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In this paper, a Wiener-Hammerstein system identification problem is formulated as a semidefinite
programming (SDP) problem which provides a sub-optimal solution for a rank minimization problem.
In the proposed identification method, the first linear dynamic system, the static nonlinear function,
and the second linear dynamic system are parameterized as an FIR model, a polynomial function, and a
rational transfer function respectively. Subsequently the optimization problem is formulated by using
the over-parameterization technique and an iterative approach is proposed to update two unmeasur-
able intermediate signals. For the modeling of static nonlinearity, the monotonically non-deceasing
condition was applied to limit the number of possible selections for intermediate signals. At each step
of iteration, the over-parametrized parameters are estimated and then system parameters are
separated by using a singular value decomposition (SVD). The proposed method is applied to the

benchmark problem and the estimation result shows the effectiveness of the proposed algorithm.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Wiener-Hammerstein systems are dynamical systems char-
acterized by a series connection of three parts: a linear dynamical
system, a static nonlinearity and another linear dynamical sys-
tem, as shown in Fig. 1. Early works on Wiener-Hammerstein
system identification can be found in Billings and Fakhouri
(1982), and Hunter and Korenberg (1986). In this early research,
the correlation analysis-based identification method under Gaus-
sian excitation has been proposed. Chen and Fassois (1992)
introduced a time-domain identification method based on the
Maximum Likelihood principle. Boutayed and Darouach (1995)
presented a simple technique for recursive identification of the
Wiener-Hammerstein model with extension to the multi-input
single-output (MISO) case. More recent work can be found in
Crama and Schoukens (2001), Voros (2007), Paduart, Lauwers,
Pintelon, and Schoukens (2009) and Ase, Katayama, and Tanaka
(2009). Paduart et al. (2009) proposed an identification method
using the polynomial nonlinear state space (PNLSS) approach. Ase
et al. (2009) presented a method iteratively identifying the linear
system and the Hammerstein system by minimizing the square
norm of output prediction error and by using the orthogonal
decomposition subspace method (ORT).
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Recently, a system identification method was introduced
based on the sector bound property of static nonlinearity using
Quadratic Programming (QP) and semidefinite programming
(SDP) relaxation in Zhang, louditski, and Ljung (2006) and Sou,
Megretski, and Daniel (2008). In Sou et al. (2008), the identifica-
tion problem was formulated as a non-convex QP. A convex SDP
relaxation is then formulated and solved to obtain a sub-optimal
solution to the original non-convex QP. However, the formulation
of the problem is based on the existence of the inverse of the
second dynamic system, which cannot be generally guaranteed.

In this paper, the SDP relaxation approach by Sou et al. (2008)
is extended by using rank minimization to propose a Wiener—
Hammerstein system identification method which does not
require invertibility of any sub-systems. The order of a finite
dimensional model can be expressed as the rank of a matrix that
is filled with input and output measurement. If the set of feasible
models is described by convex constraints, then choosing the
simplest model can often be expressed as a rank minimization
problem (Fazel, Hindi, & Boyd, 2004). Based on this idea, in this
paper a Wiener-Hammerstein system identification problem is
formulated as a rank minimization problem and the non-convex
rank minimization problem is then formulated as a convex
problem via SDP relaxation.

The objective of this paper is to formulate a procedure that
allows the characterization and identification of the three parts in
a Wiener-Hammerstein system individually based on the finite
number of input u(t) and the output y(t) observations. In this
paper, this is accomplished by reconstructing unmeasurable
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Fig. 1. Wiener-Hammerstein system consisting of the cascade of a linear dynamic
block G;(q), a static non-linear block f(-) and another linear dynamic block G,(q).

X1 (t) Xo (1)
u(t) Gq(a) f()

G; (q)

intermediate signals x;(t) and x,(t) that satisfy the conditions on
the finite dimensional dynamical representation of the linear
systems Gq(q) and G,(q), and the memoryless static nonlinearity
f(). Once the intermediate signals x;(t) and x,(t) are recon-
structed, the identification and characterization of the three parts
becomes trivial.

