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Abstract— This paper presents a novel type of Gaussian
filter — the radial basis Gaussian filter (RB-GF) — for
nonlinear state estimation. In the RB-GF, we propose to use
radial basis functions (RBFs) to approximate the nonlinear
process and measurement functions of a system, considering
the superior approximation performance of RBFs. Optimal
determination of the approximators is achieved by RBF neural
network (RBFNN) learning. Using the RBF based function
approximation, the challenging problem of integral evaluation
in Gaussian filtering can be well solved, guaranteeing the
filtering performance of the RB-GF. The proposed filter is
studied through numerical simulation, in which a comparison
with other existing methods validates its effectiveness.

I. INTRODUCTION

Filter design for nonlinear state estimation has been a long-
standing challenge in many fields including control systems,
signal processing, navigation and guidance, etc., with a large
amount of research effort having been dedicated to this
topic during the past decades [1]. The extended Kalman
filter (EKF) is arguably the most popular technique [2].
However, the performance of the EKF is often unsatisfactory
in terms of convergence speed and robustness to serious
nonlinearities. A number of other KF variants have thus been
proposed for improvements, e.g., unscented KF (UKF) and
ensemble KF (EnKF).

Much attention in recent years has been directed towards
Gaussian filtering for the purpose of obtaining analytic
or closed-form nonlinear filters. Gaussian filters build on
Bayesian state estimation and assumed density filtering
(ADF). A Bayesian estimator sequentially updates the con-
ditional probability density functions (pdf’s) of unknown
state variables given the output measurements [3]. The
ADF assumes a particular form of density, which are often
mathematically tractable to deal with, for the pdf’s involved
in the Bayesian estimator, and then computes the state
estimates [4]. If the assumed densities are Gaussian, the ADF
will lead to the Gaussian filters.

A crucial problem in Gaussian filtering is to evaluate a
number of integrals. The integrand of each integral is the
multiplication of a nonlinear function (stemming from the
nonlinear system equations) and a Gaussian function. To
address the problem, two main approaches have been pro-
posed. One of them is based on Monte Carlo sampling that
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approximates pdf’s by a set of random samples. In filtering, a
set of state estimates (i.e., samples) are generated in light of
the a priori conditional pdf. The KF computation is imple-
mented to each of them, and then the individual estimation
results will be aggregated to yield the final state estimate. The
aforementioned integrals are implicitly approximated during
the process. Two typical methods that fall into this category
are the EnKF [5] and the UKF [6], the difference between
which is that the latter uses deterministic sampling. The
other approach is direct numerical integration. Making use of
the Gauss-Hermite quadrature rule, the Gauss-Hermite filter
(GHF) is capable of giving almost accurate evaluation of
the integrals arising in Gaussian filtering through a weighted
summation of the nonlinear function evaluated at some fixed
points [7; 8]. In [9], the cubature KF (CKF) is proposed,
which adopts a spherical-radial cubature rule for numerical
computation of these integrals.

The objective of this paper is to develop a new Gaussian
filter that is realized by a radial basis function (RBF) based
approach. Widely used in pattern classification and curve
fitting problems [10], RBFs also find important applications
in the development of neural network based control systems,
e.g, [11; 12; 13; 14]. We propose that integral evaluation in
Gaussian filtering can be reduced to function approximation,
the construction of which can be achieved using a set
of RBFs. In this paper, we will use the Gaussian RBF
(GRBF), because Gaussian-type functions, which frequently
appears in Gaussian filtering, are easy to manipulate to derive
integration in closed form. With an equivalent structure to a
RBF Neural Network (RBFNN), the RBF based function ap-
proximator can be established through training the RBFNN.
The obtained filter, which we refer to as the radial basis
Gaussian filter (RB-GF), has high estimation performance
and satisfactory computational efficiency.

