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a b s t r a c t

In this paper, a Wiener–Hammerstein system identification problem is formulated as a semidefinite

programming (SDP) problem which provides a sub-optimal solution for a rank minimization problem.

In the proposed identification method, the first linear dynamic system, the static nonlinear function,

and the second linear dynamic system are parameterized as an FIR model, a polynomial function, and a

rational transfer function respectively. Subsequently the optimization problem is formulated by using

the over-parameterization technique and an iterative approach is proposed to update two unmeasur-

able intermediate signals. For the modeling of static nonlinearity, the monotonically non-deceasing

condition was applied to limit the number of possible selections for intermediate signals. At each step

of iteration, the over-parametrized parameters are estimated and then system parameters are

separated by using a singular value decomposition (SVD). The proposed method is applied to the

benchmark problem and the estimation result shows the effectiveness of the proposed algorithm.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Wiener–Hammerstein systems are dynamical systems char-

acterized by a series connection of three parts: a linear dynamical

system, a static nonlinearity and another linear dynamical sys-

tem, as shown in Fig. 1. Early works on Wiener–Hammerstein

system identification can be found in Billings and Fakhouri

(1982), and Hunter and Korenberg (1986). In this early research,

the correlation analysis-based identification method under Gaus-

sian excitation has been proposed. Chen and Fassois (1992)

introduced a time-domain identification method based on the

Maximum Likelihood principle. Boutayed and Darouach (1995)

presented a simple technique for recursive identification of the

Wiener–Hammerstein model with extension to the multi-input

single-output (MISO) case. More recent work can be found in

Crama and Schoukens (2001), Vörös (2007), Paduart, Lauwers,

Pintelon, and Schoukens (2009) and Ase, Katayama, and Tanaka

(2009). Paduart et al. (2009) proposed an identification method

using the polynomial nonlinear state space (PNLSS) approach. Ase

et al. (2009) presented a method iteratively identifying the linear

system and the Hammerstein system by minimizing the square

norm of output prediction error and by using the orthogonal

decomposition subspace method (ORT).

Recently, a system identification method was introduced

based on the sector bound property of static nonlinearity using

Quadratic Programming (QP) and semidefinite programming

(SDP) relaxation in Zhang, Iouditski, and Ljung (2006) and Sou,

Megretski, and Daniel (2008). In Sou et al. (2008), the identifica-

tion problem was formulated as a non-convex QP. A convex SDP

relaxation is then formulated and solved to obtain a sub-optimal

solution to the original non-convex QP. However, the formulation

of the problem is based on the existence of the inverse of the

second dynamic system, which cannot be generally guaranteed.

In this paper, the SDP relaxation approach by Sou et al. (2008)

is extended by using rank minimization to propose a Wiener–

Hammerstein system identification method which does not

require invertibility of any sub-systems. The order of a finite

dimensional model can be expressed as the rank of a matrix that

is filled with input and output measurement. If the set of feasible

models is described by convex constraints, then choosing the

simplest model can often be expressed as a rank minimization

problem (Fazel, Hindi, & Boyd, 2004). Based on this idea, in this

paper a Wiener–Hammerstein system identification problem is

formulated as a rank minimization problem and the non-convex

rank minimization problem is then formulated as a convex

problem via SDP relaxation.

The objective of this paper is to formulate a procedure that

allows the characterization and identification of the three parts in

a Wiener–Hammerstein system individually based on the finite

number of input u(t) and the output y(t) observations. In this

paper, this is accomplished by reconstructing unmeasurable
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intermediate signals x1ðtÞ and x2ðtÞ that satisfy the conditions on

the finite dimensional dynamical representation of the linear

systems G1ðqÞ and G2ðqÞ, and the memoryless static nonlinearity

f ð�Þ. Once the intermediate signals x1ðtÞ and x2ðtÞ are recon-

structed, the identification and characterization of the three parts

becomes trivial.

2. Problem description

The system to be modeled is a Wiener–Hammerstein system

as shown in Fig. 1. The purpose of this study is to propose a

method to identify the unknown linear dynamic systems, G1ðqÞ

and G2ðqÞ, and a static nonlinear function f ð�Þ from a finite number

of observations of the time domain data u(t) and y(t). In this

paper, each block is parametrized separately. System parameters

for each block will be estimated simultaneously by finding

feasible models consistent with the input and output data, and

by satisfying the following basic properties of the Wiener–

Hammerstein system:

Condition 1.

