
Automatica 48 (2012) 2189–2193

Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Hammerstein system identification using nuclear norm minimization✩

Younghee Han 1, Raymond A. de Callafon

University of California at San Diego, Mechanical and Aerospace Engineering, 9500 Gilman Drive, La Jolla, CA, 92093-0401, USA

a r t i c l e i n f o

Article history:

Received 11 August 2011

Received in revised form

19 December 2011

Accepted 13 March 2012

Available online 30 June 2012

Keywords:

Hammerstein system identification

Block-oriented system identification

Rank minimization

Semidefinite programming problem

a b s t r a c t

This paper presents a new method for the identification of Hammerstein systems. The parameter

estimation problem is formulated as a rank minimization problem by constraining a finite dimensional

time dependency between signals. Due to the unknown intermediate signal, the rank minimization

problem cannot be solved directly. Thus, the rank minimization problem is reformulated as an

intermediate signal construction problem. The main assumption used in this paper is that static

nonlinearity is monotonically non-decreasing in order to guarantee a unique combination of a static

nonlinear block and a Finite Impulse Response (FIR) linear block. The rank minimization is then relaxed

to a convex optimization problem using a nuclear norm. The main contribution of this paper is that the

proposed method extends the rank minimization approach to Hammerstein system identification, and

does not need a bilinear parametrization and singular value decomposition (SVD), which are commonly

used in two-step approaches for Hammerstein system identification.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A Hammerstein system has a block oriented structure where
a static input nonlinearity and a linear dynamic system are
separated, as shown in Fig. 1. A comprehensive overview of
Hammerstein nonlinear system identification can be found in Giri
and Bai (2010). Regarding Fig. 1, the objective of this paper is
to formulate a procedure that allows the characterization and
identification of the nonlinear static function f (·) and the linear
dynamic system G(q) individually based on the input u(t) and
the output y(t) observation. This is done in a novel way by the
reconstruction of the intermediate signal x(t) with conditions
on the finite dimensional dynamic representation of the linear
systems G(q) and the memoryless static nonlinearity f (·). A
similar approach was also considered in Zhang, Iouditski, and
Ljung (2007). The main contribution of this paper is that the
proposed method extends the rank minimization approach to
Hammerstein system identification, and does not need a bilinear
parametrization and singular value decomposition (SVD), which
are commonly used in two-step approaches for Hammerstein
system identification. The order of a finite dimensional model can
be expressed as the rank of a matrix that is filled with input and
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output measurement. If the set of feasible models is described by
convex constraints, then choosing the simplest model can often be
expressed as a rank minimization problem (Fazel, Hindi, & Boyd,
2004). Based on this idea, the rank minimization approach is used
to formulate a convex parameter estimation problem via nuclear
norm relaxation, where the nuclear norm of H is defined as the
summation of its singular values as ‖H‖∗ =

∑r

i=1 σi(H). The
use of nuclear norm approximation with application to system
identification can be found in Liu and Vandenberghe (2009)
and with application to Hammerstein systems in Falck, Suykens,
Schoukens, and De Moor (2010).

2. System description

2.1. Hammerstein system

A rank constrained Semidefinite Programming (SDP) problem
will be formulated in such a way that x(t) and u(t) are related via
a memoryless static nonlinearity and that x(t) and y(t) are related
via a linear dynamical system with the smallest McMillan degree.

Condition 1. I. The static nonlinear function (the relation between

u(t) and x(t)) has no memory.
II. The linear dynamic system has a finite, but unknown McMillan

degree n, relating a finite number of the past input samples to the

past output samples.

The properties in Condition 1 are used to formulate a procedure
to reconstruct the unmeasurable intermediate signal x(t) based on
rank minimization.

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
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Fig. 1. Hammerstein system consists of a static nonlinear block followed by a linear

dynamic block.