Essentially a Gaussian filter with RBFNNs employed
to assist in dealing with integral evaluation, the proposed
RB-GF differs significantly from existing RBFNN based
nonlinear filtering schemes, e.g., [15], in which RBFNNs are
used to model unknown or uncertain system dynamics. In
addition, instead of doing fixed-point quadrature or cubature
approximation like in [8; 9], it is a customized filter incorpo-
rating construction of approximators for different nonlinear
functions in different systems.

The remainder of the paper is as follows. Section II
presents the Gaussian filtering technique, the derivation of
which from Bayesian estimation theory and ADF is intro-
duced. We then develop the RB-GF in Section III, showing
the novel application of the RBFs to Gaussian filtering.
A simulation study is illustrated in Section IV to show
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the effectiveness of the RB-GF. Finally, some concluding
remarks are offered in Section V.

II. NONLINEAR GAUSSIAN FILTERING

Let us consider the following nonlinear discrete-time sys-
tem: {

xk+1 = f(xk) + wk,

yk = h(xk) + vk,
(1)

where xk ∈ Rnx is the unknown system state, and
yk ∈ Rny is the output. The process noise wk and
the measurement noise vk are mutually independent, zero-
mean white Gaussian sequences with covariances Qk and
Rk, respectively. For a Gaussian random vector x ∈
Rn, we use the notation N (x|a,A) := (2π)−

n
2 |A|− 1

2 ·
exp

[
− 1

2 (x− a)TA−1(x− a)
]
, where x,a ∈ Rn and |A|

denotes the determinant of A ∈ Rn×n. Then we have
p(wk) = N (wk|0,Qk) and p(vk) = N (vk|0,Rk). The
nonlinear mappings f : Rnx → Rnx and h : Rnx → Rny

represent the process dynamics and the measurement model,
respectively.

Define the measurement set Yk := {y1,y2, · · · ,yk}.
At time k − 1, a statistical description of xk from Yk−1
is given as p(xk|Yk−1). When the new measurement yk

containing further information about xk arrives, p(xk|Yk−1)
will be updated to p(xk|Yk). Applying the Bayes’ rule
to this process, we have the following two-step Bayesian
estimation paradigm that sequentially computes p(xk|Yk−1)
and p(xk|Yk):

• Prediction

p(xk|Yk−1) =

∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1,

(2)

• Update

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
. (3)

A key assumption to be made throughout the paper is
that p(xk|Yk−1) and p(yk|Yk−1) are Gaussian. In this cir-
cumstance, p(xk|Yk) is ensured to be Gaussian as well, and
furthermore, the Bayesian filter in (2)-(3) propagates forward
in a Gaussian manner. Accordingly, the Gaussian filtering
equations can be obtained by determining the means and
covariances of p(xk|Yk−1) and p(xk|Yk). The prediction
xk given Yk−1, denoted as x̂k|k−1, is given by

x̂k|k−1 =

∫
xkp(xk|Yk−1)dxk

=

∫ [∫
xkp(xk|xk−1)dxk

]
p(xk−1|yk−1)dxk−1

=

∫
f(xk−1) · N (xk−1|x̂k−1|k−1,P

x
k−1|k−1)dxk−1. (4)

The associated prediction error covariance is

Px
k|k−1 =

∫
(xk − x̂k|k−1)(xk − x̂k|k−1)Tp(xk|Yk−1)dxk

=

∫
xkxT

k p(xk|Yk−1)dxk − x̂k|k−1x̂Tk|k−1

=

∫
f(xk−1)f(xk−1)T · N (xk−1|x̂k−1,P

x
k−1|k−1)dxk−1

− x̂k|k−1x̂
T
k|k−1 + Qk−1. (5)

The derivation of (4)-(5) uses (A.1)-(A.2) in the Appendix.
When yk is available, let us consider the joint conditional

pdf of xk and yk given Yk−1, which, according to the
assumption, is Gaussian:

p(xk,yk|Yk−1) =

N

[xk

yk

]∣∣∣∣ [x̂k|k−1
ŷk|k−1

]
,

 Px
k|k−1 Pxy

k|k−1(
Pxy

k|k−1

)T
Py

k|k−1

 . (6)

Here, ŷk|k−1 is the prediction of yk given Yk−1, given by

ŷk|k−1 =

∫
ykp(yk|Yk−1)dyk. (7)

It is noted that

p(yk|Yk−1) =

∫
p(xk,yk|Yk−1)dxk

=

∫
p(yk|xk)p(xk|Yk−1)dxk.