I. The static nonlinear function has no memory: The current

output x2ðtÞ only depends on the current input x1ðtÞ.

II. The first linear dynamic system has a finite, but unknown,

McMillan degree n1: x1ðtÞ ¼fT
1ðtÞy1, where fT

1ðtÞ ¼ ½uðtÞ . . .

uðtÿnbÞ x1ðtÿ1Þ . . . x1ðtÿnaÞ�, y1 is the first linear system para-

meter, and n1rmaxðnbÿ1,naÞ.

III. The second linear dynamic system has a finite, but unknown,

McMillan degree n2: yðtÞ ¼fT
2ðtÞy2, where fT

2ðtÞ ¼ ½x2ðtÞ . . . x2
ðtÿndÞ yðtÿ1Þ . . . yðtÿncÞ�, y2 is the second linear system para-

meter, and n2rmaxðndÿ1,ncÞ.

The intermediate signals x1ðtÞ and x2ðtÞ in Fig. 1 are not

measurable, and the properties in Condition 1 are used to

formulate a procedure to reconstruct x1ðtÞ and x2ðtÞ. The unknown

signals x1ðtÞ and x2ðtÞ will be parametrized, and the estimation of

the unknown coefficients will be formulated as an SDP problem.

Let x̂1ðtÞ be the reconstructed signal of x1ðtÞ, x̂2ðtÞ be the recon-

structed signal of x2ðtÞ, and ŷðtÞ be the model output. The SDP

problem will be formulated in such a way that x̂1ðtÞ and x̂2ðtÞ are

related via a memoryless static nonlinearity, u(t) and x̂1ðtÞ are

related via a linear dynamical system with the smallest McMillan

degree, and JyÿŷJ2 is minimized under Condition 1. Once x̂1ðtÞ

and x̂2ðtÞ have been reconstructed, the identification of G1ðqÞ from

u(t) to x̂1ðtÞ, and the identification of G2ðqÞ from x̂2ðtÞ to y(t) can be

solved with the standard Prediction Error (PE) identification

method in Ljung (1999) and the identification of f ð�Þ from x̂1ðtÞ

to x̂2ðtÞ can be solved via the Least Squares (LS) method. The

proposed identification method deals with Wiener–Hammerstein

systems in this paper, but the idea of constraining rank for signal

reconstruction can be extended to Hammerstein, Wiener, or

Hammerstein–Wiener systems.

3. System parametrization

3.1. Modeling of the first dynamic system

In order to formulate the parameter estimation problem, a

finite impulse response (FIR) model is used to model the first

dynamic system G1. Let hk,k¼ 0;1, . . . be a causal sequence of unit

impulse responses for G1ðqÞ. The relationship between the input

u(t) and the intermediate signal x1ðtÞ can be described by the

convolution as

x1ðtÞ ¼
X

1

k ¼ 0

hkuðtÿkÞ:

Due to Condition 1 (finite McMillan degree), the Hankel matrix

defined as

H¼

h1 . . . hN=2

h2 . . . hN=2þ1

^ & ^

hN=2 . . . . . .hNÿ1

2

6

6

6

6

4

3

7

7

7

7

5

ð1Þ

has a rankðHÞrn1. The order of the linear dynamical system is

determined by the rankðHÞ as H is simply the product of the

extended observability and controllability matrices (Goethals,

Pelckmans, Suykens, & De Moor, 2005). Let

x̂1 ¼ ½x̂1ð1Þ x̂1ð2Þ . . . x̂1ðNÞ�
T

and

U ¼

uð1Þ uð0Þ . . . uð2ÿNÞ

uð2Þ uð1Þ . . . uð1ÿNÞ

^ ^ ^

uðNÞ uðNÿ1Þ � � � uð1Þ
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ð2Þ

With the system parameter

h¼ ½h0 h1 . . .hNÿ1�
T ð3Þ

to be estimated, x̂1 can be written as

x̂1 ¼Uh ð4Þ

The finite order sequence of hk,k¼ 0;1, . . . ,Nÿ1, for a lower order

model for G1 can be estimated by minimizing the rank of H in (1)

