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Abstract— Forward-backward smoothing of unknown inputs
and states of a nonlinear system is studied in this paper,
motivated by oceanographic flow field reconstruction using a
swarm of buoyancy-controlled drogues. A Bayesian paradigm
is developed first to provide a statistics based solution frame-
work. A nonlinear maximum a posteriori (MAP) optimization
problem is established within the framework as a means to
achieve simultaneous input and state smoothing, which is solved
by the iteration based Gauss-Newton method. Application of
the proposed method to reconstruction of a complex three-
dimensional flow field is investigated via simulation studies.

I. INTRODUCTION

Joint estimation of unknown inputs and states is of con-

siderable importance in many applications that arise in fault

detection, automotive engineering, weather forecasting and

oceanography [1–4]. Consequently, research on simultaneous

input and state estimation (SISE) has been gaining increasing

momentum in the past few years.

Literature review: A lead has been taken in [5] with the

development of estimators and smoothers of white noises

regarded as external inputs to a linear system. A large body

of more recent work has considered completely unknown

inputs, and a majority of them are built upon existing state

estimation methods. A two-stage KF is proposed in [6] for

SISE through decoupled design of input and state filters.

Sliding-mode state observers are extended in [7; 8] such that

unknown input variables can also be estimated. The notion of

moving horizon estimation (MHE) is used in [9]. In [10; 11],

minimum-variance unbiased estimation (MVUE) is applied

to derive SISE filters for systems with and without direct

input-output feedthrough, respectively. The same technique

is also used in [12] to construct suboptimal SISE filters

with proven stability properties. While the works highlighted

above consider only linear systems, SISE for nonlinear

systems has also been discussed, though far from extensively,

in the literature. SISE for a special class of nonlinear systems

composed of a nominally linear part and a nonlinear part is

studied in [13; 14]. It is pointed out in [4] that SISE can be

tackled using Bayesian statistics and Maximum a Posteriori

(MAP) estimation, the proposed algorithms being applicable

to nonlinear systems in general form. Another problem of

relevance to SISE is state estimation with unknown inputs.

In this case, despite no knowledge of inputs, only the states

are estimated from the output measurements. Among an

abundance of works on this topic, we underscore [3; 15; 16]

on MVUE and [17] on sliding mode based approaches.
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Statement of contributions: Simultaneous input and state

smoothing (SISS) for nonlinear systems is investigated in

this paper. The inputs are assumed completely unknown. We

pose this problem in a Bayesian setting, which has been

an important framework for developing various estimation

techniques. On the basis of the obtained Bayesian forward-

backward smoother, we develop a practically implementable

algorithm through MAP optimization to carry out SISS.

II. BAYESIAN INPUT AND STATE SMOOTHING

Let us consider the following nonlinear discrete-time sys-

tem with direct feedthrough:
{

xk+1 = f(xk,uk) +wk,

yk = h(xk,uk) + vk,
(1)

where xk ∈ R
nx is the unknown state vector, uk ∈ R

nu is

the unknown input vector and yk ∈ R
ny is the output vector.

The process noise wk and the measurement noise vk are

mutually independent, zero-mean white Gaussian sequences

with covariances Qk ≥ 0 and Rk > 0, respectively. For a

Gaussian random vector x ∈ R
n, we use the notation

N (x;σ,Σ) := (2π)−
n

2 |Σ|−
1

2 · exp

(

−
1

2
‖x− σ‖2

Σ

)

,

where x,σ ∈ R
n, |Σ| denotes the determinant of Σ ∈ R

n×n,

and

‖x− σ‖2Σ = (x− σ)⊤Σ−1(x− σ).

Then we have p(wk) = N (wk;0,Qk) and p(vk) =
N (vk;0,Rk), where p represents the probability density

function (pdf). The nonlinear mappings f : Rnx × R
nu →

R
nx and h : Rnx × R

nu → R
ny characterize the process

dynamics and the measurement model, respectively.

From the statistical point of view, the states {xk} and

the output measurements {yk} of the system in (1) form

two different stochastic processes, propagating according to

the state space equations. Information about the states and

inputs is hidden in the measurements and needs to be mined.

