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Abstract: A constrained step-based realization algorithm is developed to produce linear, time-
invariant, state-space system estimates. To match a priori knowledge of the system behavior,
the eigenvalues of the estimate are required to be stable, real, and positive; the step response
is required to have no undershoot or overshoot; and the steady-state gain is required to match
a known value. The standard step-based realization method is augmented to become a convex
optimization problem subject to a linear-matrix inequality that constrains eigenvalue location,
and a subsequent convex optimization problem is developed to constrain time-domain behavior.
Simulation results motivate the need for such constraints and are used for comparison with
familiar alternative methods. Although the procedure is applied only to step-response data,
it may be generalized to constrain eigenvalues to convex regions of the complex plain and is
applicable to all subspace identification methods.
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1. INTRODUCTION

When identifying models of systems from measured data,
it is often desirable that the identified model behave in
agreement with a priori knowledge of the system. This is
often limited to basic knowledge of system stability or an
assumed model order, but other times this knowledge is
derived from first-principles laws that govern the underly-
ing system dynamics.

A simple example is the placement of a warm metal object
into a large bath of ice water. Both intuition and the laws
of entropy tell us that the temperature of the object will
be cooled to the freezing temperature of the water, but no
lower. The temperature change in time of the metal object
can naturally be modeled as the step response of a linear
dynamical system. If this process is identified from noisy
data, however, the resulting model may contain complex
eigenvalues, potentially resulting a model with a step
response that undershoots its initial value or overshoots
its steady-state value. Such a model would clearly violate
the laws of thermodynamics.

This simple example exposes another difficulty that arises
when a system is constrained to certain inputs. For many
systems, experiments are limited to impulse or step re-
sponse measurements. Such experiments lack stationarity
and do not easily fit into existing frameworks based on
prediction error minimization or maximum likelihood es-
timation [Ljung, 1999].

Although the example of the metal object can likely
be modeled with a single time constant, many higher-
order processes have similar constraints but with far more
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complex dynamics. Examples include the heating of a
room, the cooking of food, the charging of batteries, and
numerous applications in the fields of chemical engineering
and semiconductor design.

Systems with such behavioral constraints are often mod-
eled as resistor-inductor-capacitor circuits or mass-spring-
damper systems that constrain behavior by design. The
parameters of each element of the representative system
are then estimated. Such “white-box” approaches, in an
effort to constrain system behavior, risk eliminating mod-
els that would produce more accurate system descriptions
while maintaining the desired behavioral constraints. Our
goal is instead to construct a model from a measured step
response with only the constraints necessary to conserve
the desired behavior.

The problem of identifying linear dynamical models from
step responses has been previously studied throughout the
history of dynamical systems, and a thorough overview of
the progress from early graphical methods to more modern
techniques may be found in the references of Ahmed et al.
[2007]. One issue with existing step-based identification
methods is that many are derived in continuous time and
require numerical approximation of derivatives, which may
be extremely inaccurate for noisy data.

The step-based realization (SBR) method, first developed
by van Helmont et al. [1990] and restated in a subspace
framework by Miller and de Callafon [2009], generalizes
classical realization theory to construct state-space models
from discrete-time step-response measurements. Only lin-
earity of the target system is assumed, and the model order
is derived during the identification process. We will show
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that the computational simplicity of the method allows
for the incorporation of convex constraints, resulting in
models with the same desired behaviors that many of the
aforementioned “white-box” methods were developed to
provide.

In this paper, we develop a constrained step-based realiza-
tion (CSBR) method which constrains the eigenvalues of
the identified model to lie within general convex regions of
the complex plane. The approach is a generalization of the
method developed by Lacy and Bernstein [2003], which
computes stable system estimates by re-parameterizing
a Frobenius norm minimization present in all subspace
methods to be affine in the desired parameters. This norm
is then minimized subject to a linear matrix inequality
(LMI), also affine in the parameters, which constraines the
eigenvalues of the system estimates to be within the unit
circle. The more generalized LMI framework developed in
this paper relies on a similar Frobenius-norm minimization
and is extendable to all standard subspace methods. We
then construct a second constrained minimization problem
to insure that the identified model exhibits no overshoot
or undershoot and has a pre-determined steady-state gain.
Results of simulated experiments are included throughout
the paper.