(Fazel et al., 2004). The rank minimization of H is used only to

minimize the order of G1. The FIR approximation of G1 is used to

formulate a convex optimization problem to estimate system

parameters in Section 4. Once x̂1ðtÞ has been reconstructed, the

identification of G1ðqÞ from u(t) to x̂1ðtÞ can be solved with the

standard Prediction Error (PE) identification method in Ljung

(1999). Based on (4), the error is defined by

eðtÞ ¼ x1ðtÞÿx̂1ðtÞ ¼ x1ðtÞÿ
X

Lÿ1

k ¼ 0

hkuðtÿkÞ

Thus,

JeðtÞJ22 ¼
X

N

t ¼ 1

x1ðtÞÿ
X

Lÿ1

k ¼ 0

hkuðtÿkÞ

" #2

¼
X

N

t ¼ 1

x21ðtÞÿ2
X

Lÿ1

k ¼ 0

hkRx1uðkÞ

þ
X

Lÿ1

k ¼ 0

X

Lÿ1

l ¼ 0

hkhlRuuðkÿlÞ

where

Rx1uðkÞ ¼
X

N

t ¼ 1

x1ðtÞuðtÿkÞ

G1 (q) f (⋅) G2 (q)u (t) y (t)

x1 (t) x2 (t)

v (t)

o

Fig. 1. Wiener–Hammerstein system consisting of the cascade of a linear dynamic

block G1ðqÞ, a static non-linear block f ð�Þ and another linear dynamic block G2ðqÞ.
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RuuðkÞ ¼
X

Nÿkÿl

t ¼ 1ÿkÿl

uðtÞuðtþkÞ

If L tends toward infinity, the hk obtained by minimizing the

rank(H) will satisfy 9hk951 for kZL, resulting in Rx1uðkÞ-
PLÿ1

l ¼ 0 hlRuuðlÿkÞ. Then,

lim
N-1,L-1

JeðtÞJ22 ¼ 0 ð5Þ

As a result, the estimate x̂1ðtÞ in (4) will converge to x1ðtÞ

provided that N-1 and L-1.

3.2. Modeling of the static nonlinearity

It is well known that the static nonlinear function can be

approximated as a linear combination of a finite set of basis

functions as

f ðuðtÞÞ �
X

M

m ¼ 1

lmxmðuðtÞÞ ð6Þ

where lm are weighting parameters to be estimated and xmð�Þ are

basis functions. A user can choose any basis function if it is linear

in parameters as shown in (6). In this paper, a nf th order

polynomial function is used to model static nonlinearity. With

the polynomial basis functions, x̂2ðtÞ is defined by

x̂2ðtÞ ¼ l0þl1x̂1ðtÞþl2x̂
2
1ðtÞþ � � � þlnf

x̂
nf
1 ðtÞ ð7Þ

Weierstrass’s Theorem guarantees that the polynomial

approximation x̂2ðtÞ in (7) will converge to x2ðtÞ as nf tends

toward to infinity for an arbitrary interval.

Weierstrass’s Theorem: If f ðx1Þ is a given continuous function

for an arbitrary interval irx1r j, and E is a small magnitude

positive constant, there is a polynomial f̂ ðx1Þ such that

9f ðx1Þÿf̂ ðx1Þ9oE 8xA ½i,j�

There could be many possible combinations of ðx̂1ðtÞ,x̂2ðtÞÞ that

satisfy Condition 1 and (7). In order to limit the number of

possible selections of ðx̂1ðtÞ,x̂2ðtÞÞ, in this paper, a monotonically

non-decreasing static nonlinearity with the maximum slope of

1 is considered as follows:

Condition 2.

I. The static nonlinear function is monotonically non-decreasing

with the maximum slope of 1: ðx̂2ðiÞÿx̂2ðjÞÞðx̂2ðiÞÿx̂2ðjÞÿx̂1ðiÞþ

x̂1ðjÞÞr08i4 j.

In Condition 2,

x̂2ðiÞÿx̂2ðjÞZ0 ) x̂2ðiÞÿx̂2ðjÞr x̂1ðiÞÿx̂1ðjÞ

or

x̂2ðiÞÿx̂2ðjÞr0 ) x̂2ðiÞÿx̂2ðjÞZ x̂1ðiÞÿx̂1ðjÞ:

In both cases,

x̂1ðiÞÿx̂1ðjÞ ¼ 0 ) x̂2ðiÞÿx̂2ðjÞ ¼ 0

or

x̂1ðiÞÿx̂1ðjÞa0 )
x̂2ðiÞÿx̂2ðjÞ

x̂1ðiÞÿx̂1ðjÞ
r1:

The maximum slop of the static nonlinearity is a user-chosen

value, thus can be adjusted by a user. In this paper, we assumed

that l0 ¼ 0 and l1 ¼ 1. The assumptions are not necessary for the

proposed method, but chosen for notational brevity and normal-

ization. Without loss of generalization, this monotonicity assump-

tion on the unknown static nonlinearity combined with the

assumptions (l0 ¼ 0, l1 ¼ 1, and the maximum slope r1) guar-

antees a solution for an FIR linear system for G1 and serves as a

normalization condition on the static nonlinearity. Based on

(4) and (7), x̂2 ¼ ½x̂2ð1Þ . . . x̂2ðNÞ�
T can be calculated as

x̂2 ¼UhþX1l ð8Þ

where

l¼ ½l2 . . . lnf
�T ð9Þ

and

X1 ¼

x̂
2
1ð1Þ . . . x̂

nf
1 ð1Þ

^ ^ ^

x̂
2
1ðNÞ . . . x̂

nf

1 ðNÞ

2

6

6
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7

5

ð10Þ

An iterative approach will be used to update the higher order

nonlinear terms of x̂1 in (10) that are included in the description

of x̂2 in (8).

3.3. Modeling of the second dynamic system

Since the output of the Wiener–Hammerstein system is

measured, a rational transfer function is used to model the second

dynamic system G2. The simulation output ŷðtÞ is defined as

ŷðtÞ ¼ G2ðqÞx̂2ðtÞ ¼
DðqÞ

CðqÞ
x̂2ðtÞ

where

CðqÞ ¼ 1þc1q
ÿ1þ � � � þcnc

qÿnc

DðqÞ ¼ d0þd1q
ÿ1þ � � � þdnd

qÿnd ð11Þ

Using the system parameters in (11), the linear difference

equation between the output ŷðtÞ and the intermediate signal

x̂2ðtÞ is defined as

ŷðtÞ ¼ ÿ
X

nc

k ¼ 1

ckyðtÿkÞþ
X

nd

k ¼ 0

dkx̂2ðtÿkÞ

Let

GðtÞ ¼
X

nd

k ¼ 0

dkx̂2ðtÿkÞ ¼
X

nd

k ¼ 0

dkUðtÿk, :Þhþ
X

nd

k ¼ 0

dkX1ðtÿk, :Þl ð12Þ

and

T ¼Uhd
T
þX1ld

T
¼

T1;1 . . . T1,nd þ1

^ ^ ^

TN,1 . . . TN,nd þ1

2

6

4

3

7

5
ð13Þ

using U in (2), h in (3), l in (9) and X1 in (10), where

d¼ ½d0 . . .dnd
�T ð14Þ

and the notations (k,:) and (:,k) are used to denote the kth row

and the kth column in a matrix respectively. Then GðtÞ in (12) can

be rewritten as

GðtÞ ¼
X

minðt,ndÞ

k ¼ 1

Ttÿkþ1,k

Using the given parameterization, the simulated output vector

ŷ ¼ ½ŷð1Þ . . . ŷðNÞ�T can be written as

ŷ ¼ YcþG ð15Þ

where

c¼ ½c1 . . . cnc
�T ð16Þ
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Y ¼

ÿyð1ÿ1Þ . . . ÿyð1ÿncÞ

^ ^ ^

ÿyðNÿ1Þ . . . ÿyðNÿncÞ

2

6

4

3

7

5
ð17Þ

and

G¼ ½Gð1Þ . . .GðNÞ�T ð18Þ

With the system parametrization in Section 3 based on Condition

1, system parameters for a lower order model for G1, consistent

with the input and output measurement data, can be estimated

by minimizing JyÿŷJ2, with ŷ in (15) and rank(H), with H

in (1) simultaneously under the constraints developed based on

Condition 2.

4. Problem formulation

4.1. Optimization problem

With the system parametrization and constraints explained in

Section 3, the optimization problem to obtain system parameters

can be written as

Optimization Problem 1.

Consider variables

hN�1 in ð3Þ

lnfÿ1�1 in ð9Þ

cnc�1 in ð16Þ

dnd þ1�1 in ð14Þ

and define

x̂1 ¼Uh in ð4Þ

x̂2 ¼UhþX1l in ð8Þ

ŷ ¼ YcþG in ð15Þ

minimize

w1rankðHÞþw2JyÿŷJ2 with H in ð1Þ

subject to

ðx̂2ðiÞÿx̂2ðjÞÞðx̂2ðiÞÿx̂2ðjÞÿx̂1ðiÞþ x̂1ðjÞÞr0 8i4 j:

In Optimization Problem 1, w1 and w2 are weighting factors.