Define the set Y1:k := {y1,y2, · · · ,yk}, which contains all

the measurements up until time k. Thus essentially, real-time

filtering, i.e., SISE, is aimed to compute the joint pdf of uk

and xk conditioned on Y1:k, i.e., p(uk,xk|Y1:k). When real-

time data processing is not required, SISS is more desirable,

which uses additional measurement data or the data after

time k to obtain the joint pdf of uk and xk with higher

accuracy. That is, p(uk,xk|Y1:N ) for N ≥ k is of particular

interest to us in this situation.
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In the sequel, we shall denote for notational convenience

ξk :=
[

u⊤
k x⊤

k

]⊤
that is the augmented vector to be esti-

mated. The Bayesian smoothing paradigm for SISE can be

obtained using the Bayes’ rule to build the backward recur-

sion of p(ξk|Y1:N ) from p
(

ξk+1|Y1:N

)

. For fully unknown

inputs, we establish the following assumption to proceed

further:

A1 {uk} is a white process, independent of x0, {wk}
and {vk}.

The assumption A1 is made because an unknown signal

such as {uk} can be regarded white as a result of its

unpredictable variation in magnitude over time scale. We

have the following theorem.

Theorem 1: Suppose that A1 holds. For the system in (1),

the Bayesian smoothing paradigm for input and state estima-

tion is given by

p(ξ
k
|Y1:N ) = p(ξ

k
|Y1:k)

∫
p(xk+1|ξk

)p (xk+1|Y1:N )

p(xk+1|Y1:k)
dxk+1.

(2)
Proof: It is seen that

p(ξk|Y1:N ) =

∫

p(ξk, ξk+1|Y1:N )dxk+1

=

∫

p
(

ξk|ξk+1,Y1:N

)

p
(

ξk+1|Y1:N

)

dξk+1. (3)

By A1 and the Markovian propagation of the state, we have

p (ξk|xk+1,Y1:N ) = p
(

ξk|ξk+1,Y1:k

)

.

It follows that

p(ξk|Y1:N ) =

∫

p (ξk|xk+1,Y1:k) p (xk+1|Y1:N ) dxk+1.

(4)

Meanwhile, it is seen by the Bayes’ theorem that

p (ξk|xk+1,Y1:k) =
p(xk+1|ξk)p(ξk|Y1:k)

p(xk+1|Y1:k)
. (5)

Inserting (5) into (4), we obtain (2).

Illustrating how to calculate the conditional pdf of ξk
given Y1:N , the Bayesian paradigm in (2) is an input and state

smoother in a statistical sense. However, direct computation

of pdf’s is known to be both analytically and computationally

intractable, if not impossible, for nonlinear systems. Hence,

we will seek a numerically feasible solution by introducing

certain approximations.

III. SMOOTHING ALGORITHMS

In this section, we present the development of the SISS

algorithm for the nonlinear system in (1).

A. Smoothing for Nonlinear Systems

To proceed further, we make the following Gaussianity

approximations:

A2 p(ξk|Y1:k) = N
(

ξk; ξ̂k|k,P
ξ

k|k

)

;

A3 p(xk+1|ξk) = N (xk+1; f(ξk),Qk);

A4 p(xk+1|Y1:N ) = N
(

xk+1; x̂k+1|N ,Px

k+1|N

)

.

Here, ξ̂k|k is the filtered estimate of ξk given Y1:k, P
ξ

k|k

is the filtered error covariance, x̂k+1|N is the smoothed

estimate of xk given Y1:N , and Px

k+1|N is the smoothed

error covariance.

Due to justification the central limit theorem, Gaussianity

assumptions analogous to the above are prevalent in statisti-

cal estimation, on which a substantial number of nonlinear

estimation algorithms have been built [18; 19]. In addition,

Gaussian functions are easy to manipulate mathematically,

facilitating the ensuing derivation. The assumptions A2-A4,

as will be seen, bridge the gap from the Bayesian paradigm

in (2) to numerical algorithms.

It is appealing to consider a joint smoother of input uk

and state xk that maximizes p(ξk|Y1:N ). It can be expressed

as follows:

ξ̂k|N = argmax
ξ
k

p(ξk|Y1:N ). (6)

The above maximization of p(ξk|Y1:N ) can be transformed

into the familiar form of minimization of a cost function, as

shown in the next theorem.