2. PRELIMINARIES

We consider the identification of a linear, time-invariant,
single-input-multi-output system

z(t+1) = Ax(t) + Bu(t) 1)

y(t) = Cx(t) + Du(t) + v(t)

in which u(t) € {0,1}, z(t) € R, y(t) € R™, A € R"*"
B eR"”, C € Rw*" and D € R". The input u(t) is a
unit step beginning at time ¢ = 0, and z(0) = 0. The noise
signal v(t) is generated by a stationary, stochastic process
and may be either white or colored. This model includes

the case in which white noise is added to the state and
output.

The state-space system (1) has an alternative representa-
tion

y(t) = Glkyu(t —k) +u(t) (2)
k=0

in which
D, k=0,
Glk) = {CA’HB, k>0

are the system Markov parameters.

The standard notation of positive definiteness and semi-
definiteness as > 0 and > 0, respectively, is used.

We assume the following;:

(i) The system is stable.

(ii) The steady-state value of the step response is known.
(iii) The system has strictly real eigenvalues.

(iv) The step response has no undershoot or overshoot.

We will begin by presenting an SBR method that incor-
porates none of this knowledge and gradually incorporates
the information into the algorithm as the paper progresses.

3. STEP-BASED REALIZATION

Kalman’s original realization problem concerned the con-
struction of state-space models from experimentally ob-
served impulse responses [Kalman, 1963]. The Ho-Kalman
algorithm provided a solution to the realization problem
via the decomposition of block-Hankel matrices of Markov
parameters [Ho and Kalman, 1966]. This was later refined
by Kung [1978] to use the singular-value decomposition
(SVD), which can be shown to be optimal in a rank-
reducing sense. The SBR method is a generalization of
Kung’s method to step responses. In this section, we first
review the standard Ho-Kalman-Kung procedure for con-
structing state-space realizations from block-Hankel ma-
trices of Markov parameters and then extend the method
to constructing realizations from step responses.

8.1 The Ho-Kalman-Kung Realization Algorithm

Suppose the first 41 > 2n + 1 Markov parameters of (2)
are known exactly. The block-Hankel matrices

G(1) G2 al) T
a2 G G+ 1)
H=1 . : : (3)
G(r) G(r+1) - Gr+1— 1),
and FGR) GB) e G+ 1)
| e e - Gl+2)
H = ) : : (4)
Gr+1) Gr+2) -~ G(r+1)]

will have rank n for all rn, > n and [ > n. Moreover, if O,
and C; are the extended observability and controllability
matrices, respectively, given by

C
CA
Or=1 . and C =[B AB --- AB'"™'],
CAT*I
then -
H=0,C and H = 0,AC,.

If the Markov parameters are not exact but noise-
corrupted estimates, then (3) will be full rank but close
to a rank-n matrix in a 2-norm sense, so long as the noise
on G(k) is small relative to the singular values of H. Let
H have the singular-value decomposition (SVD)

n=w i 8] 4]

The rank-n estimate of H

H= arg min HFI—HH
rank(H)=n 2
is then A
H=U,%, V]I
If the model order n is unknown, it can be estimated from
the range of the singular values at this point. Estimates of
O, and C; are then taken as

0, =U,xL/? ¢ =x2vr.
The state-space system parameters are estimated as
A= (O)HEC) =2 2UT AV, %12

and
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B = Cl(:,l) C= Or(l:ny,:) D= G(O)
in which (-) represents the Moore-Penrose pseudoinverse
and the parenthesized subscripts of ¢, and O, represent
MATLAB-style indexing. Further discussion can be found
in Kung [1978] and in the literature of the Eigensystem
Realization Algorithm [Juang and Pappa, 1985].