2.2. Modeling of static nonlinearity

It is well known that the static nonlinear function can be
approximated as a linear combination of a finite set of basis

functions as f (u(t)) =
∑M

m=1 θmφm(u(t)), where θm are weighting
parameters to be estimated and φm(·) are user chosen basis
functions. In this paper, a piecewise linear approximation of the
static nonlinearity f (·) using piecewise triangle functions is used.
Using triangle basis functions fm(·), the static nonlinearity f (·) is
assumed to satisfy the following condition

sup
u(t)∈[umin,umax]

lim
M→∞

M
∑

m=1

|θmfm(u(t)) − f (u(t))| = 0, (1)

where the center location vector m = [m1 · · ·mM ]T spans the
amplitude of the input vector u(t) and the amplitude vector
θ = [θ1 · · · θM ]T is to be estimated. The condition in (1) indicates
that the static nonlinearity f (·) can be approximated arbitrarily
well with a dense grid of triangular basis functions. In order to
define a piecewise linear approximation of the static nonlinearity
f (·), a finite value M in (1) can be chosen, whereas the points
m1, . . . ,mM of a grid over [umin, umax] can be chosen linearly
spaced or at strategic locations. Each triangle function fm(u(t)) in
(1) has nonzero values through two segments and zeros elsewhere
except for the first and the last intervals of the grid.

fm(u(t)) =



















u(t) − ml−1

ml − ml−1

forml−1 ≤ u(t) < ml

ml+1 − u(t)

ml+1 − ml

forml ≤ u(t) < ml+1

0 Otherwise

f1(u(t)) =







m2 − u(t)

m2 − m1

for m1 ≤ u(t) < m2

0 Otherwise

fM(u(t)) =







u(t) − mM−1

mM − mM−1

for mM−1 < u(t) ≤ mM

0 Otherwise.

In each segment of the m-axis, the resulting linear function is
defined by two overlapping triangle functions in the segment.
Let x̂(t) = f (u(t), θ) be the approximation of x(t) and θ is the
amplitude parameter

θ =
[

θ1 · · · θM
]T

. (2)

Then, x̂(t) can be written as

x̂(t) = ρ(u(t))θ, (3)

where ρ(u(t)) is defined as

ρ(u(t)) =

[

· · · 0
mk+1 − u(t)

mk+1 − mk

u(t) − mk

mk+1 − mk

0 · · ·

]

for mk ≤ u(t) < mk+1,

where mk and mk+1 are the center locations of the triangle basis
functions. There could be many possible combinations of a static
nonlinear block and a Finite Impulse Response (FIR) linear block
that satisfy Condition 1 and (3). In order to limit the number of
possible selections for a linear block and a static nonlinear block,
in this paper, a monotonically non-decreasing static nonlinearity
with the user chosenmaximum slope of 1 is considered as follows:

Condition 2. I. The static nonlinear function is monotonically non-
decreasing with the maximum slope of 1:

(x̂(i) − x̂(j))(x̂(i) − x̂(j) − u(i) + u(j)) ≤ 0 ∀i > j.

Without loss of generalization, Condition 2 guarantees a solution
for an FIR linear system and serves as a normalization condition
on the static nonlinearity. A Hammerstein system with a mono-
tonically non-decreasing static nonlinear function can be used to
model many control, mechanical, electrical, chemical, and biolog-
ical systems with various static nonlinear functions, such as satu-
ration, deadzone, quantization, etc. The examples can be found in
Giri and Bai (2010).

2.3. The input–output map of the dynamical system

Let g(i), i = 0, 1, . . . be the causal sequence of unit impulse
responses for G(q). The relationship between the intermediate
signal x(t) and the output y(t) can be described by the convolution
as

y(t) =

∞
∑

i=0

g(i)x(t − i) + v(t),

where v(t) is noise. Due to Condition 1 (finite McMillan degree),
for a finite data sequence of N = n1 + n2 data points and a zero
initial condition, the relationship between the intermediate signal
x(t) and the output y(t) can be described by

Y = HXp + TXf + V , (4)

where Y is the data matrix, including the future output y(t),
defined by

Y =







y(1) · · · y(n2)
...

. . .
...

y(n1) · · · · · · y(n1 + n2 − 1)






, (5)

Xp is the data matrix, including the past intermediate signal,
defined by

Xp =







x(0) x(1) · · · x(n2 − 1)
...

