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Abstract: This paper presents a new method for the identification of Wiener systems in
the presence of output noise. The Wiener system identification problem is formulated as a
convex Semidefinite Programming (SDP) problem by constraining a finite dimensional time
dependency between signals. The main contribution of this paper is that the proposed method
is robust to output noise and neither the Gaussian assumption of the input signal nor the
invertibility of the static nonlinearity is necessary. The main assumption used in this paper is
that static nonlinearity is monotonically non-decreasing. In the proposed identification method,
the linear dynamical system is parametrized as a Finite Impulse Response (FIR) model and a
nonparametric identification method is used to create the noise free output signal. Because both
the intermediate signal and the noise free output signal are unknown, an over-parametrization
technique is used. Once parameters are estimated, a Singular Value Decomposition (SVD) is
used to separate the linear system parameters and the noise free output signal. The proposed
identification method is applied to simulation data from a Wiener system. The effectiveness and
accuracy of the proposed method are verified via numerical simulations.

Keywords: Nonlinear system identification, block-oriented nonlinear model, semidefinite
programming.

1. INTRODUCTION

A Wiener system has a block oriented structure where a
linear dynamical system and a static output nonlinearity
are separated, as shown in Figure 1. The identification
of Wiener systems involves estimating the parameters
describing the linear dynamical and the static nonlinear
blocks from the measured input and output data. A com-
prehensive overview of block-oriented nonlinear system
identification, including Wiener systems, can be found in
Giri and Bai [2010]. The most common assumptions used
in Wiener system identification are the Gaussian assump-
tion of the input signal and the invertibility of the static
nonlinearity. These assumptions are popular because, if
the input signal is Gaussian noise, the identification of the
linear dynamical block can be separated from the identifi-
cation of the static nonlinear function based on separabil-
ity assumption [Greblicki [1992] Enqvist and Ljung [2005]]
and parameterization of the output static nonlinearity is
possible for the inverse of the given static nonlinearity.
However, the Gaussian input assumption is too restrictive
for practical application and the invertibility of the static
nonlinearity assumption excludes hard nonlinearities, such
as saturation, common in control systems.

Recently, a system identification method was introduced
based on the sector bound property of static nonlinear-
ity using Quadratic Programming (QP) in Zhang et al.
[2006]. This monotonicity assumption on the unknown
static nonlinearity guarantees a solution for an Finite Im-
pulse Response (FIR) linear system and leads to possible
nonparametric identification of static nonlinear function
[Reyland [2011]].
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Fig. 1. Wiener system with output noise.

In this paper, the monotonicity assumption on the un-
known static nonlinearity is utilized for nonparametric
identification of static nonlinear function. The main contri-
bution of this paper is that the proposed method is robust
to output noise and neither the Gaussian assumption of
the input signal nor the invertibility of the static non-
linearity is necessary. Regarding Figure 1, the objective
of this paper is to formulate a procedure that allows for
the characterization and identification of the nonlinear
static function f(·) and the linear dynamical system G(q)
individually based on the input u(t) and the output y(t)
observation. This is done in a novel way by the recon-
struction of the intermediate signal x(t) and the noise
free output signal ynf (t) with conditions on the finite
dimensional dynamical representation of the linear sys-
tems G(q) and the memoryless static nonlinearity f(·).
The output disturbance v(t) is filtered zero-mean white
noise independent of the input signal, where the filtering
properties are unknown.

Preprints of the 16th IFAC Symposium on System Identification
The International Federation of Automatic Control
Brussels, Belgium. July 11-13, 2012

© IFAC, 2012. All rights reserved. 1109



2. SYSTEM DESCRIPTION

The system to be modeled is a Wiener system as shown in
Figure 1. The purpose of this study is to propose a method
to identify the unknown linear dynamical systems G(q)
and a static nonlinear function f(·) from a finite number of
observations of the data u(t) and y(t). The order of a finite
dimensional linear dynamical model can be expressed as
the rank of a matrix that is filled with input and output
measurement. If the set of feasible models is described by
convex constraints, then choosing the simplest model can
often be expressed as a rank minimization problem [Fazel
et al. [2004]]. Based on this idea, in this paper, the rank
minimization problem is used to formulate a convex op-
timization problem via Semidefinite Programming (SDP)
relaxation. The system parameters will be estimated by
finding a feasible model consistent with the input and
output data, and satisfying the following basic properties
of the Wiener system:

Condition 1.
I.The static nonlinear function has no memory:

The current output ynf (t) only depends on
the current input x(t).

