewe desire the poles of the system estimate to liewithin
a region defined as the intersection of the following LMI regions:

Fig. 2. Histogram of real part of poles of constrained estimates (top) and

unconstrained (bottom) generated from 50,000 realizations of data. Dashed lines

indicate locations of deterministic system poles, and dash-dot lines indicate

location of nondeterministic poles.

Fig. 3. Poles of unconstrained estimates generated from 45,000 realizations of

data. The ‘+’ pair marks the location of the deterministic system poles, and the ‘×’

pair marks the location of the nondeterministic system poles. The shaded region

contains 99.7% (3σ ) of pole estimates. Regions of lower pole density were not

included because they drifted little from the real axis.

(i) the circle centered at the origin of radius 0.98, which is the LMI
region defined by (12) with δs = 0.01; (ii) the plane to the right of
the point 0.01 on the real axis, which is the LMI region defined by
(13)with δp = 0.01; and (iii) the band around the real axis ofwidth

2 × 10−5, which is the LMI region defined by (14) with δr = 10−5.
These LMI regions are combined using the identity (11).

The real parts of the poles of both constrained and uncon-
strained identification methods for 50,000 realizations of datasets
with 500 samples each are shown in Fig. 2. Pole locations for the
unconstrained estimates are shown in Fig. 3. Pole locations for the
constrained estimates are not shown because the imaginary part
for all was nearly 0. The poles of the constrained estimates again
lie within the given LMI region.

6. Conclusion

We have demonstrated how subspace identification methods
may be augmented with convex constraints in the form of
linear matrix inequalities to form convex optimization problems
that constrain the poles of system estimates to lie within
convex regions of the complex plane. Although the method was
developed for subspace methods that use an estimate of the
extended observability matrix, the modification is generalizable
to many other subspace methods. Two simulation examples were
presented that demonstrate the utility of constraining poles to lie
within such convex regions.
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