Inserting the above equation into (7) yields

ŷk|k−1 =

∫ [∫
ykp(yk|xk)dyk

]
p(xk|Yk−1)dxk

=

∫
h(xk)p(xk|Yk−1)dxk

=

∫
h(xk) · N (xk|x̂k|k−1,P

x
k|k−1)dxk. (8)

The associated covariance is

Py
k|k−1 =

∫
(yk − ŷk|k−1)(yk − ŷk|k−1)Tp(yk|Yk−1)dyk

=

∫
h(xk)hT(xk) · N (xk|x̂k|k−1,P

x
k|k−1)dxk

− ŷk|k−1ŷ
T
k|k−1 + Rk, (9)

and the cross-covariance is

Pxy
k|k−1 =

∫ ∫
(xk − x̂k|k−1)(yk − ŷk|k−1)T

· p(xk,yk|Yk−1)dxkdyk

=

∫
xkh(xk)T · N (xk|x̂k|k−1,P

x
k|k−1)dxk

− x̂k|k−1ŷ
T
k|k−1. (10)

It follows from (6) and (A.3) that

p(xk|Yk) = N (xk|x̂k|k,P
x
k|k),
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where

x̂k|k = x̂k|k−1 + Pxy
k|k−1

(
Py

k|k−1

)−1
(yk − ŷk|k−1),

(11)

Px
k|k = Px

k|k−1 −Pxy
k|k−1

(
Py

k|k−1

)−1 (
Pxy

k|k−1

)T
. (12)

The Gaussian filter is summarized in Algorithm 1. It is
noteworthy, however, that the Gaussian filter only delineates
a conceptual framework for this type of filtering methods. To
make it truly applicable in practice, it is needed to develop
methods for evaluation of the integrals in (4)-(5) and (8)-
(10).

Initialize: k = 0, x̂0|0 = E(x0), Px
0|0 = p0I, where p0 >

0
repeat
k ← k + 1

Prediction:
State prediction via (4)
Computation of prediction error covariance via (5)

Update:
Measurement prediction via (8) with the associated
covariance via (9)
Computation of the cross-covariance via (10)
State estimation via (11)
Computation of the estimation error covariance via (12)

until no more measurements arrive

Algorithm 1: The Gaussian filter for nonlinear state estima-
tion.

III. RADIAL BASIS GAUSSIAN FILTERING

As is observed, the integrals in (4)-(5) and (8)-(10) take
one of the following forms:

Ω1 =

∫
g(x) · N (x|µ,Σ)dx, (13)

Ω2 =

∫
xgT(x) · N (x|µ,Σ)dx, (14)

Ω3 =

∫
g(x)gT(x) · N (x|µ,Σ)dx. (15)

where x ∈ Rn, and g is assumed without loss of generality
to be a mapping over Rn → Rm, where n and m are an
arbitrary positive integers. In this section, we introduce the
notion and realization of the RBF approximation of g(x), and
then continue to show how to construct the RB-GF, based
on the proposed function approximation.

A. Filtering Integral Evaluation

For gi(x) that is the i-th element of g(x), we consider a
nonlinearly parameterized approximator

ĝi(x) =

N∑
j=1

wijsj (x) , (16)

where sj (x) for j = 1, 2, · · · , N is a set of N RBFs and
wij’s are the weighting factors. A wide variety of RBFs such
as multi-quadratics, inverse multi-quadratics and Gaussian
functions, have been studied in the literature. We propose
to use the Gaussian RBFs (GRBFs), which will facilitate
addressing the problem of Gaussian filtering. Then sj(x) is
given by

sj(x) = exp

[
− (x− cj)

T(x− cj)

2σ2
j

]
= αj · N

(
x|cj , σ2

j I
)

where αj = (2πσ2
j )

n
2 , cj and σj are the center and width

of the RBF, respectively. For simplicity, we assume that cj’s
and σj’s are fixed and known. The assumption does not limit
the extension of the ensuing derivation to the case when both
of them are unknown and need to be determined.