II.The linear dynamical system has a finite, but
unknown, McMillan degree n:
x(t) = φT (t)θ,where
φT (t) = [u(t) · · · u(t− nb) x(t− 1) · · · x(t− na)],
θ is the linear system parameter,
and n ≤ max(nb − 1, na).

The intermediate signal x(t) and the noise free output
signal ynf (t) in Figure 1 are not measurable. The unknown
signals will be parametrized and the estimation of the
unknown coefficients will be formulated as a SDP problem.
Let x̂(t) be the reconstructed signal of x(t) and ŷnf (t)
be the reconstructed signal of ynf (t). The SDP problem
will be formulated in such a way that x̂(t) and ŷnf (t) are
related via a memoryless static nonlinearity, u(t) and x̂(t)
are related via a linear dynamical system with the smallest
McMillan degree, and ||y− ŷnf ||2 is minimized under Con-
dition 1. Once x̂(t) and ŷnf (t) have been reconstructed, the
identification of G(q) from u(t) to x̂(t) can be solved with
a standard Prediction Error (PE) identification method
in Ljung [1999] and the identification of f(·) from x̂(t) to
ŷnf (t) can be solved via the Least Squares (LS) method.
The proposed identification method deals with Wiener
systems in this paper, but the idea of constraining rank
for signal reconstruction can be extended to Hammerstein,
Wiener-Hammerstein, or Hammerstein-Wiener systems.

3. SYSTEM PARAMETRIZATION

3.1 The input-output map of the linear dynamical system

Let h(k), k = 0, 1, · · · be a causal sequence of unit impulse
responses of G(q). The relationship between the input u(t)
and the intermediate signal x(t) can be described by the
convolution as

x(t) =

∞∑
k=0

h(k)u(t− k). (1)

Due to Condition 1 (finite McMillan degree), the Hankel
matrix defined as

H =


h(1) · · · h(N/2)
h(2) · · · h(N/2 + 1)

...
. . .

...
h(N/2) · · · · · ·h(N − 1)

 , (2)

has a rank(H) ≤ n. The order of the linear dynamical
system is determined by the rank(H) as H is simply the
product of the extended observability and controllability
matrices [Goethals et al. [2005]]. A lower order model,
consistent with the input and output signals can be
estimated by minimizing the rank of H. Let

x̂ = [x̂(1) x̂(2) · · · x̂(N)]T

and

U =


u(1) u(0) · · · u(2−N)
u(2) u(1) · · · u(1−N)

...
...

. . .
...

u(N) u(N − 1) · · · u(1)

 . (3)

With
h = [h(0) h(1) · · · h(N − 1)]T , (4)

the finite sequence of the input

u = [u(1) u(2) · · · u(N)]T

and the estimate of the intermediate signal x can be
written as

x̂ = Uh. (5)

3.2 Characteristics of static nonlinearity

Let ŷnf be the noise free output defined as

ŷnf = [ŷnf (1) · · · ŷnf (N)]T . (6)

Due to the memoryless relationship between x̂(t) and
ŷnf (t), the cross-covariance function between x̂(t) and
ŷnf (t),

Ryx(τ) =
1

N

N∑
t=1

ŷnf (t)x̂(t− τ),

must only depend on the auto covariance of x̂(t),

Rx(τ) =
1

N

N∑
t=1

x̂(t)x̂(t− τ),

and the static nonlinearity [Nuttall [1958]]. There could
be many combinations of x̂(t) and ŷnf (t) that satisfy
this memoryless relationship. In this paper, a monotoni-
cally non-decreasing static nonlinearity with the maximum
slope of 1 is considered as follows:

Condition 2.
I. The static nonlinear function is monotonically

non-decreasing with the maximum slope of 1:
(ŷnf (i)− ŷnf (j))(ŷnf (i)− ŷnf (j)− x̂(i) + x̂(j)) ≤ 0
∀i > j.