. . .
. . .

...

0 0 · · · x(0)






,

Xf is the data matrix, including the future intermediate signal,
defined by

Xf =







x(1) x(2) · · · x(n2)
...

...
. . .

...

x(n1 + 1) x(n1 + 2) · · · x(n1 + n2)






, (6)

H is the Hankel matrix defined by

H =







g(1) · · · g(n2)
...

. . .
...

g(n1) · · · · · · g(n1 + n2 − 1)






,

T is the Toeplitz matrix defined by

T =







g(0) 0 · · · 0 0
...

...
. . .

. . . 0
g(n1 − 1) g(n1 − 2) · · · g(0) 0






,

and V is the matrix, including noise data, defined by

V =







v(1) · · · v(n2)
...

. . .
...

v(n1) · · · · · · v(n1 + n2 − 1)






.
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The order of the linear dynamical system is determined by the
rank(H) as H is simply the product of the extended observability
and controllability matrices (Goethals, Pelckmans, Suykens, & De
Moor, 2005). A lower order model, consistent with the input and
output signals can be estimated by minimizing the rank of H .

2.4. Problem formulation

The effect of Xf to Y in (4) can be removed by the orthogonal
projection of Y onto the null space ofXf .With the projectionmatrix

X⊥
f = I − XT

f (Xf X
T
f )ĎXf , the effect of Xf is removed (Ljung, 1999).

Then,

YX⊥
f = HXpX

⊥
f + VX⊥

f .

In order to remove the effect of noise, the projection Y can be
subsequently weighted by matricesW1 and W2 such that

W1YX
⊥
f W2 = W1HXPX

⊥
f W2 + W1VX

⊥
f W2 (7)

in which W1 and W2 are chosen to be rank-preserving and such
thatW1VX

⊥
f W2 → 0 as the number of samples N → ∞. Details of

the role and choice of weighting matricesW1 andW2 can be found
in Van Overschee and De Moor (1996). The result in (7) indicates
that the rank minimization problem for H can be rewritten as
the rank minimization problem for YX⊥

f . Unfortunately, the rank

minimization problem for YX⊥
f cannot be solved directly since X is

unknown. In this section, the rank minimization problem of YX⊥
f

is reformulated using LQ decomposition of data matrix

[

Xf
Y

]

so that

the rankminimizationproblemcanbe solvedwithout knowingX⊥
f .

Let the LQ decomposition of the data matrix

[

Xf
Y

]

be given by

[

Xf

Y

]

=

[

L11 0
L21 L22

] [

Q T
1

Q T
2

]

, (8)

where L11, L22 are lower triangular andQ1,Q2 are orthogonal. From
(8), Y can be written as follows:

Y = L21L
−1
11 Xf + L22Q

T
2 . (9)

The first term in (9) is spanned by the row vectors in Xf and the
second term is orthogonal to it. Thus, the orthogonal projection of
Y onto the null space of Xf can be written as (Goethals et al., 2005;
Ljung, 1999)

YX⊥
f = L22Q

T
2 . (10)

Since Q2 is orthogonal, (10) indicates

rank(YX⊥
f ) = rank(L22).

As a result, the rank minimization problem for YX⊥
f can be

rewritten as the rank minimization problem for L22. Using the
signal x̂(t) in (3), Xf in (6) can be reconstructed using x̂ as

X̂f = U2Θ, (11)

where Θ is the block diagonal matrix, including θ , defined by

Θ =











θ 0 · · · 0

0 θ · · · 0
...

. . .
. . .

...

0 0
. . . θ











, (12)

where 0 is a zero vector and U2 is the data matrix including the
input u(t), defined by

U2 =







ρ(u(1)) · · · ρ(u(n2))
...

. . .
...

ρ(u(n1 + 1)) · · · ρ(u(n1 + n2))






. (13)

From (8), we have

rank

([

Xf

Y

])

= rank

([

L11 0
L21 L22

])

.