It follows from (A.4) that the multiplication of two Gaus-
sian functions is another unnormalized Gaussian function.
Hence, we consider

βj · N (x|µ̄j , Σ̄j) = N
(
x|cj , σ2

j I
)
· N (x|µ,Σ) ,

γjl · N (x|µ
jl
,Σjl) = N

(
x|cj , σ2

j I
)
· N

(
x|cl, σ2

l I
)

· N (x|µ,Σ) ,

where

Σ̄j =
(
σ−2j I + Σ−1

)−1
,

µ̄j = Σ̄j

(
σ−2j cj + Σ−1µ

)
,

βj = (2π)−
n
2 σ−nj |Σ|−

1
2 |Σ̄j |

1
2

· exp

[
−1

2

(
σ−2j cTj cj + µTΣ−1µ− µ̄T

j Σ̄
−1
j µ̄j

)]
,

Σjl =
(
σ−2l I + Σ̄

−1
j

)−1
,

µ
jl

= Σjl(σ
−2
l cl + Σ̄

−1
j µ̄j),

γjl = βj(2π)−
n
2 σ−nl |Σ̄j |−

1
2 |Σjl|

1
2

· exp

[
−1

2

(
σ−2l cTl cl + µ̄T

j Σ̄
−1
j µ̄j − µT

jl
Σ−1jl µjl

)]
.

Note that if µ and Σ are variables, Σ̄j , µ̄j , βj , Σjl, µjl
and γjl are all functions of µ and Σ. We have the following
integration formulae before proceeding further:

∫
sj(x) · N (x|µ,Σ)dx = αj · βj(µ,Σ),∫

xsj(x) · N (x|µ,Σ)dx = αj · βj(µ,Σ) · µ̄j(µ,Σ),∫
sj(x)sl(x) · N (x|µ,Σ)dx = αjαl · γjl(µ,Σ).
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Fig. 1: The architecture of a RBFNN

Define the following matrices and vectors:

W =


...

...
...

· · · wij · · ·
...

...
...

 ,
s(x) =

[
· · · sj(x) · · ·

]T
,

β(µ,Σ) =


...

αj · βj(µ,Σ)
...

 ,
Ψ(µ,Σ) =

[
· · · αj · βj(µ,Σ) · µ̄j(µ,Σ) · · ·

]
,

Γ(µ,Σ) =


...

...
...

· · · αjαl · γjl(µ,Σ) · · ·
...

...
...

 .
Here, W ∈ Rm×N , s ∈ RN , β ∈ RN , Ψ ∈ RN×m and
Γ ∈ RN×N . We then have ĝ(x) = W · s(x) and

Ω1 ≈
∫

ĝ(x) · N (x|µ,Σ)dx

= W · β(µ,Σ), (17)

Ω2 ≈
∫

xĝT(x) · N (x|µ,Σ)dx

= Ψ(µ,Σ) ·WT, (18)

Ω3 ≈
∫

ĝ(x)ĝT(x) · N (x|µ,Σ)dx

= W · Γ(µ,Σ) ·WT. (19)

We see that (17)-(19) construct a computational foun-
dation, on which the Gaussian filtering integrals in (4)-(5)
and (8)-(10) can be evaluated easily. The foundation is based
on RBF approximation. If the approximation is accurate,
(17)-(19) will be a closed-form solution to Gaussian filtering.