Theorem 2: For the system in (1), given A1-A4, an equiv-

alence of the smoother in (6) is given by

ξ̂k|N = argmin
ξ
k

ℓ(ξk), (7)

where

ℓ(ξk) :=
∥

∥

∥
ξk − ξ̂k|k

∥

∥

∥

2

P
ξ

k|k

+ ‖f(ξk)−∆kδk‖
2
Ωk

, (8)

Ωk := ∆k +Qk (9)

∆k :=

[

(

Px

k+1|N

)−1

−
(

Px

k+1|k

)−1
]−1

, (10)

δk :=
(

Px

k+1|N

)−1

x̂k+1|N −
(

Px

k+1|k

)−1

x̂k+1|k.

(11)
Proof: For notational convenience, we use vectors q,

z, a, b, c, symmetric positive definite matrices A, B and

C, and a mapping g. All have compatible dimensions as

considered in the following equation, which is formulated

by virtue of (2):

L(q) := N (q;a,A)

∫

N (z;b,B) · N (z; c,C)

N (z;d,D)
dz, (12)

where b = g(q). Compared with (2), we indeed let A →
P

ξ

k|k, B → Qk, C → Px

k+1|N , D → Px

k+1|k, q → ξk,

a → ξ̂k|k, b → f(ξk), c → x̂k+1|N , and d → x̂k+1|k. Here,

→ denotes the corresponding relationship.

As indicated by (A.1) in Appendix, we have

N (z;b,B) · N (z; c,C)

N (z;d,D)
= λ · N (z; e,E),

where

E =
(

B−1 +C−1 −D−1
)−1

,

e = E
(

B−1b+C−1c−D−1d
)

,

λ(q) = |B|−
1

2 |C|−
1

2 |D|
1

2 |E|
1

2
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· exp

[

−
1

2

(

‖b‖2B + ‖c‖2C − ‖d‖2D − ‖e‖2E
)

]

.

Noting that the integral in (12) will be equal to λ, we

consider only λ now. It is obvious that λ can be decomposed

into two parts, one of which is a proportional coefficient, and

the other one of which is a function q, i.e.,

λ(q) = λoλ̄(q).

Here,

λ̄(q) = exp

[

−
1

2

∥

∥b− (B−1 −B−1EB−1)−1

·B−1E(C−1c−D−1d)
∥

∥

2

(B−1−B−1EB−1)−1

]

,

which, through using the Matrix Inversion Lemma, is found

equal to

λ̄(q) = exp

[

−
1

2
b− (C−1 −D−1)−1

(C−1c−D−1d)
∥

∥

2

(C−1−D−1)−1+B

]

,

Incorporating the results above and considering the logarithm

of L(q), we obtain the following cost function to minimize:

ℓ(q) = ‖q− a‖2A + ‖g(q)

−(C−1 −D−1)−1(C−1c−D−1d)
∥

∥

2

(C−1−D−1)−1+B
.

Referring to the above derivation, we obtain (7)-(11)

from (2), (6) and the assumptions A1-A3.

Remark 1: It is noted that (2) computes p(ξk|Y1:N ) that

is the a posteriori distribution of ξk given Y1:N . Thus

the estimator designed in (6) or (7) is exactly based on

the MAP estimation. Therefore, ℓ(ξk) in (8) is a log-MAP

cost function. MAP estimation formulated within Bayesian

framework has often been used to develop optimal filtering

methods, e.g., [20]. Here, we extend this technique to address

the smoothing problem and especially for the purpose of joint

input and state estimation.

It is often extremely difficult to obtain an analytical

solution to the optimization problem in (7) due to the

nonlinearities, motivating the development of an approximate

numerical solution.

First note that the sum of the weighted 2-norms in (8) can

be rewritten as

ℓ(ξk) = ‖sk(ξk)‖
2
, (13)

where

sk(ξk) =





(

P
ξ

k|k

)− 1

2

(

ξk − ξ̂k|k

)

Ω
− 1

2

k (f(ξk)−∆kδk)



 .

The classical Gauss-Newton method, which has been devel-

oped for nonlinear least squares problems, can then be ap-

plied here. It is an iterative searching process that linearizes

around the current arrival point, determines the best search

direction and then moves forward to the next point.