3.2 The Step-Based Realization Algorithm

The preceding algorithm may be generalized to step re-
sponses following the procedure of van Helmont et al.
[1990]. Let {y(0), y(1), ..., y(N)} be a measured re-
sponse of an LTI system to a unit-step input applied at
t = 0 that is corrupted by some possibly-colored measure-
ment noise v(t). Construct the block-Hankel data matrices

y(1) y(2) y(l)
y(2) y(3) y(+1)
Y = . . .
y(r) y(r+1) - y(N = 1)
and
y(2)  y3) -y(l+1)
_ y3) oy eyl +2)
Y = )
y(r+1) y(r+2) - y(N)
These satisfy the equations
Y=HU,+TU+V (5)
Y=HU,+TU+V (6)
in which H and H are given by (3) and (4), respectively,
G(0)

Gl G)
Clr—1) Glr—2) - G0)

and

T=
; : . G(0)
G(r) Gr+1) --- G(1)
are block-Toeplitz matrices of Markov parameters, U is an
(r—1)x (I—1) matrix of ‘I’s, and Up is an (I—1) x (I—1)
upper-triangular matrix of ‘1’s.

The matrix U has rank 1, and cannot therefore be used
to create a projector to separate the row spaces of T
and H, as is done in traditional projector-based subspace
identification. Because U is a matrix of ‘1’s, however, each
row of TU contains a sum of the columns of 7". The result
is a column-identical matrix
G(0) G(0) e
G(0)+ G(1) G(0)+G(@1) ---

TU = : :
r—1 r—1

> Gk ) G(k)

k=0 k=0

An equivalent result holds for TU. The products TU and
TU cannot be calculated exactly for noisy measurements,

but in the noise-free case, they are equal to M = TU and
M = TU, respectively, in which

y(0)  y(0) y(1) y(1) -
y() y(1) @ @)
= : : o M= : :
y(r—1) y(r—1) - y(r) y(r)

Hence we use the approximations TU ~ M and TU ~ M
to approximate HU, and HU, as
HU,~Y -M=R
AU, ~YV - =R
and perform the realization algorithm on R and R instead
of H and H. Taking the SVD

¥, 0] [vrF
w-wof 2] 7]

an appropriate system order n may be found from the
range of the singular values. Once a suitable n has been
chosen, we compute the estimates

O, =U%/* QU =%)/*V,]
and estimate A as
A= (0,)R(CU) =2, YV2UI'RV, 22,
which is the solution of the Frobenius-norm minimization
problem

A= argAmin ‘ ‘@rAéTUP N E‘ ’F

= arg min ‘
A
As with the standard realization algorithm, C is estimated
as

U,S/2Axl/2yT —EHF.

é = @r(l:ny,:)~ (8)
Because the first column of U, is [1 0 0 ---]T, the first
column of C;U, is B, and a possible estimate for B is
B = ér(:,l)U = (E;L/QVJ)(:,I)

with D then estimated as D = y(0) ~ G(0). Improved
estimates of B and D, however, may instead be found via
linear least-squares for a more optimal fit. Given estimates
A and C’, let B and D be the solution of

E, ﬁ:arg n}in||y—y||2 (9)
B, D
y(0) 4(0)
y(1) R (1)
y = : g= : (10)
y(N +1) G(N +1i)
LN = A At—k—1 i j_ B;
Gt) = kZ:OCA 1] 6 0 [D} (11)

See, for instance, Verhaegen and Verdult [2007, Sec. 9.2]
for additional discussion.

3.8 Simulation FExperiments with SBR

To demonstrate the SBR algorithm, we apply it to a step
response of the system

la) = 0.004(q — 0.5)

(g —0.95)(¢ — 0.9)(¢ — 0.6)

(12)
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Fig. 1. Step responses of 300 SBR estimates (top) and
pole locations (bottom). Estimate poles are gray dots.
Poles of G(q) are ‘x” and those of V(q) are ‘+’.

