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Abstract— Lithium-ion batteries are important for storage
and delivery of electrical energy. Monitoring and prediction
of the dynamic and time-dependent effects of lithium-ion
batteries is crucial in a battery management system (BMS).
In this paper, a dynamic model for the battery as an energy
storage and delivery system is proposed. The structure and the
parameters of the battery models are estimated by monitoring
a charge/discharge demand signal and a power storage/delivery
signal in real time. The model is combined by individual
linear dynamic models, where the parameters can be estimated
by a least-squares algorithm and implemented in a recursive
fashion. Based on data obtained from the experimental setup,
the dynamic model is applied to predict the dynamics of the
energy storage and delivery, and validated against real-time
measurements. The results show that the model can capture
and predict the dynamics of the energy storage and delivery
of the battery, which can benefit the control of lithium-ion
batteries.

I. INTRODUCTION

Lithium-ion batteries are considered as one of the pri-

mary candidates for electric energy storage for the next

generation of automotive and aerospace applications. Since

energy generated is hardly equal to the energy consumed

at a given time in an energy transmission system, energy

storage is needed to buffer gaps in energy delivery. Lithium-

ion batteries as electrochemical storage devices also provide

energy buffering in smart grids, since they provide one of the

best energy densities, exhibit no memory effect, and have low

self-discharge when not in use [1–3].

In high-power demand applications, lithium-ion batteries

may suffer thermal runaway and cell rupture if overcharged

[4]. In extreme cases the overcharge can lead to combustion.

Deep discharge may cause the crystalline morphology transi-

tion, which can adversely affect the cyclability [1], namely,

the life of the lithium-ion battery is shortened. Hence, in

most practical applications, the lithium-ion batteries should

be monitored and controlled by a BMS, which is a system

composed of hardware and software. The main function of

a BMS is to control the charging and discharging of the

battery while guaranteeing reliable and safe operation [5].

A dynamic battery model is necessary to design the BMS

control algorithms. The dynamic model should capture the

dynamics of the power storage and delivery of the battery.

A conventional BMS uses an equivalent circuit model,

which is derived from the electric characteristics of the
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battery. A typical equivalent circuit model is composed by

equivalent potential, internal resistance, and effective capac-

itance, which is suitable for portable power system studies

[6]. Though some equivalent circuit models are intended to

describe the electrochemical characteristics of the battery

[7, 8], they still have limited prediction capability compared

to physics-based electrochemical models [9].

The electrochemical models of lithium-ion batteries have

been studied for decades and they are typically a system of

nonlinear partial differential equations. The electrochemical

models present a detailed description of the internal physi-

cal and chemical processes of lithium-ion batteries [9–13].

However, an exact electrochemical model cannot be used in

control applications due to constraints on model complexity

for embedded systems in real-time battery monitoring. Ap-

proximation of the electrochemical model can be done via

a single particle model (SPM) [14]. Due to the constrained

assumption, the SPM is of limited use in practice, especially

in the case of high-current operations [9]. Compared with the

equivalent circuit models, the parameters of an electrochem-

ical model have a physical interpretation, but the amount of

parameters is usually too large to be estimated efficiently

[15]. Novel approaches in PDE estimation can reduce the

number of parameters to be estimated [12, 13], but still

may have the inherent assumption of full state measurements

to allow parameter estimation. Instead of focusing on the

dynamics of the electrochemical process of the battery, it

is important to model the dynamics of the energy storage

capacity of the battery as a function of energy demand based

on measurable input/output signals in real time.

The purpose of this paper is to show how a lithium-ion

battery can be modelled as a dynamic model for energy

storage. As such, we are interested in modeling how fast a

battery can store and deliver energy as a function of time. The

proposed model is a different approach from the traditional

equivalent circuit models [6–8] or electrochemical models

[9–17], as we are not modeling the current-voltage dynamics,

but the power delivery dynamics. As indicated in Fig. 1, this

is done with a parameter estimation method that models the

individual dynamics from a power charge/discharge demand

signal to the voltage and the current signals of a lithium iron

phosphate (LiFePO4) battery. The models are combined to

formulate a dynamic model of a battery as a power storage

and delivery system.

