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Abstract—Starting from multiple frequency domain mea-
surements, this paper presents a procedure to formulate a
dynamic model of a servo actuator that consists of a nominal
model and an allowable model perturbation in the form of a
parametric and unstructured uncertainty. A separation between
parametric and unstructured uncertainty is achieved by first
estimating low order linear parameter models via frequency
domain curve fitting followed by a linear Principle Component
Analysis (PCA) to bound the parametric variations on the
estimated parameters. Remaining differences between the low
order parametric models and the measured frequency responses

are captured by a bounded unstructured uncertainty on a
frequency dependent dual-Youla parameter that uses prior
information on a stabilizing feedback controller. The resulting
perturbation model is written in a standard Linear Fractional
Transformation (LFT) form and the procedure is applied to ex-
perimental data obtained from several mechanically equivalent
servo actuators in a Linear Tape Open (LTO) drive.

I. INTRODUCTION

Manufacturing variability, temperature and position depen-
dency will cause variations in the dynamic behavior of a
servo actuator and modern robust control design approaches
[1], [2] could potentially compensate for such variations.
However, for guaranteeing stability and performance robust-
ness a so-called perturbation or uncertainty model is needed
to model and bound the variations in the dynamic behavior
of a servo actuator.
Convex approaches to estimating low order models with

uncertainty [3] require strong assumptions on the noise on
the data. Using frequency domain data to formulate bounds
on model uncertainty optimal for control design is well
documented in [4] but may lead to models with high com-
plexity when combined with optimal H∞ bounds. Uncertainty
modeling of low complexity models from experimental data
is often rephrased as a model validation problem [5], [6], but
requires the formulation of a nominal model and uncertainty
bounds a priori. Estimating uncertainty models for flexible
structures have been reported for aerospace applications
[7] and more recently for (dual stage) servo actuators in
magnetic hard disk drives [8], [9] where frequency domain
measurements are used to formulate bounds on actuator
variability.
The uncertainty modeling should be aimed at separating

structured and unstructured variations in the dynamics [10].
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In particular for servo actuators, structured variations are
used to capture real-valued parametric variations in gain,
location and damping of resonance modes. Complex unstruc-
tured variations are used to bound non-structural variations
measured in the frequency response. This separation is
even more important for high performance control of servo
actuators in Linear Tape Open (LTO) drives [11], [12] where
frequency domain measurements are readily available for
modeling purposes [13]. In LTO drives structural variations
are mainly due to variations in manufacturing, while unstruc-
tured variations occur due to the exchange of different tape
cartridges and the inherent tape/head interaction.

Starting from multiple frequency domain measurements
obtained from LTO servo actuators [14], this paper presents
a modeling procedure to formulate a perturbation model
that consists of a nominal model and bounds on real-valued
structured and complex unstructured variations. Separation
between parametric and unstructured uncertainty is achieved
by first estimating low order dynamic models via frequency
domain curve fitting followed by a linear Principle Com-
ponent Analysis (PCA) [15]. The proposed linear PCA is
a simplification of the nonlinear PCA used in [16], [17]
solved with a non-convex optimization. However, the linear
PCA allows to find the minimum number of independent
perturbations in which the model parameters are varying with
a straightforward singular value decomposition.

In addition, remaining differences between the low order
parametric uncertainty model and the measured frequency
responses are captured by a bounded unstructured uncer-
tainty on a frequency dependent dual-Youla parameter. An
unstructured dual-Youla uncertainty model can use prior
information on a stabilizing feedback controller, creating an
uncertainty model that is guaranteed to be stabilized by the
feedback controller [18], [19]. The unstructured dual-Youla
uncertainty model is known to be less conservative [20]
in describing unstructured model uncertainty compared to
standard additive or multiplicative uncertainty models.