B. RBF Approximation via Neural Network Learning

Prior to integral evaluation in (17)-(19), the weight ma-
trix W must be determined optimally in the sense that
approximation error between g(x) and ĝ(x) is minimized. A
formulation of this problem is: Given a data set containing
M elements, D = {(dj , zj)|zj = g(dj),dj ∈ Rn, zj ∈

Rm, j = 1, 2, · · · ,M}, find the optimal W to minimize the
convex cost function J(W) defined as

J(W) =
1

2

M∑
j=1

‖zj − ĝ(dj)‖2

=
1

2

M∑
j=1

‖zj −W · s(dj)‖2

=
1

2

M∑
j=1

m∑
i=1

‖zji −wi · s(dj)‖2 , (20)

where zji is the i-th element of zj and wi is the i-th row
vector of W. It is noteworthy that each wi can be determined
separately by minimizing

J(wi) =

M∑
j=1

‖zji −wi · s(dj)‖2.

The above weight determination problem is equivalent
to training a RBF Neural Network (RBFNN). A RBFNN
usually performs curve fitting in a high dimensional space,
or more specifically, to find a hypersurface that provides a
best fit for the high-dimensional training data [10].

For gi(x), the schematic diagram of a RBFNN is shown
in Fig. 1. It has three layers. The first one is the input layer,
which has n nodes corresponding to each element of the
input vector d. The second layer is a hidden layer with
N units, to each of which all nodes in the first layer are
connected. The activation functions of the j-th unit is the
GRBF sj(x), indicating that this is indeed a GRBFNN. Each
sj(x) in the hidden layer is connected through the weight
wij to the output layer that has only a single unit. This unit
computes a weighted sum of the outputs of the hidden units
as the output of the network.

It is noted that the RBFNN translates the function approx-
imation under consideration into neural network learning,
which applies learning strategies to the training data set D
to determine the weights of the output layer. A few different
types of learning strategies have been proposed in the litera-
ture. A straightforward approach is to use the pseudoinverse
method to derive the least squares solution to (20). However,
it is computationally inefficient, especially whenever new
data become available, and also poorly scalable to large
data sets. To remedy this situation, most other approaches
for RBFNN learning carry out recursive updating. Among
them, we highlight the one based on gradient descent [10].
Consider ĝi in (16), which can be rewritten as ĝi(x) =
wi·s(x). The recursive learning procedure of wi is expressed
as

φ(`) =

M∑
j=1

sT(dj) (zji −wi(`) · s(dj)) , (21)

wi(`+ 1) = wi(`)− η · φ(`), (22)

where φ = ∇wiJ(wi) is the gradient, η is the learning
coefficient and ` denotes the recursion step.

6045



Approximation properties of the RBFNN is of much
significance in practical implementation. The Universal Ap-
proximation Theorem states that, if g(x) is continuous, then
there is a RBFNN such that the function ĝ(x) realized
by the RBFNN is close to g(x) in the Lp norm for p ∈
[1,∞] [10]. Furthermore, it is pointed out in [12] that ĝ(x)
can approximate the continuous g(x) to an arbitrary accuracy
over a compact set. Thus for the considered Gaussian filtering
problem, if the function approximators are well designed
via RBFNNs, high-accuracy approximation can be achieved,
thus ensuring the filtering performance.

C. The RB-GF

Putting together the formulae in the Gaussian filter, func-
tion approximation and integral evaluation yields the RB-GF,
as described in Algorithm 2.

Initialize: k = 0, x̂0|0 = E(x0), Px
0|0 = p0I, where p0 >

0, typically a large positive value

Function approximation
Construction of the RBF based approximators for f and h
using RBFNN via (21)-(22)

repeat
k ← k + 1

Prediction:
State prediction via (4) and (17)
Computation of prediction error covariance via (5)
and (19)

Update:
Measurement prediction via (8) and (17) with the asso-
ciated covariance via (9) and (19)
Computation of the cross-covariance via (10) and (18)
State estimation via (11)
Computation of the estimation error covariance via (12)

until no more measurements arrive

Algorithm 2: The Radial Basis Gaussian Filter (RB-GF).