with signals
y(t) = G(q)u(t) + v(?),
where v(t) is defined as

u(t) = V(ge(®),

0.25(¢® — 1.2¢ + 0.93
Vig) = 2(_ )
(g2 — 1.2q + 0.3825)

and e(t) is a white noise signal with variance o = 0.005.
The noise-generating system V(q) has poles at 0.6 £
10.15. This system has strictly real eigenvalues with both
“slow” and “fast” response characteristics often seen in
thermodynamic processes. We assume beforehand that the
system has a single time delay, a steady-state value of 1,
and meets the assumptions listed in Section 2; we wish for
our model to have these characteristics as well.

in which

Simulations of 300 step responses of length N = 200
were measured. The number of rows chosen for the SBR
data matrices was r = 15. D was assumed to be 0. A
sample identification result and pole locations for the 300
estimates are shown in Figure 1. Note that not every
response is entirely shown due to the limits of the y-axis.

We conclude that the SBR method fails to consistently
provide estimates with the desired behavior. We could
repeat the experiment and average the responses until
the model is accurate enough that the complex part of
the poles may be ignored, but repeating experiments
an arbitrary number of times is typically infeasible. We
propose to instead apply constraints to the estimation
procedure so that the estimate lies within a model set for
which the desired behavior is guaranteed.

4. CONSTRAINED STEP-BASED REALIZATION

We begin by constraining the eigenvalues of the system
estimate. We require that the eigenvalues of the identified
model be (i) stable, (ii) real, and (iii) positive so as to not

exceed the Nyquist sampling frequency of the system. To
define these constraints as a convex optimization problem,
we use the concept of LMI regions, first introduced in
Chilali and Gahinet [1996]. We then develop additional
constraints which incorporate all knowledge of our system
into the identification procedure.

4.1 LMI Regions

An LMI region is a convex region D of the complex plane,
defined in terms of a symmetric matrix o and a square
matrix 3, as

D={:€C: fp(z) > 0} (13)
where

fo(z)=a+pz+p"%
The original definition of an LMI region in Chilali and
Gahinet [1996] has < in place of >. We adopt the above
definition instead so that our results are straightforward
to implement as a semi-definite program and because
the real-number line cannot be parameterized as an LMI
region if (13) uses a strict inequality.

We will call fp(z) for a given D the describing function
of D. In Chilali and Gahinet [1996], it is shown that the
eigenvalues of a matrix A lie within the region D if and
only if
Mp(4, P)>0, P=P">Q,

in which

Mp(A, P)=a®@ P+ & (AP)+ T @ (AP)T. (14)
LMI regions generalize standard notions of stability for
both continuous and discrete-time systems. For example,
the region formed by the unit disc and its interior is
described by

10 01 00f_
folz) = {0 1} + {0 0] 2+ [1 0] 2
This results in the LMI constraint

Mo(4, P) = {PZT A]f] >0, (15)

the Schur complement of which is, of course, the discrete-
time Lyapunov equation.

The intersection of two LMI regions D; and Ds is also an
LMI region, described by the matrix function

ouma(s) = [, 0]

In general, the (o, 8) pair that describes an LMI region is
not unique.

(16)

4.2 LMI Regions for Stable, Real, and Positive Eigenvalues

We have already introduced the LMI region that con-
strains eigenvalues to lie on and within the unit disc. To
provide a greater margin of stability for the identified mod-
els, we instead constrain eigenvalues to the disc of radius
1 —4,. The LMI region consisting of complex numbers for
which
2] <1— 05
has a describing function with parameters

01

as = (1-0,)L, msz. (17)
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The LMI region that describes the real number line is given
by the describing function

R ={z: fr(z) > 0},

fr(z) = {—8.5 Oﬂ z {0(.)5 _8'5} z

but a corresponding eigenvalue constraint would be com-
putationally infeasible for optimization. Instead, we in-
clude a relaxation parameter to describe an arbitrarily
small band around the real axis in the complex plane. The
LMI region consisting of complex numbers for which

[Im(2)] < 4,
has a describing function with parameters
0 05
o = 0,12, Br = |:O5 0 :| .

The parameter §, can be made small enough so that the
complex parts of the resulting identified eigenvalues are
near machine precision.