In Condition 2,

ŷnf (i)− ŷnf (j) ≥ 0⇒ ŷnf (i)− ŷnf (j) ≤ x̂(i)− x̂(j)
or
ŷnf (i)− ŷnf (j) ≤ 0⇒ ŷnf (i)− ŷnf (j) ≥ x̂(i)− x̂(j).
In both cases,
x̂(i)− x̂(j) = 0⇒ ŷnf (i)− ŷnf (j) = 0
or

x̂(i)− x̂(j) 6= 0⇒ ŷnf (i)− ŷnf (j)

x̂(i)− x̂(j)
≤ 1.
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Condition 2 implies that once x̂(t) is chosen, ŷnf (t) is
determined as

ŷnf = α(t)x̂(t), 0 ≤ α(t) ≤ 1.

This implies that the cross-covariance function between
x̂(t) and ŷnf (t) only depends on the static nonlinearity,
characterized by α(t), and the auto-covariance of x̂(t), not
τ as

Ryx(τ) =
1

N

N∑
t=1

ŷnf (t)x̂(t− τ)

=
1

N

N∑
t=1

α(t)x̂(t)x̂(t− τ).

Thus, Condition 2 guarantees that the intermediate signal
x̂(t) and the output ŷnf (t) are related by a static nonlinear
function.

4. PROBLEM FORMULATION

In this section, a rank minimization problem with the
memoryless constraint on the static nonlinearity for the
reconstruction of the intermediate signal x(t) and the
noise free output signal ynf (t) in Figure 1 is summarized
and the optimization problem is constructed. With the
parametrization and constraints explained in the previous
section, an optimization problem can be written as follows:

Optimization problem 1.

Consider
variables h in (4) and ŷnf in (6)

Define
x̂ = Uh, with U in (3)

Minimize
w1 · ||y − ŷnf ||2 + w2 · rank H, with H in (2)

subject to
(ŷnf (i)− ŷnf (j))(ŷnf (i)− ŷnf (j)− x̂(i) + x̂(j)) ≤ 0
∀i > j

where
w1 and w2 are weighting factors

Optimization Problem 1 results in the optimal solution
for the system parameter h that is used to construct the
intermediate signal x and the noise free output ynf . In
Optimization Problem 1, the reconstructed signals x̂ and
ŷnf are generated in such a way that a static nonlinear
function satisfies the monotonically non-decreasing condi-
tion, the linear dynamical system has the minimum order,
and the prediction error is minimized under the chosen
weighting and constraints.

Unfortunately, the rank condition and the constraint in
Optimization Problem 1 are not convex. In this paper,
a new variable Θ is defined in order to convert the non-
convex optimization problem to an approximated convex
optimization problem, resulting in a Semidefinite Pro-
gramming (SDP) problem. This SDP problem is easier to
solve and the solution is close to the solution of the original
non-convex problem [Fazel et al. [2004]].

Let θ = [hT ŷTnf ]T . With θ, let us define a positive

semidefinite symmetric matrix Θ = θθT as

Θ =



h(0)h(0) · · · · · · h(0)ŷnf (N)
...

...
...

...

h(N)h(0)
...

... h(N)ŷnf (N)
ŷnf (1)h(0) · · · · · · ŷnf (1)ŷnf (N)

...
... · · ·

...
ŷnf (N)h(0) · · · · · · ŷnf (N)ŷnf (N)


. (7)

Based on its structure, it is clear that Θ is a rank 1 matrix
if there is no noise in the data. For cases where there
is noise, system parameters will be found by minimizing
rank(Θ). Because Θ is a square positive semidefinite
matrix, minimizing its trace is the closest approximation
of the rank minimization that can be efficiently solved.
Without loss of generalization, the maximum slope 1 of
the static nonlinearity combined with the minimization of
trace(Θ) serves as a normalization condition on the static
nonlinearity, so that the static gain of the Wiener system
is modeled by the static gain of the linear system G(q).
Due to the over-parametrization of Θ, it is impossible
to access ŷnf directly through Θ. However, Θ contains
information of ŷnf ŷ

T
nf . Thus, minimizing ||y − ŷnf ||2 is

relaxed to minimizing ||yyT − ŷnf ŷTnf ||F , where || · ||F is
a Frobenius norm. With Θ, let us express the quadratic
constraints in Optimization Problem 1 as Linear Matrix
Inequalities (LMIs). Let