Let L =
[

L11 0

L21 L22

]

. The following lemma explains the rank inequal-

ity condition for the block matrix L.

Lemma 1. The rank of the block matrix L satisfies the following
inequality:

rank

([

L11 0
L21 L22

])

≥ rank(L11) + rank(L22).

With Lemma 1, we have

rank(L11) + rank(L22) ≤ rank

([

Xf

Y

])

. (14)

Since rank(L11) = rank(Xf ) from (8), (14) can be written as

rank(Xf ) + rank(L22) ≤ rank

([

Xf

Y

])

.

From (11), we have

rank(Xf ) = rank(U2Θ) = constant.

In this section, the rank minimization problem for L22 is relaxed
to the upper bound minimization problem for rank(L22), which

is equivalent to the minimization problem for rank

([

Xf
Y

])

.

As a result, system parameters for a lower order model will

be estimated by minimizing rank

([

Xf
Y

])

under the constraints

developed based on Condition 2.

3. Rank minimization for intermediate signal reconstruction

With the parametrization and constraints explained in
Section 2, an optimization problem can be written as

Optimization Problem 1.

Consider

variable θ in (2)

to create x̂ in (3) and Θ in (12),

Minimize

rank

([

X̂f

Y

])

,

where X̂f = U2Θ , and Y is given in (5),
with U2 defined in (13),
subject to

(x̂(i) − x̂(j))(x̂(i) − x̂(j) − u(i) + u(j)) ≤ 0 ∀i > j.

Optimization Problem 1 results in the optimal solution for the
system parameter θ that is used to construct the intermediate
signal x using the relationship in (3), automatically satisfying
Condition 1-I. Unfortunately, the rank constraint in Optimization
Problem 1 is not convex. Minimizing the nuclear norm instead
of the rank of the matrix is a convex relaxation of the rank
minimization problem (Fazel, Hindi, & Boyd, 2001; Fazel et al.,
2004). The motivation for this nuclear norm relaxation will be
explained in Section 3.1 by showing that the nuclear norm is the
convex envelope of the rank function on the set of matrices with
norms less than 1.

3.1. Convex envelope of rank

Lemma 2 (Fazel et al. 2001). The convex envelope of the function
φ(X) = Rank(X), on C = {X ∈ ℜm×n| ‖X‖ ≤ 1}, is φenv(X)
= ‖X‖∗.
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Proof. Can be found in Fazel et al. (2001). �

Lemma 2 has the following implications. Suppose the feasible
set is bounded by Q , i.e., for all X ∈ C , we have ‖X‖ ≤ Q .
The convex envelop of RankX on {X | ‖X‖ ≤ Q } is given by
1
Q
‖X‖∗. In particular, for all X ∈ C , we have RankX ≥ 1

Q
‖X‖∗.

Thus, by solving the nuclear norm minimization problem, we
obtain a lower bound on the optimal value of the original rank
minimization problem (Fazel et al., 2001). Using the nuclear norm
relaxation for rank minimization, Optimization Problem 1 will
be reformulated as a convex problem. First, let us express the
constraints inOptimization Problem1 as LinearMatrix Inequalities
(LMIs). Let δx = [δx(1) · · · δx(kmax)]

T , where δx(k) = x̂(i) − x̂(j)

and δu = [δu(1) · · · δu(kmax)]
T , where δu(k) = u(i) − u(j)

for all i > j and kmax =
∑N−1

k=1 k. Let ∆X = diag(δx) and
∆U = diag(δu), where diag(δx) is the diagonal matrix whose
diagonal elements are the elements of δx. Then, the constraints in
Optimization Problem 1 can be written as ∆X(∆X − ∆U) ≤ 0.
Nuclear norm minimization coupled with linear constraints lead
to a Semidefinite Programming (SDP) problem. This is easier to
solve and the solution is close to the solution of the original non-
convex problem (Fazel et al., 2001, 2004). Using SDP relaxation,
Optimization Problem 1 can be rewritten as the following convex
optimization problem:

Optimization Problem 2.