II. EXPERIMENTAL DATA OF LTO SERVO ACTUATOR

The motivation for the work on uncertainty modeling in
this paper comes from measured frequency domain data from
several servo actuators used in data track following in Linear
Tape Open (LTO) drives. In track following for an LTO drive
[12], a magnetic flexible tape runs at variable speed along a
magnetic read/write head and a digital position error signal
(PES) is decoded from dedicated servo tracks on a flexible
tape using a timing-based servo pattern. The digital PES is
fed back to an digital embedded servo controller to generate
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control signals for an LTO servo actuator via Zero Order
Hold (ZOH) Digital to Analog Converter (DAC) amplifier
to move the read/write head and follow the dedicated servo
track despite Lateral Tape Movement (LTM). Hence, the PES
is available only when the servo actuator is able to follow
the dedicated servo track on the flexible tape in a feedback
connection similar to Figure 1.
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Fig. 1. Schematics of closed-loop data and closed-loop experiments for
the uncertainty modeling and robust control of LTO drives

In Figure 1, G is used to indicate the servo actuator,
Cint denoted the embedded servo controller and Z denotes
a ZOH DAC conversion. For computing an estimate of
the frequency response G ( jω) of the servo actuator G,
the feedback loop is augmented with an external reference
signal r(t) via an Analog to Digital Converter (ADC), a
measurement of the input signal u(t) to the actuator and an
external measurement of the digital PES y(t) via ZOH DAC
[14]. Important for the discussion in this paper is that there
exists information on a stabilizing controller Cint used in the
closed-loop experiments.
Referring again to the closed-loop experiment in Figure 1,

frequency domain data G ( jω) of the servo actuator G can
be obtained via closed-loop spectral analysis [21]. Using
the notation Φyr( jω) to indicate the cross-spectral density
function between r(t) and y(t), the estimate

Φ̂yr( jω) =
∑
p
k=1Yk(ω)R∗k(ω)

∑
p
k=1Rk(ω)R∗k(ω)

where Yk(ω) = ∑Nt=1 yk(t)e
− jωt and Rk(ω) = ∑Nt=1 rk(t)e

− jωt

is found via the Welch method of averaging an N-point
Fourier transforms [21] of the signals yk(t) and rk(t) for
different experiments k. Based on this estimate we can
formulate an estimate of the frequency domain data G ( jω)
of the servo actuator G via

G ( jω) = Z( jω)−1
Φ̂yr( jω)

Φ̂ur( jω)
(1)

where Z( jω) denotes the known frequency response of a
ZOH DAC. The amplitude Bode response of the estimate
Gi( jω) in (1) from 15 different experiments has been de-
picted in Figure 2.
The experimental data in Figure 2 is computed based

on experimental data from several (mechanically equivalent)
servo actuators mounted in different LTO drives reflecting
manufacturing tolerances. Due to contact between the servo
head and the flexible tape, actuator dynamics varies depend-
ing on the tape manufacturing and flexibility. For operational
condition variations, LTO drives were placed in a temper-
ature controlled chamber where the temperature is varied
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Fig. 2. Magnitude Bode plot of estimated frequency responses Gi( jω) in
(1) for i = 1,2, . . . ,15 different experimental conditions.

from 15 to 50 degree Celcius to account for changes in tape
and actuator flexibility. We can see from Figure 2 that there
are perturbations in the two main resonance modes around
150Hz and 2.5kHz and changes in the frequency range 1-
2kHz. These variations will be modeled via structured and
unstructured model perturbations.

III. STRUCTURED PARAMETER PERTURBATION

A. Linear parameter perturbation model

To address the structural perturbations observed in
the resonance modes of the servo actuators, first low
order continuous-time linear parameter models G(s,θ i)
parametrized via

G(s,θi) =
b

(i)
0 +b

(i)
1 s+ · · ·+b

(i)
m s

m

1+a
(i)
1 s+ · · ·+a

(i)
n sn

, n≥ m

are estimated via standard frequency domain curve fitting

θ̂i = argmin
θi
‖(Gi( jω)−G( jω ,θi))Wi(ω)‖2 (2)

using the corresponding frequency domain data G i( jω) and
a frequency dependent weighting Wi(ω) that emphasizes
the observed resonance frequencies in the data G i( jω).
The minimization in (2) is solved via iterative least-squares
optimization [22] to find the parametric variations on the
estimated parameter