(18)

Finally, we wish to construct an LMI region that describes
the positive right-half plane. This region should also in-
clude a relaxation parameter so that the region begins
some distance away from the imaginary axis. The LMI
region consisting of complex numbers for which

Re(z) > 0,
has a describing function with parameters

west %) 5]

The three LMI regions described by (17), (18), and (19)
may be combined using the identity (16) to form a single
LMI constraint, generated by the function (14).

(19)

4.8 Incorporating Eigenvalue Constraints into SBR

To create the CSBR method by incorporating the LMI
constraints, we first restate the minimization problem (7)
to include a weighting term W as

Jo(A, W) = H(@r/lC}Up fE)WHF. (20)
Let
W= (.U, P=V,x 2P,
so that (20) becomes
(A, P)= HUHE}/ZAP—RVnE;I/ZPHF. (21)

Now re-parameterize (21) with the auxiliary term @ =
AP, to form the complete problem statement of the CSBR,

minimize J(Q, P)
subject to M(Q, P)>0, P=PT >0
in which
@ P)=||Unsy?Q - V. 2P|
M(Q7 P) = diag(M57 M., Mp)
_[a=d)P @
M = QT (1-4y)
M. — 5P 05Q"-Q)
" 05(Q - Q) 6P
_ [26,P 0
Me=1"0 Q+QT2§pP] '

This can be shown to be equivalent to a convex linear
programming problem with mixed equality, quadratic,
and positive semidefinite constraints [Lacy and Bernstein,

2003]. Once solutions for @ and P are found, let A=QP!
and take C' from (8) as before.

4.4 Constraining Step-Response Undershoot, QOvershoot,
and Steady-State Gain

Returning to the least-squares problem of (9), we wish to
constrain the step-response of the estimate to exhibit no
overshoot, no undershoot, and have steady-state value yo,
that is

0<J(t) <wyoo ¥Vt and C(I,—A)'B+D =y (22)
with §(¢) defined as in (11). We thereby replace (9) with
a constrained least-squares problem that enforces (22).
Given estimates A and C, solve the following problem:

minimize J(0) = ||y — Y0,
subject to 98 > 0, Y0 < Yoo, Y0 = Yoo
in which
B e
o= | | v=[Sea ]
W(N + 1) w0
T N
v= [0 —A)~" 1] 9—[[3}

This is a convex quadratic-programming problem easily
solved by modern numerical optimization techniques.

4.5 Simulation Experiments with CSBR

The constrained SBR method was applied to the same 300
data sets generated for the experiments in Section 3.3. The
results are shown in Figure 2. The minimization problem
was solved using CVX [Grant and Boyd, 2011] with SDPT3
[Toh et al., 2009] as the selected solver.

Also shown for comparison are ARX estimates in Figure
3 and output-error (OE) estimates in Figure 4 [Ljung,
1999]. The ARX estimates, while having comparatively
low variance in pole location, are consistently biased due to
the noise effects. The OE estimates have a high variation
in pole location and suffer from severe convexity issues due
to the short length and little excitation of the measured
data sequences. For both methods, a sequence of 10 zeros
was prepended to the input and output data to provide
sufficient backward steps for the prediction-error criteria.

5. CONCLUSIONS

The method developed in this paper allows for the identi-
fication of systems with the eigenvalues of the estimate
constrained to be real, stable, and positive. Addition-
ally, a subsequent optimization constrains the response
to have no overshoot or undershoot. Each step is a well-
behaved convex optimization problem. By incorporating
a priori assumptions concerning the underlying system
behavior into the identification algorithm, we are able to
compensate for the lack of excitation of a step-response
measurement.
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Fig. 2. Step responses of 300 CSBR estimates (top) and
pole locations (bottom). Estimate poles are gray dots.
Poles of G(q) are ‘x” and those of V(q) are ‘+’.
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Fig. 3. Step responses of 300 ARX estimates (top) and
pole locations (bottom). Estimate poles are gray dots.
Poles of G(q) are ‘x’ and those of V(q) are ‘+’.
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