Theorem 3: For the input and state smoother designed

in (7), the Gauss-Newton based solution ξ̂k|N = ξ̂
(imax)

k|N is

iteratively computed by

ξ̂
(i+1)

k|N = ξ̂
(i)

k|N −
[

∇T
ξ s

(

ξ̂
(i)

k|N

)

∇ξs
(

ξ̂
(i)

k|N

)]−1

· ∇T
ξ s

(

ξ̂
(i)

k|N

)

s
(

ξ̂
(i)

k|N

)

, (14)

where (i) denotes the iteration number, imax is the pre-

selected max number of iterations and

∇ξs(ξk) =





(

P
ξ

k|k

)− 1

2

Ω
− 1

2

k ∇ξf(ξk)



 .

The first-order approximation of the associated smoothed

error covariance is

P
ξ

k|N =

[

(

P
ξ

k|k

)−1

+∇⊤
ξ f(ξ̂k|N )Ω−1

k ∇ξf(ξ̂k|N )

]−1

.

(15)

Proof: Applying the classical Gauss-Newton method

to (13), (14) follows directly [21]. It is noted that the

assumptions A1-A3 ensure p(ξk|Y1:N ) to be Gaussian. Thus

according to the MAP estimation theory, the error covariance

is covariance can be estimated as the inverse of the Fisher

information matrix F evaluated at the estimate:

P
ξ

k|N = F
−1(ξ̂k|N ),

where F is the given by

F(ξk) =
(

P
ξ

k|k

)−1

+∇⊤
ξ f(ξk)Ω

−1
k ∇ξf(ξk).

This completes the proof.

Here, we say that (14)-(15) are the backward smoothing

equations for input and state estimation. The corresponding

forward filtering equations are presented in [4]. Derivations

of the proposed smoother and the filter in [4] follow similar

lines: a Bayesian framework is constructed first, and then a

MAP estimation problem is formulated within the framework

and solved.

Remark 2: The Gauss-Newton method is used for itera-

tive search over a designed cost function to find the best

estimates. This principle also applies to some nonlinear state

estimation algorithms, e.g., the iterated extended Kalman

filter (IEKF) [22].

Remark 3: The Gauss-Newton method can be modified

in several ways for improvement of the computational per-

formance. Among the improvements, one is the damped

Gauss-Newton method, which has better convergence perfor-

mance by adding a damping coefficient. Another one worth

mentioning is the trust-region method, which overcomes the

singularity problems that may arise in the computing process.

The reader is referred to [21] for more details.

IV. APPLICATION EXAMPLE

A fundamental problem in oceanography is flow field

reconstruction. Flows are known to be crucial to fishing,

shipping and weather forecasting. To study the flows, a

swarm of buoyancy-controlled drogues [23; 24] are deployed
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(a) (b)

Fig. 1: (a) The three-dimensional flow field; (b) top view of the flow field.
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Fig. 2: Smoothing results for the drogues released at (-400,-600)m: (a) x1 — displacement along x-direction; (b) x2 —

velocity along x-direction; (c) u — flow velocity; (d) trajectory of the drogue (the circle denotes the location where the

drogues is released).

in the ocean. They are capable of arbitrary vertical migration

behaviors while traveling along the flows. During the travel,

each drogue measures and stores a time record of its depth,

acceleration, position and other relevant oceanographic quan-

tities such as temperature and salinity. Because the GPS sig-

nals are seriously attenuated underwater, the position infor-

mation is measurable only intermittently when the drogue is

at water surface, although other measurements are available

continuously. The record of data will be transmitted to a

central server for analysis and processing when the drogue

is at surface.

Here, a three-dimensional flow domain is considered (see

Fig. 1), in which two eddies are present.

A. Drogue Dynamics

Due to the independence of perpendicular components of

motion, we consider the motion along x-direction without

loss of generality. For a drogue, the flow velocity v(dx, z)
at its x-displacement dx is time-stationary and dependent

only on the drogue’s depth z. The dynamics of the drogue

is described in [25]:

md̈x = c · sign
(

v(dx, z)− ḋx

)

·
(

v(dx, z)− ḋx

)2

, (16)

where m is the constant rigid mass and c is the drag

parameter that quantifies the drag or resistance exercised on
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Fig. 3: (a) True surficial flow velocity along x-direction; (b) smoothed surficial flow velocity along x-direction; (c) True

surficial flow velocity along y-direction; (b) smoothed surficial flow velocity along y-direction;

the drogue in the flow field.