θ̂i = [b
(i)
0 b

(i)
1 · · · b

(i)
m a

(i)
1 · · · a

(i)
n ]T ∈ R

p×1

for i= 1,2, . . . ,N, where N is used to denote the number of
frequency response measurements.
To characterize the parametric variations, we define the

infinity mean θ̄ :

θ̄ = [b̄0 b̄1 · · · b̄m ā1 · · · ān]
T ∈ R

p×1 (3)

that minimizes the maximum distance between equivalent
parameter coefficients and can be computed via

b̄l =
maxi b

(i)
l +mini b

(i)
l

2
, āk =

maxi a
(i)
k +mini a

(i)
k

2
∀i= 1,2, . . . ,N, l = 0,1, . . . ,m, k = 1,2, . . . ,n

and define a parameter perturbation θ̃ as

θ̃i = θ̂i− θ̄ ∈ R
p×1 (4)
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Denote θ̂i(k) to be the k
th element in the vector θ̂i, then the

bound γk = maxi|θ̃i(k)| allows a parameter perturbation set
to be defined as

Sθ̃ = {θ̃ : |θ̃ (k)|6 γk, ∀k = 1,2, ..., p} (5)

resulting in a linear parametric perturbation model

Pθ̃ =

{

Gθ̃ : Gθ̃ =
B̄(s)+B(s)θ̃

Ā(s)+A(s)θ̃
, θ̃ ∈Sθ̃

}

(6)

where Sθ̃ is given in (5) and

B̄(s) = b̄0+ b̄1s+ · · ·+ b̄ms
m

Ā(s) = 1+ ā1s+ · · ·+ āns
n

B(s) = [1 s · · · sm 0 · · · 0] ∈C1×p

A(s) = [0 0 · · · s · · · sn] ∈ C1×p

(7)

Although (6) would model the parametric variations in the
measured frequency responses G i( jω), the bound γk in (5)
allows each element θ̃ (k) of the vector θ̃ to vary indepen-
dently. The variations of θ̃i in (4) might be structured, espe-
cially when parameters vary jointly to find a less conservative
unceratinty description.

B. Lower dimensional parameter perturbation

Reduction of the number of independent perturbations that
occur in the variations of θ̃i in (4) can be determined via a
linear Principle Component Analysis (PCA) [15]. Although
there may be non-affine structures of parameter dependence
that could be solved via non-linear PCA [17], a linear PCA
can be solved with a straightforward Singular Value Decom-
position (SVD) or Eigenvalue Decomposition. Furthermore,
any remaining differences between the frequency response of
the parametric models G( jω ,θi) and the frequency response
data Gi( jω) will be bounded by an unstructured uncertainty.
For setting up the PCA, we first define a parameter

perturbation matrix

Θ̃ = [θ̃1 θ̃2 · · · θ̃N ] ∈ R
p×N (8)

from the N parameter estimates θ̂i ∈ Rp×1 and the infinity
mean θ̄ in (3). Based on the matrix Θ̃, two main steps are
performed to reduce the variations of θ̃i in (4) to a finite
number r ≤ p of independent perturbations via the principle
directions computed via PCA. The two steps are summarized
in the following.
1) Determination of number of principal components: To

find the principle directions regardless of the relative size of
the perturbations, first the parameter perturbation matrix Θ̃
in (8) is scaled to

Θ̃(s) = [θ̃
(s)
1 θ̃

(s)
2 · · · θ̃

(s)
N

] ∈ R
p×N (9)

where θ̃
(s)
i (k) = θ̃i(k)/θ̄i(k);∀i = 1,2, . . . ,N;k = 1,2, . . . , p

which means each parameter is scaled by its own nomi-
nal value. So the relative difference between the observed
variations in θ̂i ∈ Rp×1 is normalized. Based on the scaled
parameter perturbation matrix Θ̃(s) we now define a scaled
covariance matrix

C
(s)

θ̃
=
1

N
Θ̃(s)Θ̃(s)T ∈R

p×p (10)

and perform a SVD on to rewrite C
(s)

θ̃
as

C
(s)

θ̃
=

[

T (s) T
(s)
s

]

[

C
(s)
σ 0

0 C
(s)
s

][

T (s)

T
(s)
s

]

(11)

where the singular values of C
(s)

θ̃
are separated into r large

singular values in C
(s)
σ and p−r small singular values in C

(s)
s .