δY =


ŷnf (2)− ŷnf (1) · · · 0

0 · · · 0

0
... 0

0 · · · ŷnf (N)− ŷnf (1)


be a diagonal matrix whose diagonal entries include
ŷnf (i)− ŷnf (j), ∀i > j and

δX =


x̂(2)− x̂(1) 0 · · · 0

0 x̂(3)− x̂(2) · · · 0

0 0
... 0

0 0 · · · x̂(N)− x̂(1)


be a diagonal matrix whose diagonal entries include x̂(i)−
x̂(j), ∀i > j. Then diag(δY ) = ∆Y y, where

∆Y =



0 1 0 · · · 0
0 0 1 0 · · · 0
0 0 1 0 · · · 0
... · · · · · · · · ·

...
... 0 0 · · · · · · 0 1
... · · · · · · · · · · · ·
0 0 · · · · · · 0 1


−



1 0 0 · · · 0

0 1 0 · · ·
...

1 0 0 · · ·
...

0 · · · · · · · · ·
...

0 0 · · · 1
...

0
... · · · · · ·

...
1 0 · · · · · · 0


and diag(δX) = ∆Xh, where

∆X =


u2 u1 0 · · · 0
u3 u2 u1 0 · · · 0
u3 u2 u1 0 · · · 0
... · · · · · · · · ·

...
uN · · · · · · · · · u1

−



u1 0 · · · · · · 0
u2 u1 0 · · · 0
u1 0 · · · · · · 0
u3 u2 u1 0 · · · 0
u2 u1 0 · · · · · · 0
u1 0 · · · · · · 0
... · · · · · · · · ·

...
u1 0 · · · · · · 0
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where ui is used instead of u(i) for notational brevity.
Then, the constraints in Optimization Problem 1 can be
written as

δY T δY − δY T δX ≤ 0. (8)

where

δY T δY = diag(diag(∆Y ˜̃Θ∆Y T ))

where ˜̃Θ = Θ(N + 1 : 2N,N + 1 : 2N)

and
δY T δX = diag(diag(∆XΘ̃∆Y T ))

where Θ̃ = Θ(N + 1 : 2N, 1 : N)

where the notation (k, :) and (:, k) are used to denote the
kth row and the kth column in a matrix respectively. Here
diag(x) indicates a square matrix with the elements of a
vector x on the diagonal, and diag(X) indicates the main
diagonal of a matrix X.

Using SDP relaxation, Optimization Problem 1 can be
rewritten as the following convex optimization problem:

Optimization problem 2.

Consider
variable symmetric Θ

Minimize

w1 · || ˜̃Θ− yyT ||F + w2 · trace(Θ)
subject to
δY T δY − δY T δX ≤ 0
Θ ≥ 0
where

δY T δY = diag(diag(∆Y ˜̃Θ∆Y T ))

δY T δX = diag(diag(∆XΘ̃∆Y T ))
where

˜̃Θ = Θ(N + 1 : 2N,N + 1 : 2N)

Θ̃ = Θ(N + 1 : 2N, 1 : N)
|| · ||F is a Frobenius norm

where
w1 and w2 are weighting factors.

As a summary, the intermediate signal x(t) in Figure 1 is
parametrized by (5), and estimation of the unknown coeffi-
cients h in (4) and the noise free signal ŷnf in (6) are solved
by computing the solution to the SDP problem given
in Optimization Problem 2. The optimization guarantees
that x̂(t) and ŷnf (t) are related via a memoryless static
nonlinearity, and guarantees that u(t) and x̂(t) are related
via a linear dynamical system with the smallest McMillan
degree. Once x̂(t) and ŷnf (t) have been reconstructed, the
identification of G(q) from u(t) to x̂(t) can be solved with
a standard Prediction Error (PE) identification method in
Ljung [1999].

4.1 Parameter separation

Due to the over-parametrization used to define Θ in (7), we
need to separate the parameters of the linear dynamical
system h and the noise free output ŷnf . Singular Value
Decomposition (SVD) is used in this paper to separate
the system parameters. The SVD of Θ is given as

Θ = UΣV T (9)

where U2N×2N and V2N×2N are orthogonal matrices,
U2N×2N = V2N×2N due to the structure of Θ, and Σ2N×2N

is a rectangular diagonal matrix. The positive diagonal
entries of Σ are called singular values. From (9), the
parameter vector θ = [hT ŷTnf ]T , where Θ = θθT can be
calculated by

θ =
√
σ1U(:, 1)

h = θ(1 : N)
ŷnf = θ(N + 1 : 2N)

(10)

providing an optimal rank 1 approximation of Θ.