IV. SIMULATION EXAMPLE

In this section, we present a numerical example to evaluate
the performance of the proposed RB-GF. Consider the one-
dimensional nonlinear system{

xk+1 = f(xk) + wk,

yk = h(xk) + vk,
(23)

where

f(xk) = sin(xk) + 0.05xk(1− x2k),

h(xk) = 0.01(xk − 0.05).

The noises wk and vk are zero-mean white Gaussian with
Q = 0.001 and R = 0.001, respectively. We then apply the
RB-GF algorithm to data generated from the above system.
Another three types of Gaussian filters, UKF, GHF, CKF, are
also implemented for an overall comparison. In simulation,
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Fig. 2: (a) True states and estimated ones; (b) estimation
errors.

the initial condition x0 = 0.2, x̂0|0 = 0.6 and P0|0 = 3.
The functions f(x) and h(x) are approximated over [−2, 2]
by 10 GRBFs with the centers evenly distributed and widths
equal to 1. The number of Sigma points in the UKF is 11
and the number of quadrature points in the GHF is 10.

Fig. 2 shows the state estimation results yielded by the
four filters. From Fig. 2 and numerous simulation runs, we
consistently observe comparable performance between the
UKF, GHF and the proposed RB-GF, with the RB-GF usually
performing slightly better. Although the CKF can achieve
the same-level accuracy only when a sufficient number of
measurements arrive, it is the most computationally efficient.

From the simulation, we gain an insight that the RB-GF
can be enhanced in two ways. First, instead of designing
the approximators by RBFNN learning ‘once and for all’,
dynamically approximating the functions over the neigh-
borhood of the current state estimate will lead to better
approximation performance. Second, the notion developed
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in this paper can be extended to mixed Gaussian filter,
which employs a linear combination of Gaussian densities to
represent any type of probability densities. Despite additional
computational complexity, both methods are foreseeable to
boost the estimation performance significantly.

V. CONCLUSIONS

We have investigated the nonlinear state estimation prob-
lem and proposed a new Gaussian filter based on RBF
approximation. A distinct advantage of Gaussian filters is
the closed-form description. However, their practical im-
plementation requires evaluation of certain forms of inte-
grals. To deal with this challenge, we have proposed to
build apprximators composed of a weighed sum of RBFs
for nonlinear system functions. Determination of the ap-
proximators, i.e., optimal selection of the weights, can be
addressed by RBFNN learning. It has been shown that,
with the RBF based function approximators, the integrals
in Gaussian filtering can be delicately evaluated, giving
rise to the RB-GF algorithm. We have demonstrated the
effectiveness of the RB-GF through a comparison with other
filters in numerical simulation. Future work will be devoted
to filtering performance enhancement by developing dynamic
function approximation and the mixed Gaussian filter with
RBF based function approximators.

APPENDIX

For the reader’s convenience, we provide some Gaussian
identities, the proofs of which are widely available in text-
books and thus omitted. All the vectors and matrices involved
below are assumed to have compatible dimensions.
• If p(x) = N (x|a,A), then∫

(Mx + m)p(x)dx = Ma + m, (A.1)∫
(x−m)(x−m)Tp(x)dx = (a−m)(a−m)T + A.

(A.2)

• If
p(x,y) = N

([
x
y

]∣∣∣∣ [ab
]
,

[
A C
CT B

])
,

then the marginal distributions are p(x) = N (x|a,A)
and p(y) = N (y|b,B), and the conditional distribu-
tions is

p(x|y) = N
(
x|a + CB−1(y − b),A−CB−1CT

)
.

(A.3)
• Given two gaussian functions, their multiplication leads

to another gaussian function, i.e.,

N (x|a,A) · N (x|b,B) = λ · N (x|c,C), (A.4)

where

C =
(
A−1 + B−1

)−1
,

c = C(A−1a + B−1b),

λ = (2π)−
n
2 |A|− 1

2 |B|− 1
2 |C| 12

· exp

[
−1

2

(
aTA−1a + bTB−1b− cTC−1c

)]
.
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