With the separation of singular values we have

argmin
C
‖C

(s)

θ̃
−C‖F = T (s)C

(s)
σ T

(s) (12)

where C is a symmetric rank r matrix. The direct rela-
tion between Frobenius-norm minimization in (12) and the

truncation of the SVD of the scaled covariance matrix C
(s)

θ̃
makes the choice r ≤ p a well-motivated choice for the
number of independent principle directions for the parameter
perturbations.

2) Least Squares optimization: For parameter perturba-
tion matrix Θ̃ in (8) we can also define an (unscaled)
covariance matrixCθ̃ = 1

N
Θ̃Θ̃T ∈Rp×p. Knowing the number

r ≤ p of principal components from the scaled covariance
matrix in the first step, we perform again a SVD and use the
number r to partition the SVD via

Cθ̃ =
[

T Ts
]

[

Cσ 0
0 Cs

][

T

Ts

]

(13)

where T ∈Rp×r. An similar approximation of Cθ̃ by TCσT

where

Cσ =
1

N
ΣΣT ∈R

r×r (14)

would lead to an error E = Θ̃ − TΣ on the parameter
perturbation matrix Θ̃ in (8). Instead of computing Σ∈R

r×N

from a Cholesky factorization of Cσ as in (14), a Least
Squares (LS) minimization of ‖E‖F is used to compute Σ.
The optimal solution

Σ̂ = argmin
Σ
‖Θ̃−TΣ‖F

is given by the standard LS solution

Σ̂ = (T TT )−1T T Θ̃ (15)

Defining

Σ̂ = [σ̂1 σ̂2 · · · σ̂N ] ∈ R
r×N (16)

allows the parameter perturbations θ̃i to be written as

θ̃i = T σ̂i+ ei; i= 1,2, ...,N (17)

where T ∈ R
p×r and σ̂i is a reduced size independent

parameter perturbation of r × 1 where r ≤ p. The least
squares minimization in (15) has minimized the 2-norm of
the error ei. The end result is a reduced size r×1 perturbation
σ̂i where T scales the perturbation on the p×1 parameter.

798



C. Reduced size linear parameter perturbation model

The PCA leads to the structural parameter variations in
(17) that can be approximated by

θi = θ̄ +T σ̂i, i= 1,2, . . . ,N (18)

where θ̄ ∈Rp×1 is the infinity mean given in (3), T ∈ R p×r

is found from the SVD in (13) and σ̂i ∈ Rr×1 is due to the
LS optimization in (15) and the definition in (16). To write
this in a standard structured parametric uncertainty model,
consider the scaling of σ̂i by the scaling matrix

S= diag(s1,s2, ...,sr) ∈ R
r×r,

sk =maxi|σ̂i(k)|, k= 1,2, ...r.

where σ̂i(k) denotes the kth element of σi ∈ Rr×1. This
allows a reduced size r ≤ p parameter perturbation

θ = θ̄ +TSδ , δ ∈Sδ

where the reduced size linear parameter perturbation set S δ

is defined as

Sδ = {δ : |δ (k)| < 1, ∀k = 1,2, . . . ,r} (19)

in which δ (k) again denotes the the kth element of δ ∈R r×1.
The final result is a reduced size r ≤ p linear parametric
perturbation model

Pδ =

{

Gδ : Gδ =
B̄(s)+Vb(s)δ

Ā(s)+Va(s)δ
, δ ∈Sδ

}

(20)

where Sδ is given in (19) and

Vb(s) = B(s)TS ∈ C1×r

Va(s) = A(s)TS ∈C1×r

and B(s), A(s) were defined previously in (7).