Optimization Problem 1 is a non-convex quadratic programming

(QP) problem. Semidefinite programming (SDP) relaxation is a

standard approach to solve non-convex QP problems. An SDP

relaxation procedure converts a non-convex optimization pro-

blem to a convex optimization problem by defining a feasible

convex set, which is easier to solve and whose solution is close to

the solution of the original non-convex optimization problem.

4.2. Semidefinite programming relaxation

In order to convert the non-convex Optimization Problem 1 to

a convex optimization problem, the over-parametrization techni-

que is used in this paper. Let us define a system parameter matrix

Y that includes system parameters h,l and b. Let us define the

parameter y as

y¼ ½h
T
lT d

T
�T ð19Þ

and then define the over-parametrized parameter matrix Y as

Y¼ y � y0 ¼

h0h0 . . . lnf
h0 . . . dndh0

h0h1 . . . lnf h1 . . . dnd
h1

^ ^ ^ ^ ^

h0lnf . . . lnf lnf . . . dndlnf
^ ^ ^ ^ ^

h0dnd
. . . lnf dnd

. . . dnddnd

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð20Þ

An arbitrary gain may be distributed among the static nonlinearity

and the two linear dynamic systems. In order to avoid an ambiguous

gain, the scaling of the first dynamic system will be fixed by setting
P

k ¼ 0h
2
k ¼ 1. The scaling of the static nonlinear function is fixed as

explained in Section 3.2. Let us define U1 and U2 as

U1 ¼ ½U zerosðN,nfÿ1Þ� ð21Þ

and

U2 ¼ ½U X1� ð22Þ

respectively with U in (2) and X1 in (10) where zerosðN,nfÿ1Þ

is an N-by-ðnfÿ1Þ matrix of zeros. Then, with U1 in (21) and U2

in (22), let

dU1 ¼

U1ð2, :ÞÿU1ð1, :Þ

U1ð3, :ÞÿU1ð2, :Þ

^

U1ðN, :ÞÿU1ðNÿ1, :Þ

^

U1ðN, :ÞÿU1ð1, :Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð23Þ

and

dU2 ¼

U2ð2, :ÞÿU2ð1, :Þ

U2ð3, :ÞÿU2ð2, :Þ

^

U2ðN, :ÞÿU2ðNÿ1, :Þ

^

U2ðN, :ÞÿU2ð1, :Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð24Þ

where the notations (k,:) and (:,k) are used to denote the kth row

and the kth column in a matrix respectively. With the system

parameter matrix Y, the constraint in Optimization Problem 1 can

be rewritten as a linear matrix inequity (LMI) condition as

DXT
2DX2ÿDX

T
2DX1r0 ð25Þ

where

DXT
2DX2 ¼ diagðdiagðdX1

~YdXT
1ÞÞ ð26Þ

and

DXT
2DX1 ¼ diagðdiagðdX1

~~YdUT ÞÞ ð27Þ

Here,

dX1 ¼

X1ð2, :ÞÿX1ð1, :Þ

X1ð3, :ÞÿX1ð2, :Þ

^

X1ðN, :ÞÿX1ðNÿ1, :Þ

^

X1ðN, :ÞÿX1ð1, :Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð28Þ
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with X1 in (10),