From (16), we define two state variables x1 := dx and

x2 := ḋx. Further, v(dx, z) can be viewed as the unknown

external input into the drogue dynamics, naturally implying

the definition of u := v(dx, z). Then (16) can be rewritten

as,

ẋ1 = x2,

ẋ2 =
c

m
· sign (u− x2) · (u− x2)

2
.

(17)

Its discrete-time representation via finite difference is

x1,k+1 = x1,k + T · x2,k,

x2,k+1 = x2,k + T ·
c

m
· sign (uk − x2,k) · (uk − x2,k)

2
,

(18)

where uk := u(kT ) and xi,k := xi(kT ) for i = 1, 2. The

above equation can be expressed as

xk+1 = f(xk, uk), (19)

where f can be determined from the context.

The motion of the drogue is characterized by an irregularly

submerging/surfacing pattern — it submerges and moves

underwater for a certain duration, then resurfaces, and repeats

the process again. No matter whether it is underwater or

on the surface, the depth zk := z(kT ) and acceleration

d̈x,k := d̈x(kT ) are measurable; however, the position

dx,k := dx(kT ) can only be measured when it is at surface.

Thus irregularly sampled measurements arise as a result, with

the fast one τk := d̈x,k and slow one ηk := dx,k given by,

respectively,

τk =
c

m
· sign (uk − x2,k) · (uk − x2,k)

2
,

ηk = x1,k.
(20)

For simplicity of notation, we rewrite (20) as

τk = ϕ(uk, xk),

ηk = φ(xk).
(21)

Combining (18) and (20), we obtain the state space model

to describe the dynamics of the drogue:

Σ :

{

xk+1 = f(xk, uk) +wk,

yk = h(xk, uk) + vk,
(22)

Here, when the drogue is underwater, yk = τk and h = ϕ,

when at surface, yk = [τk ηk]
⊤

and h = [ϕ φ]
⊤

. In addition,

w and v are added to account for noises. They are assumed

to be white Gaussian and independent of each other. The

algorithm proposed in Section III is applicable to the system

Σ in (22) to acquire the information estimates of not only

the velocities of the flow field (unknown input variable) but

also the trajectory and velocity profile of the drogue (state

variables).

B. Numerical Simulation

The flow field considered is shown in Fig. 1, which

has dimensions of (−1000,1000)m × (−1000,1000)m ×
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(0,30)m, and the eddies are centered at (500,500)m and

(-500,-500)m, respectively. It is intentionally narrowed in

scale to reduce computation burden, but this does not restrict

application of the proposed SISS algorithm to larger flow

fields. Let 20 drogues be deployed evenly along the line

segment from (-800,-1000)m to (1000,800)m. The mass of a

drogue is 1.5Kg, the drag coefficient c is 2Ns2/m2, and the

sampling period T is 0.05s.

The proposed SISS algorithm is applied to smoothing the

estimates of the inputs and states in the state-space model

of the drogue. Let us examine the drogue released at (-400,-

600)m and consider its motion in the x-direction. Fig. 2(a)-

2(c) compares the true values and the smoothed estimates of

the x-displacement, x-velocity and the flow velocity, respec-

tively. Fig. 2(d) shows the smoothed trajectory in comparison

to the true one. It is seen that the smoothing algorithm

exhibits high accuracy, with the smoothed estimates agreeing

well with the truth.

Further, the estimated inputs of all drogues, which are

the smoothed flow velocity data at different locations, are

collected together and used to reconstruct the flow field via

the tessellation-based linear interpolation. The reconstructed

surficial flow velocity fields along x-direction and y-direction

are compared in Fig. 3 with the true fields, respectively. The

accuracy of reconstruction is noted to be quite satisfactory.

V. CONCLUSIONS

This paper studies joint input and state estimation via

forward-backward smoothing for nonlinear systems. This

challenging problem is treated from a statistical perspective,

with a Bayesian framework constructed in the first place. A

MAP based nonlinear smoothing algorithm is then developed

within the framework to obtain smoothed input and state es-

timates. The algorithm has a structure of backward recursion,

while each recursion is realized by Gauss-Newton iterations.