2. Problem description

The system to be modeled is a Wiener-Hammerstein system
as shown in Fig. 1. The purpose of this study is to propose a
method to identify the unknown linear dynamic systems, G;(q)
and G,(q), and a static nonlinear function f(-) from a finite number
of observations of the time domain data u(t) and y(t). In this
paper, each block is parametrized separately. System parameters
for each block will be estimated simultaneously by finding
feasible models consistent with the input and output data, and
by satisfying the following basic properties of the Wiener-
Hammerstein system:

Condition 1.

I. The static nonlinear function has no memory: The current
output x,(t) only depends on the current input x(t).

Il. The first linear dynamic system has a finite, but unknown,
McMillan degree ny: x;(t)= ¢\ ()01, where ¢l (t)=[u(t)...
u(t—np) x1(t—1)...x1(t—ny)], 01 is the first linear system para-
meter, and n; < max(n,—1,ny).

IIl. The second linear dynamic system has a finite, but unknown,
McMillan degree ny: y(t) = ¢5(t)fs, where ¢L(t)=[Xx(t)... X,
(t—ng) y(t—1)...y(t—nc)], O, is the second linear system para-
meter, and n, < max(ng—1,nc).

The intermediate signals x;(t) and x,(t) in Fig. 1 are not
measurable, and the properties in Condition 1 are used to
formulate a procedure to reconstruct x;(t) and x,(t). The unknown
signals x;(t) and x,(t) will be parametrized, and the estimation of
the unknown coefficients will be formulated as an SDP problem.
Let X,(t) be the reconstructed signal of x;(t), X»(t) be the recon-
structed signal of x,(t), and y(t) be the model output. The SDP
problem will be formulated in such a way that X;(t) and X,(t) are
related via a memoryless static nonlinearity, u(t) and X;(t) are
related via a linear dynamical system with the smallest McMillan
degree, and ly—yll, is minimized under Condition 1. Once X{(t)
and X,(t) have been reconstructed, the identification of G;(q) from
u(t) to X1(t), and the identification of G,(q) from X, (t) to y(t) can be
solved with the standard Prediction Error (PE) identification
method in Ljung (1999) and the identification of f(-) from X(t)
to X,(t) can be solved via the Least Squares (LS) method. The
proposed identification method deals with Wiener-Hammerstein
systems in this paper, but the idea of constraining rank for signal
reconstruction can be extended to Hammerstein, Wiener, or
Hammerstein—-Wiener systems.

3. System parametrization
3.1. Modeling of the first dynamic system

In order to formulate the parameter estimation problem, a
finite impulse response (FIR) model is used to model the first
dynamic system Gy. Let hy,k=0,1, ... be a causal sequence of unit
impulse responses for G;(q). The relationship between the input
u(t) and the intermediate signal x;(t) can be described by the
convolution as

x1(H)= i hpu(t—k).
k=0

Due to Condition 1 (finite McMillan degree), the Hankel matrix
defined as

hy hN/Z
H= hf . h”/f“ )
LN S | VA

has a rank(H) <n;. The order of the linear dynamical system is
determined by the rank(H) as H is simply the product of the
extended observability and controllability matrices (Goethals,
Pelckmans, Suykens, & De Moor, 2005). Let

=k 22 ... [N

and
u(l) u(0) u(2—N)

_ u(:2) u(:l) ' u(1—N) 2

u(N) u(N.—l) . . u(1)

With the system parameter

h=t[hg hy...hy_q]" 3)

to be estimated, X; can be written as

%1 =Uh 4)

The finite order sequence of hy,k=0,1,...,N—1, for a lower order

model for G; can be estimated by minimizing the rank of H in (1)
(Fazel et al., 2004). The rank minimization of H is used only to
minimize the order of G;. The FIR approximation of G; is used to
formulate a convex optimization problem to estimate system
parameters in Section 4. Once X(t) has been reconstructed, the
identification of G;(q) from u(t) to X{(t) can be solved with the
standard Prediction Error (PE) identification method in Ljung
(1999). Based on (4), the error is defined by

L-1
e(t) =x1()—X1 () =x1(H— Y Mu(t—k)

k=0
Thus,
N -1 2 N -1
le®3 = > [x1(0— Y hut—k)| =" x30)-2> " hRyuk)
=1 k=0 =1 k=0
-1 L1
+ > hehRu(k—1)
k=01=0
where

N
Ryu()= > xi(tyu(t—k)

t=1
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N—k—I

> uu(t+k

t=1-k-I

Ruu(k) =

If L tends toward infinity, the h, obtained by minimizing the
rank(H) will satisfy |hi| <1 for k=>L, resulting in Ryu(k)—
SFZY hiRyu(1=k). Then,
lim le(t)l2 =0 ()
As a result, the estimate X(t) in (4) will converge to x;(t)
provided that N— oo and L— co.