The LiFePO4 batteries are less expensive and less toxic

than other lithium-ion batteries, such as lithium cobalt oxide

(LiCoO2) batteries. Additionally, the LiFePO4 battery can

provide high energy storage capacity and high discharge
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Fig. 2. Schematic of the experimental battery tester with charge/discharge load

power, and it is proved to have a long cycle life and high

stability [18]. Therefore, the application of LiFePO4 bat-

teries can further benefit the performance of energy storage

systems.

II. EXPERIMENTAL SETUP

To model a battery as a power storage and delivery system,

an experimental setup is created where a charge/discharge

demand signal can be applied while measuring the voltage

and the current of the battery in real time. The schematic

of the experimental setup is shown in Fig. 2 and can be

explained as follows.

In the main circuitry, the charge/discharge cycles are

directed by the MOSFETs T1 and T2. When T1 is turned on

and T2 is off, the battery is connected to the power supply

and charged. While T1 is turned off and T2 is on, the battery

is disconnected from the power supply but connected to the

ground via the resistance R, thus the battery is discharged.

Pulse Width Modulations of T1 and T2 allow for modulating

charge and discharge demands. The resistance R behaves as a

current limiter while the battery is charged, and it is the load

when the battery is discharged. The MOSFETs are switched

by the corresponding control signals sent from NI-myDAQ.

Voltage Model

Charge/Discharge

Demand

Current Model

Power Storage/Delivery Model

r(t) p(t)

v(t)

i(t)

Power 

Storage/Delivery

Fig. 1. Diagram of the power storage/delivery model

The DAQ device is also employed to acquire the measured

signals, and it can communicate with the computer via a USB

cable. In the computer, a LabVIEW program is developed to

automatically load cycle signals from existing files and save

measured signals. Thus the test can be repeated using the

same time sequence of charge/discharge demand signals.

In the control and measurement circuitry, a MOSFET drive

circuitry is implemented to boost the level of digital output

signals from the DAQ. Several low-order Butterworth low-

pass filtering circuitries are reserved to process the measured

signals for aliasing effects if applicable.

The description of the experimental setup is completed by

a photograph of the experimental battery tester depicted in

Fig. 3. The battery utilized in the test is a 2.3Ah - 3.3V

LiFePO4 battery cell ANR26650 manufactured by A123

Systems. The maximum continuous discharge current of the

cell is 70A. The pulse discharge current can be 120A. Hence

the cell is suitable for transient high-power applications.

Furthermore, the MOSFETs are power MOSFET IRLZ34. A

bidirectional ±20A Hall effect sensor ACS714, the sensitiv-

ity of which is 100mV/A, is utilized to measure the current,

while the voltage over the battery is measured directly via

an A/D conversion.

Fig. 3. Photograph of the experimental battery tester
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III. DATA-BASED MODELING

In building a dynamic model of a battery as a power

storage and delivery system, the power charge/discharge

demand signal r(t) acts as an input signal, while the voltage

signal v(t) and the current signal i(t) of the battery act as

observable output signals. Multiplication of output signals

leads to a power storage/delivery signal p(t), as indicated

earlier in Fig. 1.

The dynamic model from r(t) to p(t) is possibly nonlinear.

But it will be shown in this paper that the separate dynamic

models between r(t) as input and v(t) and i(t) as output

individually can be modelled fairly well with linear models.

The estimation of the separate models is done by linear mod-

els with an Auto-Regression with eXogeneous input (ARX)

model structure [19]. Compared with other model structures,

ARX model can capture the dynamic response of a system

to both the input and the noise, and it can be optimized

by a relatively simple linear method, which is essentially

crucial for the practical application. For ARX models, one

can then estimate the parameters by a least-squares method

and facilitate the use of a recursive implementation for real-

time parameter estimation.

The procedure of building the ARX models between r(t)
and v(t) or i(t) is the same. For brevity, we only present the

data-based modeling procedure for the voltage model with

the input r(t) and the output v(t). Specifically, the voltage

model is in the form

v(t) =
B(q, θ)

A(q, θ)
r(t) +

1

A(q, θ)
ε(t, θ) (1)

where

A(q, θ) = 1 + a1q
−1 + · · ·+ ana

q−na

B(q, θ) = b1q
−1 + · · ·+ bnb

q−nb

in which q is forward time-shift: qr(t) = r(t + 1) and the

parameter vector

θ =
[

a1 · · · ana
b1 · · · bnb

]T
(2)

captures the unknown coefficients in the A(q, θ) and B(q, θ)
polynomials.