D. Application to LTO tape data

Based on the 15 measured frequency responses depicted
in Figure 2, continuous-time linear parametric models

G(s,θi) =
b

(i)
0 +b

(i)
1 s+b

(i)
2 s

2+b
(i)
3 s

3

1+a
(i)
1 s+a

(i)
2 s

2+a
(i)
3 s

3+a
(i)
4 s

4

are fitted to capture the structural variations in the main
resonance modes around 150Hz and 2.5kHz. Although a
relative degree of 2 is able to fit most of the frequency
domain data, a relative degree of 1 with a third order
numerator is used to find the best strictly proper fourth
order model. The fourth order models lead to parameter
estimates θ̂i ∈Rp×1 with p= 8 and application of the linear
PCA allows the structural parameter variations in θ̂i to be
approximates by (18) using T ∈ R p×r where r = 4. The
structural parameter variations can be reduced to a smaller
size r ≤ p is likely due to changes in resonance frequency
only, while little change in damping is observed in the main
resonance modes around 150Hz and 2.5kHz.
Varying the r× 1 perturbation δ within the normalized

bounds |δ (k)|< 1 in the linear parametric perturbation model
of (20) now allows the structural variations in the servo
actuators to be modeled. This has been demonstrated in

Figure 3, where the amplitude Bode plot of 50 randomly
chosen models from the linear parametric perturbation model
of (20) has been plotted. It can be observed that the structural
variations in the resonance modes have been captured by the
model defined in (20) for |δ (k)|< 1.
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Fig. 3. Magnitude plot of 50 randomly chosen models |Gδ ( jω)| from the
linear parametric perturbation model of (20)

IV. UNSTRUCTURED UNCERTAINTY CHARACTERIZATION

A. Dual-Youla uncertainty

Inevitably, some differences between the modeled fre-
quency response G( jω ,θi), with θi given in (18), and
the measured frequency response G i( jω) remain. These
difference may be due to the approximation of θ i by a
reduced size r ≤ p of structural perturbation as indicated
by (18) or due to remaining unmodeled dynamics during
the curve fitting. The remaining difference are bounded by
an unstructured uncertainty on a dual-Youla parameter that
uses prior information on a stabilizing feedback controller.

The dual-Youla parametrization allows the parametrization
of all models stabilized by a given feedback controller by
the requirement of a stable dual-Youla parameter [18], [19].
The stability requirement on the dual-Youla parameter can
also be used in bounding model perturbations to formulate
closed-loop unstructured uncertainty models that are known
to be less conservative than standard open-loop uncertainty
models [20].

With Cint stabilizing all measured servo actuators, we as-
sume and verify that Cint also stabilizes all models G(θi), i=
1,2, . . . ,N. According to the dual-Youla parametrization, for
each servo actuator Gi there exists a ∆i ∈ RH∞ that satisfies

Ni = Ni+ ∆iDC

Di = Di+ ∆iNC
(21)

where (Ni,Di) is the (unknown) right coprime factor of G i,
(Ni,Di) is the (known) right co-prime factor of the model
G(θi) and (NC,DC) is (known) right coprime factor of C int .
Knowing (Ni,Di), (NC,DC) and Gi one can compute ∆i
explicitly via ∆i = D−1C (1+ GiCint)

−1(Gi−G(θi))Di. For a
stable controller Cint we may choose NC =Cint and DC = I.
Similarly, for a stable model G(θi) we may choose Ni =
G(θi) and Di = I, simplifying the explicit expression for ∆ i
to ∆i = (1+GiCint)

−1(Gi−G(θi)). It should be pointed out
that ∆i ∈ RH∞ due to the dual-Youla parametrization. With
frequency domain measurements G i( jω) we can formulate
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an upper bound for the unknown, but stable unstructured
uncertainty

∆i( jω) = (1+Gi( jω)Cint ( jω))−1(Gi( jω)−G( jω ,θi))

Defining

∆u(ω) =max
i
|∆i(ω)| ∀ω , i= 1,2, ...,N (22)

an unstructured dual-Youla uncertainty model set can be
formulated via

P∆ = {G∆ : G∆ = (G(θi)+ ∆W)(I−∆WCint)
−1, |∆|< 1}

(23)
where W ( jω) is a stable and stable invertible filter that
overbounds ∆u(ω) in (22) via |∆u(ω)W−1( jω)|∞ < 1.