3.2. Modeling of the static nonlinearity

It is well known that the static nonlinear function can be
approximated as a linear combination of a finite set of basis
functions as

M
fa®) > dnému) (6)
=1
where /,, are weighting parameters to be estimated and &,,(-) are
basis functions. A user can choose any basis function if it is linear
in parameters as shown in (6). In this paper, a ny th order
polynomial function is used to model static nonlinearity. With
the polynomial basis functions, X,(t) is defined by

Ro(t) = Jo+ X (O + 2R (O + - + I RV (D) (7)

Weierstrass’s Theorem guarantees that the polynomial
approximation X,(t) in (7) will converge to x»(t) as ny tends
toward to infinity for an arbitrary interval.

Weierstrass's Theorem: If f(x;) is a given continuous function
for an arbitrary interval i<x; <j, and ¢ is a small magnitude
positive constant, there is a polynomial f(x;) such that

e —fx| <€ vxelif]

There could be many possible combinations of (X(t),X,(t)) that
satisfy Condition 1 and (7). In order to limit the number of
possible selections of (%1(t),X2(t)), in this paper, a monotonically
non-decreasing static nonlinearity with the maximum slope of
1 is considered as follows:

Condition 2.

I. The static nonlinear function is monotonically non-decreasing
with the maximum slope of 1: (X»(i)—X2())(X2(1)—X2()—X1 (1) +
X1()) <0Vi>j.

In Condition 2,
X2()—%2()) = 0 = Xa()—R2() < X1 (D—X1()
or
X2()—%2() <0 = X2()—X20) = X1 (D—X1 ().
In both cases,
X1()—%1() =0 = X2()—-%2() =0
or

6 o X2()—X2(j)

X1(D)—%1()#0 = X 0—%10) <1

The maximum slop of the static nonlinearity is a user-chosen
value, thus can be adjusted by a user. In this paper, we assumed
that 4o =0 and A, = 1. The assumptions are not necessary for the
proposed method, but chosen for notational brevity and normal-
ization. Without loss of generalization, this monotonicity assump-
tion on the unknown static nonlinearity combined with the

assumptions (/g =0, 41 =1, and the maximum slope < 1) guar-
antees a solution for an FIR linear system for G; and serves as a
normalization condition on the static nonlinearity. Based on
(4) and (7), &2 =[X2(1)...%(\)]" can be calculated as

Xy =Uh+X;2 8)
where
A=A n 1" C)
and
(1) X7 (1)
Xi=| : : (10
RI(N) &Y (N)

An iterative approach will be used to update the higher order
nonlinear terms of X; in (10) that are included in the description
of X, in (8).

3.3. Modeling of the second dynamic system

Since the output of the Wiener-Hammerstein system is
measured, a rational transfer function is used to model the second
dynamic system G,. The simulation output y(t) is defined as

. N D(q) .
(O = Ga(@a() = %Xz(f)

where

C@=1+c1q "+ - +coq ™

D(@)=do+diqg '+ - +dp,q ™ an

Using the system parameters in (11), the linear difference
equation between the output y(t) and the intermediate signal
X,(t) is defined as

Nne ng
YO == ayt—k+ > dXa(t—k)
k=1 k=0
Let
ng ng ng
F="> d&yt-k= > dUt—k Hh+ Y dXi(t—k )i (12)
k=0 k=0 k=0

and
Tin ... Ting+1
T=Uhd +X;2d" = | © : (13)
Tna oo TN+t
using U in (2), h in (3), 4 in (9) and X; in (10), where
d=[dy...dy,]I" (14)
and the notations (k,:) and (:,k) are used to denote the kth row

and the kth column in a matrix respectively. Then I'(t) in (12) can
be rewritten as

min(t,ng)

F(t): Z Tt—k+1.k

k=1

Using the given parameterization, the simulated output vector
9 =[1)...9(N)]" can be written as

y=Yc+rI (15)
where
c=[c1...cnl" (16)
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-y(1-1) —y(1-n¢)

Y= : : (17)
—y(N-1) —Y(N—nc)

and

I'=[ra)...rny" (18)

With the system parametrization in Section 3 based on Condition
1, system parameters for a lower order model for G, consistent
with the input and output measurement data, can be estimated
by minimizing lly—yl,, with y in (15) and rank(H), with H
in (1) simultaneously under the constraints developed based on
Condition 2.