To estimate the parameters, the error ε(t, θ) is written in

a linear regression form

ε(t, θ) = ϕT (t)θ (3)

where the regression vector

ϕ(t) = [−v(t− 1) · · · −v(t− na)
r(t− 1) · · · r(t− nb)]

T (4)

consists of past voltage measurements v(s), s < t and past

charge/discharge demand signal r(s), s < t. We assume

an inherent one-step time delay between the voltage and the

charge/dischrage demand signal.

Due to the linear regression, the parameters can be es-

timated by the least-squares method, which minimizes the

least-squares criterion

VN (θ, ZN ) =
1

N

N
∑

t=1

1

2
[v(t)− ϕT (t)θ]2 (5)

The criterion can be minimized analytically, which gives the

least-squares estimate (LSE) [19]

θ̂LS
N = argminVN (θ, ZN ) = R−1(N) · f(N) (6)

provided the inverse of R(N) exists, where

R(N) =
1

N

N
∑

t=1

ϕ(t)ϕT (t), f(N) =
1

N

N
∑

t=1

ϕ(t)v(t)

To quantify the output variation that is explained by the

model, the k-step-ahead predictor v̂(t|t−k) is introduced as

v̂(t|t− k) = Wk(q)G(q)r(t) + [1−Wk(q)]v(t) (7)

Wk(q) , H̄k(q)H
−1(q), H̄k(q) =

k−1
∑

l=0

h(l)q−l (8)

where h(l) is the impulse response of H(q). For an ARX

model, the filters G(q, θ) and H(q, θ) are parametrized as

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

1

A(q, θ)
(9)

Substituting (8) and (9) into (7), then the k-step-ahead

predictor can be rewritten as (omitting the parameter θ

dependency for brevity)

v̂(t|t− k) = H̄k(q)B(q)r(t) + [1− H̄k(q)A(q)]v(t) (10)

Finally, the model fit ratio is introduced:

αv = (1−
‖v̂(t|t− k)− v‖

‖v − v̄‖
)× 100% (11)

where v̄ is the mean value of output.

Following the same procedure, we can also get the esti-

mated parameters θ̂LS
N for the current model and the k-step-

ahead predictor î(t|t − k). Then we can define the k-step-

ahead predictor for the power storage and delivery model

as

p̂(t|t− k) = v̂(t|t− k) · î(t|t− k) (12)

Thus we can also get the model fit ratios αi and αp to

quantify the prediction ability of the model.

In practice, if the number of data is large enough, then the

data can be separated into two sets, which are for estimation

and validation respectively. Furthermore, a few tests are taken

to estimate the model order. With the model order increases,

there exists one that can achieve the best model fit. If the

model performance does not improve at higher orders, low-

order models might fit the data equally well. The process of

determining the model order can be taken iteratively.

IV. RECURSIVE IMPLEMENTATION

Recursive estimation of the parameter estimate θ̂LS
t as

a function of time t allows real-time monitoring of the

energy storage dynamics of the battery. Instead of batch-

wise estimation using N data points to obtain θ̂LS
N given in

(6), we compute the parameter estimate as the data from the

power demand signal r(t), the voltage v(t) and the current

i(t) are measured.
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To formulate a computational effective recursive estima-

tion for θ̂LS
t , with

R(t) =
1

t

t
∑

τ=1

ϕ(τ)ϕT (τ)

we have the relationship between R(t− 1) and R(t)

R(t) =
t− 1

t
R(t− 1) +

1

t
ϕ(t)ϕT (t) (13)

Note that matrix R(t) is related to the inverse of the

covariance of the parameter estimate θ̂t [19]. Similarly, we

can also derive the relationship between f(t− 1) and f(t)

f(t) =
t− 1

t
f(t− 1) +

1

t
ϕ(t)y(t) (14)