dU ¼

Uð2, :ÞÿUð1, :Þ

Uð3, :ÞÿUð2, :Þ

^

UðN, :ÞÿUðNÿ1, :Þ

^

UðN, :ÞÿUð1, :Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð29Þ

with U in (2), ~Y ¼YðNþ1 : NþM,Nþ1 : NþMÞ, and
~~Y ¼

YðNþ1 : NþM,1 : NÞ. Here diag(x) indicates a square matrix with

the elements of a vector x on the diagonal, and diag(X) indicates the

main diagonal of a matrix X. Using the system parameter matrix Y,

the simulated output ŷ in (15) is defined as

ŷ ¼ YcþG

where

T ¼UYð1 : N,Nþnf : Nþnf þndÞ

þX1YðNþ1 : Nþnfÿ1,Nþnf : Nþnf þndÞ

Here, Y in (20), satisfying the LMI in (25), is a rank 1 matrix for

noiseless cases. However, in order to account for the noise effect, the

condition can be relaxed to a rank inequality condition as

rankðYÞrg, where g is a positive constant. An optimization problem

with rank inequality conditions is hard to solve. One simple and

effective way, applicable when the matrix is symmetric positive

semidefinite, is to use its trace in place of its rank. The motivation

for the use of its trace is that if the matrix Y is a symmetric and

positive semidefinite, its singular values are the same as its eigenva-

lues. Therefore, the nuclear norm reduces to trace, and the nuclear

norm is the convex envelope of the rank function on the set of

matrices with norms less than one (Fazel, Hindi, & Boyd, 2001). As a

result, trðYÞrp, where p is a positive constant, is used instead of the

rank inequality condition. The positive constant p can be tuned by

investigating estimation results. Due to this SDP relaxation used to

formulate Optimization Problem 2 and the user-chosen value p, the

constraint I in Condition 2 is relaxed to

ðx̂2ðiÞÿx̂2ðjÞÞðx̂2ðiÞÿx̂2ðjÞÿð1þrÞðx̂1ðiÞÿx̂1ðjÞÞÞrq 8i4 j

where r and q are small magnitude positive constants determined by

the user-chosen value p and a noise level. Also, the rankminimization

on H in Optimization Problem 1 is eliminated since this condition is

absorbed into the trðYÞrp. Finally, the non-convex Optimization

Problem 1 is reformulated as an SDP convex optimization problem as

Optimization Problem 2.

Consider variables

YNþMþnd�NþMþnd
in ð20Þ

cnc�1 in ð16Þ

and define

ŷ ¼ YcþG in ð15Þ

minimize

JyÿŷJ2

subject to

trðYÞrp

DXT
2DX2ÿDX

T
2DX1r0

YZ0

X

N

k ¼ 1

Yðk,kÞ ¼ 1

with DXT
2DX2 in (26) and DXT

2DX1 in (27).

In Optimization Problem 2, it is assumed that the user-

specified structure variables nc ,nd, and nf are known. Once the

optimal Y in (20) is obtained, the optimal y (19) can be obtained

by conducting a Singular Value Decomposition (SVD). The singu-

lar vector corresponding to the largest singular value is the

optimal solution for y.

4.3. Iterative approach

Obviously, the proposed identification method requires prior

information of x̂1 to obtain X1 in (10). Let us define a new system

parameter f that includes the parameter y in (19) and the para-

meter c in (16) as f¼ ½yT cT �T . With the initialization X1
1 ¼

zerosðN,nfÿ1Þ (this means x̂
1
1ðtÞ ¼ uðtÞ) and the previous parameter

estimation f̂
kÿ1

, we propose the following iterative method:

Step 1 Construct the necessary matrices for the optimization

problem formulation (dU in (29), dU1 in (23), dU2 in

(24), Y in (17), G in (18), DXT
2DX2 in (26), DXT

2DX1 in (27)).

Step 2 Solve Optimization Problem 2 to obtainY in (20) and a in

(16).

Step 3 Conduct a SVD on Y in (20) to obtain y in (19) and define

x̂1 in (4).

Step 4 Update Xk
1 in (10) using x̂1 estimated in Step 3.

Step 5
Stopping criterion of the algorithm. If Jf̂

k
ÿf̂

kÿ1
J=

Jf̂
kÿ1

Joe, stop. Otherwise, go to Step 1.

Step1 creates the matrices necessary for constructing

Optimization Problem 2. Step 2 actually solves Optimization

Problem 2 to obtain Y in (20) and a in (16). Step 3 conducts an

SVD to obtain y in (19). Step 4 updates the prior information to

construct Optimization Problem 2. Step 4 formulates a stopping

criterion for the algorithm by looking at the relative parameter

error.

As long as the classes of models used for the estimation

contain the true models for static nonlinearity and for linear

dynamic systems, and the assumptions on static nonlinearity are

indeed true, x̂1ðtÞ and x̂2ðtÞ will converge to x1ðtÞ and x2ðtÞ

provided N, L and nf are large enough at each iteration step based

on (5) and Weierstrass’s Theorem.