5. NUMERICAL EXAMPLE

In this section, a numerical example of Wiener system
identification using the proposed identification method is
presented. A Pseudo Random Binary Sequence (PRBS)
excitation signal, defined as

u(t) = 4 · sign(randn(N, 1))

where

u(t) =


+1 w.p.

1

2

−1 w.p.
1

2

,

is used as the input. The output disturbance v(t) =
H(q)e(t) is filtered zero-mean white noise independent of
the input signal, where the filtering properties, H(q), are
not estimated or not need to be known. For the system
identification, twenty sets of estimation data with 100
samples are generated from the Wiener system with the
following specifications:

Linear dynamical system:

G(q) =
0.0997q−1 − 0.0902q−2

1− 1.886q−1 + 0.9048q−2

Static nonlinearity:

f(x(t)) =

{
.5 if x(t) > .5
x(t) if |x(t)| ≤ .5
−.5 if x(t) < −.5

Noise dynamics:

H(q) =
1 + 0.5q−1

1− 0.85q−1

.

The input and output signals are shown in Figure 2. In or-
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Fig. 2. The input and output signals.

der to solve the Semidefinite Programming (SDP) problem
(Optimization Problem 2), SEDUMI [Sturm [1999]] and
YALMIP [Löfberg [2004]] are used. The estimation results
are shown in Figure 3, Figure 4 and Figure 5. As shown
in Figure 3 and Figure 4, both pole and zero locations are
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well estimated. As shown in Figure 5, ±.5 saturation is
well identified.
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Fig. 3. The Bode plot of the identified linear dynamical
system. The black solid line indicates the real linear
dynamical system. The (colored) dashed lines indicate
estimated linear dynamical systems by using twenty
different sets of data. The SNR of each data set is
greater than 50dB.
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Fig. 4. Pole (left figure) and zero (right figure) locations
of the identified linear dynamical system. The black
cross and circle indicate the real linear dynamical
system. The colored crosses and circles indicate es-
timated linear dynamical systems. The SNR of each
data set is greater than 50dB.

6. CONCLUSION

In this paper, the Wiener system identification problem is
formulated as a Semidefinite Programming (SDP) prob-
lem to reconstruct the intermediate signal and noise free
output. The system parameter identification problem is
formulated as a rank minimization problem by imposing
the monotonically non-decreasing condition on the static
nonlinear function. This non-convex optimization problem
is then reformulated as a convex optimization problem
via SDP relaxation by using over-parametrization. The
proposed method is robust to output noise and neither
the Gaussian assumption of the input signal nor the in-
vertibility of the static nonlinearity is necessary. Singular
Value Decomposition (SVD) is used to separate the linear
system parameters and the noise free output signal. Once
the intermediate signal and noise free output signal are
reconstructed, the identification of the linear dynamical
system and the static nonlinear function become trivial.
The proposed identification method is applied to simula-
tion data from a Wiener system. The numerical simulation

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x(t)

y(
t)

Fig. 5. The plot of the identified static nonlinear function.
The black solid line indicates the real static non-
linear function. The (colored) dashed lines indicate
estimated static nonlinear functions by using twenty
different sets of data. The SNR of each data set is
greater than 50dB.

result shows the effectiveness of the proposed identification
method.
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J. Löfberg. YALMIP: A toolbox for modeling and op-
timization in MATLAB. In IEEE International Sym-
posium on CACSD Conference, pages 284–289, Taipei,
Taiwan, 2004.

A. H. Nuttall. Theory and application of the separable
class of random processes. Ph.D. Thesis, MIT., 1958.

J. M. Reyland. Towards Wiener system identification with
minimum a priori information. Ph.D. Thesis, University
of Iowa., 2011.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11-12:625–653, 1999.

Q. Zhang, A. Iouditski, and L Ljung. Identification of
Wiener system with monotonous nonlinearity. In 14th
IFAC Symposium on System Identification, pages 166–
171, Newcastle, Australia, 2006.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1113