Then with θ̂LS
t = R−1(t)f(t), use the fact that θ̂LS

t−1
=

R−1(t− 1)f(t− 1) or f(t− 1) = R(t− 1)θ̂LS
t−1

, substitution

yields

θ̂LS
t = R−1(t)

[

t− 1

t
R(t− 1)θ̂LS

t−1
+

1

t
ϕ(t)y(t)

]

Finally we use (13) to substitute

R(t− 1) =
t

t− 1
R(t)−

1

t− 1
ϕ(t)ϕT (t)

and we obtain

θ̂LS
t = θ̂LS

t−1
+

1

t
R(t)−1ϕ(t)[y(t)− ϕT (t)θ̂LS

t−1
] (15)

If we now define

ε(t, θ̂LS
t−1

) = y(t)− ϕT (t)θ̂LS
t−1

(16)

as the a posteriori prediction error, we can formulate a

recursive parameter update by the order of (16), (13), and

(15). In practice, the update of R(t) can also be replaced

by the update of the inverse of R(t) and combined with the

matrix inversion lemma to improve computational efficiency.

Specifically, introduce the covariance matrix

P (t) , [tR(t)]−1 = [(t− 1)R(t− 1) + ϕ(t)ϕT (t)]−1 (17)

Apply the matrix inversion lemma (A.1) to (17). With (13),

taking A = (t− 1)R(t− 1) = P−1(t− 1), B = DT = ϕ(t),
and C = 1 gives

P (t) = P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

ϕT (t)P (t− 1)ϕ(t) + 1

(18)

Thus, the recursive parameter update can be formulated

by the following three steps:

• a posteriori prediction error update

ε(t, θ̂LS
t−1

) = y(t)− ϕT (t)θ̂LS
t−1

(19)

• covariance update

P (t) = P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

ϕT (t)P (t− 1)ϕ(t) + 1
(20)

• parameter update

θ̂LS
t = θ̂LS

t−1
+ P (t)ϕ(t)ε(t, θ̂LS

t−1
) (21)

It should be noted that the above three steps at t = N

gives the exact same parameter value θ̂LS
N as in (6), provided

θ0 and P0 are initialized correctly, but the result is now

written in terms of the previous parameter estimate θ̂LS
t−1

in

a recursive fashion.

Furthermore we see that

lim
t→∞

R(t) = lim
t→∞

1

t

t
∑

τ=1

ϕ(τ)ϕT (τ)

= Σϕ,ϕ(0) w.p. 1

(22)

making R(t) converge to the zero delay auto covariance

(matrix) Σ of the regressor ϕ(t) as t → ∞.

Provided Rϕ,ϕ(0) is non-singular, thus

lim
t→∞

P (t) = lim
t→∞

1

t
R−1(t) = 0 w.p. 1 (23)

which allows the recursive parameter update to converge to

a stationary point θ⋆ of the recursion

lim
t→∞

θ̂LS
t = lim

t→∞

θ̂LS
t−1

= θ⋆ w.p. 1 (24)

The convergence is desired when the parameter θ is not

changing. However, to account for changes in θ, we adjust

the covariance update with the disturbance factor λ to

P (t) = P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

ϕT (t)P (t− 1)ϕ(t) + 1
+ λI (25)

where 0 < λ ≪ 1.

With the additional term λI , the convergence w.p. 1

of the parameter estimate is sacrificed to allow parameter

adaptation. For a converged estimation, the covariance update

P (t) is expected to converge to zero. Therefore, λ must be

sufficiently small to ensure the stability of the algorithm.

V. EXPERIMENTAL RESULTS

The charge/discharge cycle shown in Fig. 4 is utilized

in the test, where the charge/discharge signal +1 represents

full charging and -1 represents full discharging. The cycle is

created by a stretched pseudo-random binary signal (PRBS)

of order 6. Though the stretching leads to the loss of

white-noise-like properties, the sequence still contains all the

possibilities of binary combinations of order 6.

The measured signals of voltage and current are also

shown in Fig. 4. The sampling rate is 10Hz, since normally

the parameters of a battery vary slowly. The signals vary with

the alternating between charge and discharge as expected.

