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In this note, we investigate the asymptotic stability of the filter forminimum-variance unbiased input and
state estimation developed by Gillijns and De Moor. Sufficient conditions for the stability are proposed
and proven, with inspiration from the Kalman filter stability analysis.
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1. Introduction

Motivated by a wide range of applications, optimal input and
state estimation has been a topic of intense interest recently
with the aim to use output measurements of a linear dynamic
system to reconstruct both the state and input of the system.
Gillijns and De Moor (2007a) proposed a recursive filter and
designed the optimal gains using the principle of minimum-
variance unbiased estimation (MVUE). The linear time-invariant
system under consideration is

xk+1 = Axk + Gdk + wk, (1)

yk = Cxk + vk, (2)

where xk ∈ R
n is the state vector, dk ∈ R

m is the unknown input
vector, and yk ∈ R

p is the output measurement. The vectors wk ∈
R

n and vk ∈ R
p are mutually uncorrelated white noise sequences,

with known covariance matrices Q ≥ 0 and R > 0, respectively.
For the system in (1)–(2), a recursive linear filter of the following
form is designed:

x̂k|k−1 = Ax̂k−1|k−1, (3)
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d̂k−1 = Mk(yk − Cx̂k|k−1), (4)

x̂∗
k|k = x̂k|k−1 + Gd̂k−1, (5)

x̂k|k = x̂∗
k|k + Kk(yk − Cx̂∗

k|k). (6)

In the above filter, x̂k|k−1, which is the estimate of Axk, is obtained

first. The estimate d̂k−1 is computed from yk, since yk is the first

measurement that contains information about dk−1. Then d̂k−1 can
be used together with x̂k|k−1 to yield x̂∗

k|k−1, which is an a priori,
unbiased estimate of xk. This step is based on the state equation
in (1). Finally, the a posteriori estimate x̂k|k is obtained by updat-
ing x̂∗

k|k−1 with a correction term. Here, Mk ∈ R
m×p and Kk ∈ R

n×p

are gain matrices adjustable to achieve optimal estimation perfor-
mance. In Gillijns and De Moor (2007a), the determination of opti-
mal Mk and Hk is based on the MVUE approach.

For input estimation, a necessary and sufficient condition for
unbiasedness is required, that is characterized by

MkCG = I (7)

for all k. Then Mk is derived by minimum-variance estimation
using least squares under the constraint (7). The state estimation
is transformed into a standard Kalman filtering problem, with Kk

determined by minimizing the estimation variance of x̂k|k. It is
further proven in Gillijns and De Moor (2007a) that the optimal
input estimate over the class of all linear unbiased estimates can
be written in the proposed recursive form. Optimality of the state
estimator has been proven in Kerwin and Prince (2000).

An important but unexplored problem in Gillijns and De Moor
(2007a) is: under what conditions the designed filter achieves time
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invariance and is asymptotically stable? It is well known that
stability of the classical Kalman filter depends on detectability of

(A, C) and stabilizability of (A,Q
1
2 )— seemore details in Anderson

and Moore (1979) and Maybeck (1979). In this note, we will
develop a parallel to establish the asymptotic stability properties
of the filter in Gillijns and De Moor (2007a). The results can be
extremely useful not only in behavior analysis of the input and
state filter, but also in its practical implementation. We follow the
notation and terminology from Gillijns and De Moor (2007a), to
which the reader is encouraged to refer for more information.