4. Problem formulation
4.1. Optimization problem

With the system parametrization and constraints explained in
Section 3, the optimization problem to obtain system parameters
can be written as

Optimization Problem 1.

Consider variables
hnx1 in (3)

in (9)

j~nf—1><1
Cn.x1 1N (16)

in (14)

dnd +1x1
and define

?21 =Uh in (4)

)22 = Uh+X1/L in (8)

y=Yc+I in (15)

minimize

wyrank(H)+w-lly—yl,  with H in (1)

subject to

Ro(D)—=X2() X2 ()—X2()—X1(D+X1(G) <0 Vi>j.

In Optimization Problem 1, w; and w, are weighting factors.
Optimization Problem 1 is a non-convex quadratic programming
(QP) problem. Semidefinite programming (SDP) relaxation is a
standard approach to solve non-convex QP problems. An SDP
relaxation procedure converts a non-convex optimization pro-
blem to a convex optimization problem by defining a feasible
convex set, which is easier to solve and whose solution is close to
the solution of the original non-convex optimization problem.

4.2. Semidefinite programming relaxation

In order to convert the non-convex Optimization Problem 1 to
a convex optimization problem, the over-parametrization techni-
que is used in this paper. Let us define a system parameter matrix
O that includes system parameters h,A and b. Let us define the
parameter 0 as

O=rh" AT d'f" (19)

and then define the over-parametrized parameter matrix @ as

hoho ... Jnho dn,ho
hohy ... Juhy dn, 1

0= 0-0= hO/lnf )hnf j~11f dnd ;bnf (20)
hody, Dy g dn, dn,

An arbitrary gain may be distributed among the static nonlinearity
and the two linear dynamic systems. In order to avoid an ambiguous
gain, the scaling of the first dynamic system will be fixed by setting
S _ ot = 1. The scaling of the static nonlinear function is fixed as
explained in Section 3.2. Let us define U, and U, as

Up =[U zeros(N,n;—1)] 21)
and
Uz =[U X4] (22)

respectively with U in (2) and X; in (10) where zeros(N,ng—1)
is an N-by-(n;—1) matrix of zeros. Then, with U; in (21) and U,
n (22), let

U1(2, I)—Ul(l, 2)
U1(3, :)—U1(2. I)

Uy = (23)

U](N, Z)—Ul(N—l, Z)
U](N, )—U](l, Z)

and

U2(2, I)—Uz(], 3)
U2(3, 2)—U2(2, 2)

Uz(N, 5)—Uy(N-1, ) (24)

Uz(N, Z).—Uz(l, Z)

where the notations (k,:) and (:,k) are used to denote the kth row
and the kth column in a matrix respectively. With the system
parameter matrix @, the constraint in Optimization Problem 1 can
be rewritten as a linear matrix inequity (LMI) condition as

AXTAX,—AXTAX, <0 (25)
where

AXTAX, = diag(diag(6X; O 5XT)) (26)
and

AXIAX, = diag(diag(6X, @ 5U™)) 27)
Here,

X1(2, Z)—X](l, Z)
X](3, 1)—X1(2, Z)

5Xq = (28)

X] (N, Z)—Xl(N—l, I)

X] (N, Z)—X1(1, I)
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with X in (10),
ue, )-uq,
U@, )-UR2, )

SU = (29)

U(N, :)—U(N—l, )

U(N, :).—U(l, )

with U in (2), @ =ON+1:N+MN+1:N+M), and O =
O(N+1:N+M,1:N). Here diag(x) indicates a square matrix with
the elements of a vector x on the diagonal, and diag(X) indicates the
main diagonal of a matrix X. Using the system parameter matrix @,
the simulated output y in (15) is defined as