Consider

variable θ in (2)

to create x̂in (3) andΘin (12),

Minimize
∣

∣

∣

∣

∣

∣

∣

∣

[

X̂f

Y

]∣

∣

∣

∣

∣

∣

∣

∣

∗

,

where X̂f = U2Θ , and Y is given in (5),
with U2 defined in (13),
subject to

∆X(∆X − ∆U) ≤ 0

where

‖H‖∗ =

r
∑

i=1

σi(H).

As a summary, the intermediate signal x(t) in Fig. 1 is parametrized
by (3) and estimation of the unknown coefficients θi, i = 2, . . . ,M
in (3) is solved by computing the solution to the SDP problem
given in Optimization Problem 2. The optimization guarantees that
x̂(t) and u(t) are related via a memoryless static nonlinearity and
guarantees that x̂(t) and y(t) are related via a linear dynamical
system with the smallest McMillan degree. Once x̂(t) has been
reconstructed, the identification of G(q) from x̂(t) and y(t) can be
solved with a standard Prediction Error (PE) identification method
(Ljung, 1999).

4. Numerical example

In this section, a numerical example of the Hammerstein sys-
tem identification using the proposed identificationmethod is pre-
sented. An excitation signal u(t) is zero mean white noise with
a standard deviation of 3. The output disturbance v(t) is filtered
white noise, where the filtering properties are unknown. For the
system identification, a set of data (ten different measurements)
is generated from the Hammerstein system. In the data set, SNR is
greater than 20 dB.m = [min(u(t)) −3 −1 0 1 3 max(u(t))], and

Fig. 2. The plot of the identified static nonlinearity function (top). The Bode plot

of the identified linear dynamic system (bottom). The black line indicates the real

Hammerstein system. The red (shaded) lines indicate estimated systems by using

ten different data. The SNR of each data in the set is greater than 20 dB. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

na = 2 and nb = 2 are used to model the static nonlinear function
and the linear dynamic system respectively.W1 = W2 = I are cho-
sen in this example. In order to solve the SDP problem (Optimiza-
tion Problem 2), SeDuMi (Self-Dual-Minimization) Sturm (1999)
and YALMIP (Yet Another LMI Parser) Löfberg (2004) are used. The
specifications of the Hammerstein system are as follows:



































































Linear dynamical system:

G(q) =
0.1994q−1 − 0.1804q−2

1 − 1.886q−1 + 0.9048q−2

Static nonlinearity:

f (u(t)) =



















2 if x(t) > 3
u(t) + 1 if 1 < x(t) ≤ 3
0 if |x(t)| ≤ 1
u(t) − 1 if − 3 ≤ x(t) < −1
−2 if x(t) < −3

Noise dynamics:

H(q) =
1 + 0.5q−1

1 − 0.85q−1

The estimation results are shown in Figs. 2 and 3. As shown in
Figs. 2 and 3, the proposed algorithm provides excellent identifi-
cation results for data with SNR greater than 20 dB. The pole loca-
tion and the characteristics of the static nonlinearity are very well
captured.
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Fig. 3. Pole (left) and zero (right) locations of the identified linear dynamical

system. The black cross and circle indicate the real linear dynamical system. The

red (shaded) crosses and circles indicate estimated linear dynamical systems. SNR

is greater than 20 dB. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

5. Conclusion

In this paper, theHammerstein systemparameter identification
problem is formulated as a nuclear norm minimization problem.
First, the system parameter identification problem is formulated
as a rank minimization problem to reconstruct the intermediate
signal between the static nonlinearity and the linear dynamics
in a Hammerstein system. This non-convex optimization problem
is then reformulated as a convex optimization problem using a
nuclear norm relaxation. Once the system parameters for the static
nonlinearity are estimated, an intermediate signal can be created
to facilitate the identification of the linear dynamic system. The
main assumption used in this paper is that static nonlinearity
is monotonically non-decreasing in order to guarantee a unique
combination of a static nonlinear block and a Finite Impulse
Response (FIR) linear block. The proposed identification method
is applied to simulation data from a Hammerstein system.
The numerical simulation result shows the effectiveness of the
proposed identification method.
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