2. Asymptotic stability analysis

Assume X ∈ S = {S ∈ R
n×n|S = ST, S ≥ 0}, M ∈ R

m×p and
K ∈ R

n×p. We define the operator

φ(M, K , X) = ÃXÃT + F̃Q F̃ T + G̃RG̃T,

where

Ã(M, K) = (I − KC)(I − GMC)A, (8)

F̃(M, K) = −(I − KC)(I − GMC), (9)

G̃(M, K) = (I − KC)GM + K . (10)

Note that the filter in (3)–(6) can be rewritten as

d̂k−1 = Mk(yk − CAx̂k−1|k−1), (11)

x̂k|k = Ax̂k−1|k−1 + Gd̂k−1 + Kk(yk − CAx̂k−1|k−1 − CGd̂k−1). (12)

Define x̃k = xk − x̂k|k. It can be verified that

x̃k = Ã(Mk, Kk)x̃k−1 −
[

F̃(Mk, Kk) G̃(Mk, Kk)
]

[

wk−1

vk

]

. (13)

The associated covariance matrix is given by

Pk|k = φ(Mk, Kk, Pk−1|k−1), (14)

where φ can be determined from (13).

The filter designed in Gillijns and De Moor (2007a) has global
optimality. First, it yields state estimation equivalent to the filters
in Darouach and Zasadzinski (1997) and Kitanidis (1987) — both
are globally optimal (Kerwin & Prince, 2000). Second, the global
optimality of input estimation depends on the filter form and the
state estimation. As the proposed recursive form is proven optimal
and state estimation is optimal as aforementioned, the input
estimation is also globally optimal. Thus we have the following
lemma.

Lemma 1 (Gillijns & De Moor, 2007a). The gain matrices Mk and Kk

designed in Theorems 2 and 7 in Gillijns andDeMoor (2007a), denoted

as M∗
k and K ∗

k , respectively, minimize the estimation covariance Pk|k
subject to the unbiasedness constraint (7).

If letting

ψ(X) = φ(M∗, K ∗, X) = min
M,K

s.t. MCG=I

φ(M, K , X), (15)

where M∗ and K ∗ are the optimal M and K , then Lemma 1 implies
for the designed optimal filter that

Pk|k = ψ(Pk−1|k−1). (16)

As pointed out in Anderson and Moore (1979), we are usually
concerned with two properties for the filter. The first one,
asymptotic time invariance, is whether the recursive computation
in (16) leads to a fixed point P̄ , where

lim
k→∞

Pk|k = P̄. (17)

If this happens, P̄ is also the asymptotically constant (i.e., limiting)

solution of (16). That is, P̄ satisfies

P̄ = ψ(P̄). (18)

The other one is asymptotic stability. It is about whether the filter is

asymptotically stable given the limiting gain matrices associated

with P̄ , denoted as M̄∗ and K̄ ∗. We are interested in deriving

conditions that guarantee both the properties simultaneously.

Let us introduce the notation λi(X) to denote the ith eigenvalue

of a square matrix X . We give the lemma below as the initial step

for the property analysis.

Lemma 2. If there exist M ∈ R
m×p and K ∈ R

n×p such that M sat-

isfies (7) and

∣

∣

∣
λi

[

Ã(M, K)

]
∣

∣

∣
< 1 (19)

for i = 1, 2, . . . , n, then the sequence {Pk|k} is bounded, i.e., Pk|k < ∞
for any k given any initial condition 0 ≤ P0|0 ≤ ∞.

Proof. To assist in showing this, let us construct a suboptimal fil-

ter. Choose fixedMs ∈ R
m×p and K s ∈ R

n×p such that both (7) and

(19) are satisfied. Following (11), consider the unbiased suboptimal

filter

d̂sk−1 = Ms(yk − CAx̂sk−1),

x̂sk = Ax̂sk−1 + Gd̂sk−1 + K s(yk − CAx̂sk−1 − CGd̂sk−1).

Then following (13), the state estimation error x̃sk = xk− x̂sk is given

by

x̃sk = Ã(Ms, K s)x̃sk−1 −
[

F̃(Ms, K s) G̃(Ms, K s)
]

[

wk−1

vk

]

,

with the associated covariance matrix P s
k+1 is given by

P s
k = φ(Ms, K s, P s

k−1).