_)7 =Yc+TI
where

T=U®@1 :N,N+nf : N+nf+nd)
+X1O(N+1:N+n;—1,N+n; : N+nf +ngq)

Here, © in (20), satisfying the LMI in (25), is a rank 1 matrix for
noiseless cases. However, in order to account for the noise effect, the
condition can be relaxed to a rank inequality condition as
rank(®) <y, where 7y is a positive constant. An optimization problem
with rank inequality conditions is hard to solve. One simple and
effective way, applicable when the matrix is symmetric positive
semidefinite, is to use its trace in place of its rank. The motivation
for the use of its trace is that if the matrix @ is a symmetric and
positive semidefinite, its singular values are the same as its eigenva-
lues. Therefore, the nuclear norm reduces to trace, and the nuclear
norm is the convex envelope of the rank function on the set of
matrices with norms less than one (Fazel, Hindi, & Boyd, 2001). As a
result, tr(®) < p, where p is a positive constant, is used instead of the
rank inequality condition. The positive constant p can be tuned by
investigating estimation results. Due to this SDP relaxation used to
formulate Optimization Problem 2 and the user-chosen value p, the
constraint I in Condition 2 is relaxed to

Fa()=R20)F2(D—-R2()—A+NF(D-X1 (D) <q Vi>]

where r and g are small magnitude positive constants determined by
the user-chosen value p and a noise level. Also, the rank minimization
on H in Optimization Problem 1 is eliminated since this condition is
absorbed into the tr(®) < p. Finally, the non-convex Optimization
Problem 1 is reformulated as an SDP convex optimization problem as
Optimization Problem 2.

Consider variables

in (20)

ON L M4ngxN+M+ny
Crx1 i (16)
and define
y=Yc+I' in (15)
minimize

ly—yll,

subject to
tr(@)<p

AXTAX,—AXTAX; <0

0=>0

N
> Okk=1

k=1
with AXJAX, in (26) and AXJAX; in (27).

In Optimization Problem 2, it is assumed that the user-
specified structure variables nc,ng, and ny are known. Once the
optimal @ in (20) is obtained, the optimal 6 (19) can be obtained
by conducting a Singular Value Decomposition (SVD). The singu-
lar vector corresponding to the largest singular value is the
optimal solution for 0.

4.3. Iterative approach

Obviously, the proposed identification method requires prior
information of %; to obtain X; in (10). Let us define a new system
parameter ¢ that includes the parameter ¢ in (19) and the para-
meter ¢ in (16) as ¢ =[07 ¢’]'. With the initialization Xi=
zeros(N,nf—})( jlthis means 2%(0 =u(t)) and the previous parameter
estimation ¢, we propose the following iterative method:

Step 1 Construct the necessary matrices for the optimization
problem formulation (6U in (29), oU; in (23), 6U;, in
(24), Yin (17), I' in (18), AXJAX, in (26), AXJAX; in (27)).

Step 2 Solve Optimization Problem 2 to obtain ® in (20) and a in
(16).

Step 3 Conduct a SVD on @ in (20) to obtain 6 in (19) and define
Xq in (4).

Step 4 Update X’]< in (10) using X; estimated in Step 3.

Step 5 Stopping criterion of the algorithm. If H(iﬁk—&)kq\\/

~k—
Il 1H < ¢, stop. Otherwise, go to Step 1.

Step1 creates the matrices necessary for constructing
Optimization Problem 2. Step 2 actually solves Optimization
Problem 2 to obtain @ in (20) and a in (16). Step 3 conducts an
SVD to obtain 0 in (19). Step 4 updates the prior information to
construct Optimization Problem 2. Step 4 formulates a stopping
criterion for the algorithm by looking at the relative parameter
error.

As long as the classes of models used for the estimation
contain the true models for static nonlinearity and for linear
dynamic systems, and the assumptions on static nonlinearity are
indeed true, X;(t) and X,(t) will converge to x;(t) and x(t)
provided N, L and ny are large enough at each iteration step based
on (5) and Weierstrass’s Theorem.