The soundness of the proposed algorithm is verified through

simulation studies of oceanographic flow field reconstruction

where flow velocity profiles are estimated from the motion

information of a group of buoyancy-controlled drogues.
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APPENDIX

• Multiplication of Gaussian functions The production

of two Gaussian functions is a Gaussian function, i.e.,

N (x;a,A) · N (x;b,B) = λ · N (x; c,C), (A.1)

where C =
(

A−1 +B−1
)−1

, c = C(A−1a+B−1b),
and

λ = (2π)−
n

2 |A|−
1

2 |B|−
1

2 |C|
1

2

· exp

[

−
1

2

(

‖a‖2A + ‖b‖2B − ‖c‖2C
)

]

.

REFERENCES

[1] U. Schubert, U. Kruger, G. Wozny, and H. Arellano-Garcia, “Input re-
construction for statistical-based fault detection and isolation,” AIChE

Journal, vol. 58, no. 5, pp. 1513–1523, 2012.
[2] H. Imine, Y. Delanne, and N. K. M’Sirdi, “Road profile input es-

timation in vehicle dynamics simulation,” Vehicle System Dynamics,
vol. 44, no. 4, pp. 285–303, 2006.

[3] P. K. Kitanidis, “Unbiased minimum-variance linear state estimation,”
Automatica, vol. 23, no. 6, pp. 775–778, 1987.

[4] H. Fang and R. A. de Callafon, “Nonlinear simultaneous input and
state estimation with application to flow field estimation,” in IEEE

Conference on Decision and Control and European Control Confer-

ence (CDC-ECC), 2011, pp. 6013–6018.
[5] J. Mendel, “White-noise estimators for seismic data processing in oil

exploration,” Automatic Control, IEEE Transactions on, vol. 22, no. 5,
pp. 694–706, 1977.

[6] C.-S. Hsieh, “Robust two-stage kalman filters for systems with un-
known inputs,” IEEE Transactions on Automatic Control, vol. 45,
no. 12, pp. 2374–2378, 2000.

[7] T. Floquet, C. Edwards, and S. K. Spurgeon, “On sliding mode
observers for systems with unknown inputs,” International Journal

of Adaptive Control and Signal Processing, vol. 21, no. 8-9, 2007.
[8] “Sliding-mode observers for systems with unknown inputs: A high-

gain approach,” Automatica, vol. 46, no. 2, pp. 347–353, 2010.
[9] H. Lee and M.-J. Tahk, “Generalized input-estimation technique for

tracking maneuvering targets,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 35, no. 4, pp. 1388–1402, 1999.
[10] S. Gillijns and B. D. Moor, “Unbiased minimum-variance input and

state estimation for linear discrete-time systems,” Automatica, vol. 43,
no. 1, pp. 111–116, 2007.

[11] ——, “Unbiased minimum-variance input and state estimation for
linear discrete-time systems with direct feedthrough,” Automatica,
vol. 43, no. 5, pp. 934–937, 2007.

[12] H. Fang, Y. Shi, and J. Yi, “On stable simultaneous input and state
estimation for discrete-time linear systems,” International Journal of

Adaptive Control and Signal Processing, vol. 25, no. 8, pp. 671–686,
2011.

[13] M. Corless and J. Tu, “State and input estimation for a class of
uncertain systems,” Automatica, vol. 34, no. 6, pp. 757–764, 1998.

[14] Q. Ha and H. Trinh, “State and input simultaneous estimation for a
class of nonlinear systems,” Automatica, vol. 40, no. 10, pp. 1779–
1785, 2004.

[15] M. Darouach and M. Zasadzinski, “Unbiased minimum variance
estimation for systems with unknown exogenous inputs,” Automatica,
vol. 33, no. 4, pp. 717 – 719, 1997.

[16] M. Darouach, M. Zasadzinski, and M. Boutayeb, “Extension of
minimum variance estimation for systems with unknown inputs,”
Automatica, vol. 39, no. 5, pp. 867 – 876, 2003.

[17] F. Bejarano, L. Fridman, and A. Poznyak, “Exact state estimation
for linear systems with unknown inputs based on hierarchical super-
twisting algorithm,” International Journal of Robust and Nonlinear

Control, vol. 17, no. 18, pp. 1734–1753, 2007.
[18] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Prentice-Hall,

Englewood Cliffs, 1979.
[19] K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,”

IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 910–927,
2000.

[20] J. V. Candy, Bayesian Signal Processing: Classical, Modern and

Particle Filtering Methods. New York, NY, USA: Wiley-Interscience,
2009.
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