Note that the suboptimal filter is asymptotically stable, since
∣

∣

∣
λi

[

Ã(Ms, K s)

]
∣

∣

∣
< 1 for all i. Thus P s

k is bounded for any nonnega-

tive initial condition. Comparing the above suboptimal filter to the

designed optimal filter, we note that, if both of them are initial-

ized by P0|0, then the optimality suggests Pk|k ≤ P s
k . This proves the

boundedness of Pk|k. �

The following theorem establishes conditions for asymptotic

time invariance and stability of the consequent time-invariant fil-

ter, extending the ideas used in Kalman filter analysis in Anderson

and Moore (1979) and Lancaster and Rodman (1995).

Theorem 1. If there exist M ∈ R
m×p and K ∈ R

n×p satisfying (7)

and (19), and if (A,Q
1
2 ) is stabilizable, then Pk|k converges to a unique

fixed point P̄ for any initial condition P0|0, where P̄ is the unique

positive semi-definite solution of P̄ = ψ(P̄). Moreover, with the

associated limiting gain matrices M̄∗ and K̄ ∗, the time-invariant filter

is stable, i.e.,

∣

∣

∣
λi

[

Ã(M̄∗, K̄ ∗)

]∣

∣

∣
< 1 for i = 1, 2, . . . , n.

The proof is organized as follows. First, it is illustrated that Pk|k
is monotonically increasing and converges to a fixed point with

zero initial condition. Second, the asymptotic stability is shown by

proving that the time-invariant steady-state filter is stable. Finally,

the convergence of Pk|k and the stability of the filter are proven to

hold for arbitrary nonnegative initial conditions.
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Proof of Theorem 1. If P0|0 = 0, Pk|k is found monotonically in-
creasing and thus convergent due to its boundedness proven in
Lemma 2. To show this, we note that

P0|0 ≤ P1|1,

when P0|0 = 0. Repeatedly using the fact that, if X ≤ Y , then

ψ(X) = φ(M∗
X , K

∗
X , X) ≤ φ(M∗

Y , K
∗
Y , X) ≤ φ(M∗

Y , K
∗
Y , Y ) = ψ(Y ),

we obtain

Pk|k ≤ Pk+1|k+1. (20)

Thus Pk|k is monotonically increasing for zero initial conditions.
With the boundedness of Pk|k proven in Lemma 2, we can conclude

that Pk|k converges to a fixed point P̄ , which is the solution of (14).

For notational convenience, define
¯̃
A = Ã(M̄∗, K̄ ∗),

¯̃
F = F̃(M̄∗,

K̄ ∗) and
¯̃
G = G̃(M̄∗, K̄ ∗). Let us now show asymptotic stability, re-

sorting to proof by contradiction. Assume that the time-invariant
filter is unstable. Then there exist some eigenvalue |λ| ≥ 1 and cor-

responding eigenvector ω such that
¯̃
Aω = λω. From (16) we have

ω∗P̄ω = ω∗ ¯̃
AP̄

¯̃
A
T

ω + ω∗ ¯̃
FQ

¯̃
F
T

ω + ω∗ ¯̃
GR

¯̃
G
T

ω

= |λ|2ω∗P̄ω + ω∗ ¯̃
FQ

¯̃
F
T

ω + ω∗ ¯̃
GR

¯̃
G
T

ω,

where the superscript ∗ denotes the complex conjugate as no con-
fusion arises. Equivalently,

(1 − |λ|2)ω∗P̄ω = ω∗ ¯̃
FQ

¯̃
F
T

ω + ω∗ ¯̃
GR

¯̃
G
T

ω.

Since |λ| ≥ 1, then both sides must be 0 such that the equality
holds. Then,
(

¯̃
FQ

1
2

)T

ω = −
[(

I −
¯̃
GC

)

Q
1
2

]T

ω = 0,

¯̃
G
T

ω = 0,

from which we have

¯̃
A
T

ω =
(

A −
¯̃
GCA

)T

ω = ATω = λω,

Q
1
2

T

ω = 0,

since Q ≥ 0 and R > 0. The above equations indeed imply (A,Q
1
2 )

is not stabilizable. The contradiction disproves the assumption that
the time-invariant filter is unstable.