Due to the design of the circuitry, the charge and discharge

current is approximately at the rate of 1C, which is 2.3A.

As shown in Fig. 4, the dynamic model of the voltage can

be considered as a low-pass filter, while the dynamic model

of the current can be treated as a high-pass filter or a gain

function.

A. Experimental data-based modeling

For identification and model validation purposes, the data

is separated into two sets. The measured data of the first 15

minutes is used to estimate the parameters, and the rest of

the data is applied to validate the models. Both a batch-wise
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estimation and a recursive estimation are used on the first

15 minutes of experimental data. Following the data-based

modeling presented in the previous section, the batch-wise

estimation leads to the following linear voltage model and

the linear current model:

• Voltage Model

v(t) =
0.167q−1 − 0.08295q−2 − 0.08387q−3

1− 0.5031q−1 − 0.4969q−2
r(t)

+
1

1− 0.5031q−1 − 0.4969q−2
e(t)

• Current Model

i(t) =
2.09q−1

1− 0.03149q−1
r(t) +

1

1− 0.03149q−1
e(t)

To capture the dynamics of the current and achieve a better

model fit, the second-order term of the current model is

reserved. A model with more dynamics is expected to be

obtained through the tests with varying input in the future.
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Fig. 5. 5-step-ahead prediction of the voltage and current models
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Fig. 6. 5-step-ahead prediction of the power storage/delivery model

To validate the model, the prediction quality of the model

is tested. As mentioned above, the k-step-ahead predictor

v̂(t|t− k), î(t|t− k), and p̂(t|t− k) is computed from past

data, including k-step-ahead outputs and up-to-now inputs.

The 5-step-ahead prediction of voltage and current is shown

in Fig. 5, in comparison with the measured data. As shown

in Fig. 5, the prediction of voltage and current is close to the

measured data. The power storage/delivery model is built by

combining the two individual dynamic models. The 5-step-

ahead prediction of power is shown in Fig. 6. The model fit

ratios of the voltage model, the current model, and the power

storage/delivery model are shown in Table I.

TABLE I

MODEL FIT RATIOS α

Voltage Model αv 99.112%

Current Model αi 97.979%

Power Storage/Delivery Model αp 97.994%

The estimation results indicate that a fairly simple model

created by the multiplication of two linear models in a signal

setting from the charge/discharge demand signal r(t) to the

power storage and delivery signal p(t) = v(t) · i(t) is able

to capture the energy storage dynamics of the battery very

well. The model has been validated on data not used during

the identification.

B. Recursive implementation of parameter estimate

Applying the recursive parameter update procedure (19),

(20), and (21), we can get the recursive estimated parameters

of linear voltage and current models shown in Fig. 7. As

expected, the estimated parameters indicated as solid lines

converge to the parameters estimated by (6) indicated as

dashed lines. Hence the recursive implementation can also

estimate the parameters of the required linear models of

voltage and current.
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Fig. 7. Estimated parameters of voltage and current models (λ = 0)
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Fig. 8. Estimated parameters of voltage and current models (λ = 0.005)

When the disturbance factor λ is non-zero, the recursive

estimated parameters do not converge but become more

sensitive to the latest measured signals as shown in Fig. 8.

VI. CONCLUSIONS & FUTURE WORK

A dynamic model of the LiFePO4 battery as an energy

storage and delivery system is formulated in this paper.

This is done by two separate linear dynamic models from

a charge/discharge demand signal to the voltage and current

signals measured at the battery in real time. Multiplication

of both dynamic models yields the dynamic model that

accurately models the dynamics from the demand signal

to the power storage/delivery signal of the battery. Based

on experimental data obtained from a battery test setup,

parameters of the dynamic model are estimated in batch

and recursively. Comparison of simulated and measured data

validates the proposed dynamic model.

For further work on building the dynamic battery model,

the test circuitry can be modified to adopt pulse width

modulated charge/discharge demand signals. Long-term tests

can be taken into account via recursive estimation to assist

in the management of the battery as part of a larger energy

storage and delivery system.

APPENDIX

• Matrix Inversion Lemma

[A+BCD]−1 = A−1−A−1B[DA−1B+C−1]−1DA−1

(A.1)
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