5. Benchmark problem

The system to be modeled is an electronic nonlinear system

with a Wiener–Hammerstein structure that was built by

Vandersteen (1997). The first linear dynamic system G1 is

designed as a third order Chebyshev filter (a pass-band ripple of

0.5 dB and a cut-off frequency of 4.4 kHz). The second linear

dynamic system G2 is designed as a third order inverse Chebyshev

filter (a stop-band attenuation of 40 dB starting at 5 kHz). This

system has a transmission zero in the frequency band of interest.

This can complicate the identification significantly, because the

inversion of such a characteristic is difficult.

The proposed iterative identification method is applied to the

benchmark problem. In this benchmark, the estimation data are

the first part of the measured input u(t) and output yðtÞðt¼

1;2, . . . ,100 000Þ, and the test data are given by the remaining

part of the measured input u(t) and output yðtÞðt¼

100 001, . . . ,188 000Þ. The goal of the benchmark is to identify a

nonlinear model using the estimation data. Next, this model is

used to simulate the output ysim(t) of the system on the test set.

nc ¼ 3,nd ¼ 3, and nf¼5 are used in this study. In order to solve the

SDP problem (Optimization Problem 2), SEDUMI (Sturm, 1999)

and YALMIP (Löfberg, 2004) are used. The estimation results are
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shown in Figs. 2-5, Table 1. Table 1 shows the mean value (m), the
standard deviation (s), and the root mean square (RMS) value

(eRMS) of the simulation error (time domain) for the estimation

data and the test data obtained by using the proposed method,

and the comparison with the results from Paduart et al. (2009)

and Ase et al. (2009). Each value is calculated based on the

following equation:

Test data

1. The mean value of the simulation error:

m¼
1

87 000

X

188 000

t ¼ 101 001

esimðtÞ

2. The standard deviation of the simulation error:

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

87 000

X

188 000
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ðesimðtÞÿmÞ
2
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u
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Fig. 2. Modeled output ysim, test data y, and the simulation error esim in the time

domain (top figure). The magnified figure of the top figure (bottom figure).
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Fig. 3. Modeled output ysim, test data y, and the simulation error esim in the

frequency domain (top figure). The magnified figure of the top figure (bottom

figure).
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Fig. 4. Identified static nonlinear function, f ð�Þ.

Y. Han, R.A. de Callafon / Control Engineering Practice 20 (2012) 1149–11551154



3. The root mean square (RMS) value of the error:

eRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

87 000

X

188 000

t ¼ 101 001

e2
sim

ðtÞ

v

u

u

t

Estimation data

1. The mean value of the simulation error:

m¼
1

99 000

X

100 000

t ¼ 1001

esimðtÞ

2. The standard deviation of the simulation error:

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

99 000

X

100 000

t ¼ 1001

ðesimðtÞÿmÞ
2

v

u

u

t

3. The root mean square (RMS) value of the error:

eRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

99 000

X

100 000

t ¼ 1001

e2
sim

ðtÞ

v

u

u

t

6. Conclusion

An iterative convex optimization algorithm is proposed to

identify Wiener–Hammerstein systems. A non-convex rank mini-

mization problem is formulated first, and then the non-convex

rank minimization problem is reformulated as a convex optimi-

zation problem using an SDP relaxation technique. In the pro-

posed identification method, the first linear dynamic system, the

static nonlinear function, and the second linear dynamic system

are parameterized as an FIR model, a polynomial function, and a

rational transfer function respectively. For the modeling of static

nonlinearity, the monotonically non-deceasing condition was

applied to limit the number of possible selections for intermedi-

ate signals. As two unmeasurable intermediate signals are

included in the system description, the over-parameterization

technique is used and the parameter estimation problem is solved

iteratively. At each step of iteration, the over-parametrized para-

meters are estimated and then separated by using the singular

value decomposition (SVD). The proposed method is applied to

the benchmark problem and the estimation result shows the

effectiveness of the proposed algorithm.
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Table 1

Characteristics of the simulation error.

Method Parameters Estimation data Test data

The proposed method m 0.0011 V 0.0015 V

s 0.0345 V 0.0345 V

eRMS 0.0345 V 0.0345 V

PNLSS Paduart (2009) m 0.031 mV 0.048 mV

s 0.359 mV 0.415 mV

eRMS 0.360 mV 0.418 mV

Ase et al. (2009) m ÿ0.0051 V ÿ0.0038 V

s 0.0332 V 0.0333 V

eRMS 0.0336 V 0.0335 V
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Fig. 5. Identified dynamical systems, G1 and G2.
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