We now demonstrate that Pk|k approaches P̄ for any P0|0 ≥ 0.

Comparing Pk|k and P̄ , we have

Pk|k − P̄ = φ(M∗
k , K

∗
k , Pk−1|k−1)− φ(M̄∗, K̄ ∗, P̄)

≤ φ(M̄∗, K̄ ∗, Pk−1|k−1)− φ(M̄∗, K̄ ∗, P̄)

=
¯̃
A(Pk−1|k−1 − P̄)

¯̃
A
T

.

As shown before,
¯̃
A is stable. The right hand side obviously ap-

proaches 0 as k → ∞, thus proving

lim
k→∞

Pk|k ≤ P̄. (21)

On the other hand,

Pk|k ≥ ψk(0),

which implies

lim
k→∞

Pk|k ≥ lim
k→∞

ψk(0) = P̄. (22)

Consequently, we can conclude from (21)–(22) that (17) holds for
an arbitrary positive semi-definite P0|0.

Finally, the uniqueness of P̄ can be established. Assume that
there exists another fixed point P̄ ′, and that P0|0 = P̄ ′. It is observed

from the previous proof that Pk|k → P̄ . Thus P̄ ′ = P̄ . �

For linear time-invariant systems with direct feedthrough,
unbiased minimum-variance input and state estimation is studied
analogously in Gillijns and De Moor (2007b). Consider a linear
system

xk+1 = Axk + Gdk + wk, (23)

yk = Cxk + Hdk + vk, (24)

the filter for which is designed as

x̂k|k−1 = Ax̂k−1|k−1 + Gd̂k−1, (25)

d̂k = Mk(yk − Cx̂k|k−1), (26)

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1). (27)

Here,Mk and Lk are gainmatrices, which are determined via MVUE
in Gillijns and DeMoor (2007b). The global optimality of the above
filter is proven in Hsieh (2010).

Accordingly, define the following operator

ϕ(X) = (A − AL∗C − GM∗C)X(A − AL∗C − GM∗C)T + Q

+ (AL∗ + GM∗)R(AL∗ + GM∗)T,

where

M∗ =
[

HTR̃−1H

]−1

HTR̃−1,

L∗ = XCTR̃−1,

R̃ = CXCT + R.

The property analysis results for the filter in (25)–(27) are
presented in the next theorem.

Theorem 2. For the linear time-invariant system in Gillijns and De
Moor (2007b), if there exist M ∈ R

m×p and L ∈ R
n×p satisfying

MH = I,

LH = 0,
∣

∣

∣
λi [A − (AL + GM)C]

∣

∣

∣
< 1

for all i, and if (A,Q
1
2 ) is stabilizable, then Pk|k−1 converges to a unique

fixed point P̄ for any initial condition P0|−1. P̄ is the unique positive

semi-definite solution of the equation P̄ = ϕ(P̄). Moreover, with the
associated limiting gain matrices, the time-invariant filter is stable.

The proof can be done along the same line as that of Theorem 1,
so we only provide a sketch. The case of zero initial condition is
first studied. It can be proven that Pk|k−1 will converge to a fixed

point P̄ = ϕ(P̄) if P0|−1 = 0. This is from the boundedness and in-
creasingmonotonicity of Pk|k−1 with P0|−1 = 0. The obtained time-
invariant filter can also be shown to be stable. Next, convergence of
Pk|k−1 and stability of the time-invariant filter can then be readily
proven for an arbitrary initial condition, yielding the statement of
Theorem 2.

3. Conclusion

In this note, we have analyzed the asymptotic stability
properties for unbiased minimum-variance input and state
estimation in Gillijns and De Moor (2007a), with results extended
to Gillijns and DeMoor (2007b). Sufficient conditions are proposed
to ensure that the state estimation error covariance approaches to
a unique fixed point, which is the solution of a matrix equation.
Furthermore, it is shown that the time-invariant filter is stable.
The results are an extension of the Kalman filter stability theory to
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the filter for input and state estimation in the minimum-variance
unbiased sense.
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