5. Benchmark problem

The system to be modeled is an electronic nonlinear system
with a Wiener-Hammerstein structure that was built by
Vandersteen (1997). The first linear dynamic system G; is
designed as a third order Chebyshev filter (a pass-band ripple of
0.5dB and a cut-off frequency of 4.4 kHz). The second linear
dynamic system G, is designed as a third order inverse Chebyshev
filter (a stop-band attenuation of 40 dB starting at 5 kHz). This
system has a transmission zero in the frequency band of interest.
This can complicate the identification significantly, because the
inversion of such a characteristic is difficult.

The proposed iterative identification method is applied to the
benchmark problem. In this benchmark, the estimation data are
the first part of the measured input u(t) and output y(t)(t=
1,2,...,100 000), and the test data are given by the remaining
part of the measured input u(t) and output y(t)(t=
100 001, ...,188 000). The goal of the benchmark is to identify a
nonlinear model using the estimation data. Next, this model is
used to simulate the output ys;,(t) of the system on the test set.
ne = 3,nyg = 3, and ny=>5 are used in this study. In order to solve the
SDP problem (Optimization Problem 2), SEDUMI (Sturm, 1999)
and YALMIP (Lofberg, 2004) are used. The estimation results are
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x 10 frequency domain (top figure). The magnified figure of the top figure (bottom
figure).

Fig. 2. Modeled output ys;y,, test data y, and the simulation error ey, in the time
domain (top figure). The magnified figure of the top figure (bottom figure).

shown in Figs. 2-5, Table 1. Table 1 shows the mean value (u), the
standard deviation (s), and the root mean square (RMS) value
(erms) of the simulation error (time domain) for the estimation 051 ‘ ‘ ‘ i
data and the test data obtained by using the proposed method,
and the comparison with the results from Paduart et al. (2009) o 1
and Ase et al. (2009). Each value is calculated based on the
following equation: —os | i
Test data N
x
1. The mean value of the simulation error: r i
1 188 000 sl i
H= s="7Arnn €sim(t)
87000, _ %001
_2 - 4
2. The standard deviation of the simulation error:
25 ; : : : : : :
-2 -15 -1 -05 0 05 1 15 2
1 188 000 X

S=1\87000 Z (€sim(t)—0)°
t =101 001 Fig. 4. Identified static nonlinear function, f(-).



Y. Han, R.A. de Callafon / Control Engineering Practice 20 (2012) 1149-1155 1155

Op=====T==T=== e A = 6. Conclusion
-10F \\\ y . . .. . . .

& G, . An iterative convex optimization algorithm is proposed to

% Bl I [P N | identify Wiener-Hammerstein systems. A non-convex rank mini-

S s} LY i mization problem is formulated first, and then the non-convex

5 40 \ rank minimization problem is reformulated as a convex optimi-

o I~ = . . . .
= Vot zation problem using an SDP relaxation technique. In the pro-
-50 W posed identification method, the first linear dynamic system, the
160 . N static nonlinear function, and the second linear dynamic system
are parameterized as an FIR model, a polynomial function, and a
ook rational transfer function respectively. For the modeling of static

g nonlinearity, the monotonically non-deceasing condition was

o 0 applied to limit the number of possible selections for intermedi-

(2] . . . .

s ate signals. As two unmeasurable intermediate signals are

& oo} included in the system description, the over-parameterization

technique is used and the parameter estimation problem is solved
e~ = . . iteratively. At each step of iteration, the over-parametrized para-
10 10 10 10 meters are estimated and then separated by using the singular
Frequency (Hz) value decomposition (SVD). The proposed method is applied to
Fig. 5. Identified dynamical systems, G, and Go. the benchmark problem and the estimation result shows the
effectiveness of the proposed algorithm.
Table 1
Characteristics of the simulation error. References
Method Parameters Estimation data Test data
Ase, H., Katayama, T., & Tanaka, H. (2009). A state-space approach to identification

The proposed method n 0.0011V 0.0015V of Wiener-Hammerstein benchmark model. In 15th IFAC symposium on system
s 0.0345V 0.0345V identification (pp. 1092-1097). Saint-Malo, France.
ervs 0.0345V 0.0345V Billings, S. A., & Fakhouri, S. Y. (1982). Identification of systems containing linear

dynamic and static nonlinear elements. Automatica, 18, 15-26.

PNLSS Paduart (2009) H 0.031 mV 0.048 mV Boutayed, M., & Darouach, M. (1995). Recursive identification method for MISO
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