B. Application to LTO tape data

Computation of ∆i( jω) for every fourth order model G(θ i)
contained in (20) and obtained from curve fitting followed
by PCA allows the computation of frequency dependent
∆u(ω) in (22) and has been depicted in Figure 4. As a
frame of reference, in Figure 4 also the results are plotted in
case only an additive uncertainty or dual-Youla unstructured
uncertainty (DY) is used without modeling the structural per-
turbations. Clearly, the additional step of extracting structural
uncertainty via curve fitting and a PCA reduces the remaining
unstructured uncertainty.
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Fig. 4. Comparison of frequency dependent unstructured uncertainties
when using only Additive uncertainty, only Dual-Youla (DY) uncertainty or
the Mixed Structured and Unstructured (MSU) uncertainty

V. MIXED STRUCTURED AND UNSTRUCTURED
UNCERTAINTY IN LFT FORM

The model set of structured perturbations Pδ in (20)
with ∆s = diag(δ ) can be also written into an upper LFT
Fu(P,∆s) = P22+ P21∆s(1−P11∆s)

−1P12 where the entries
of the 2×2 block transfer matrix P are given by

P11 =







−Ā−1Va
...

−Ā−1Va






P12 =







Ā−1

...

Ā−1







P21 = Vb− B̄Ā
−1

Va P22 = B̄Ā−1

Similarly, the model set of unstructured perturbations P∆

in (23) can be written in an upper LFT Fu(Q,∆) = Q22+

Q21∆(1−Q11∆)−1Q12 where the entries of the 2× 2 block
transfer matrix Q are given by

Q11 = WCint Q12 = W

Q21 = I+G(θi)Cint Q22 = G(θi)

If the above mentioned LFTs Fu(P,∆s) and Fu(Q,∆) are
combined by stacking ∆s and ∆ diagonally, a Mixed Struc-
tured and Unstructured (MSU) perturbation model in the
form of an upper LFT Fu(P̃,diag(δ ,∆)) is formed. The
resulting MSU peturbation model is summarized by

Pδ ,∆ = {Gδ ,∆ : Gδ ,∆ = Fu(P̃,diag(δ ,∆))

|δ (k)|< 1, ‖∆(ω)‖∞ < 1, k = 1,2, ...,r}
(24)

where the entries of the 2× 2 block transfer matrix P̃ are
given by

P̃11 =

[

P11 P12Cint
0 WCint

]

P̃12 =

[

P12
W

]

P̃21 =
[

P21 I+P22Cint
]

P̃22 = P22

(25)

VI. PERFORMANCE ROBUSTNESS

A. Robust Performance Test

For formulating a test on performance robustness, first
a definition on (nominal) performance must be given. To
facilitate the use of the main loop theorem [1], nominal
performance of the servo actuators in an LTO drive is
specified as an weighted H∞ criterion on the disturbance
rejection function (I+CG)−1. Defining an error signal e=
Ws(d+ y) and augmenting the LFT y = Fu(P̃,diag(δ ,∆))u
with a feedback connection u=−C(d+ y) leads to an LFT
e = Fu(M,diag(δ ,∆))d for the relation between the error
signal e and disturbance signal d. Performance robustness
can now be verified with the main loop theorem and using
the computation of a structured singular value µ ∆(·) with
respect to the perturbation structure

∆ = {diag(δ (1),δ (2), . . . ,δ (r),∆,∆ f ) : δ (k)∈R, ∆,∆ f ∈C}
(26)

of the mixed r dimensional (real) diag(δ ) and a 2 dimen-
sional complex uncertainty structure daig(∆,∆ f ).
Theorem 1: Robust Performance [1]

Consider P̃ given in (25) and let

M =

[

M11 −P̃12M22
WsM22CP̃21 WsM22

]

where M11 = Fl(P̃,−C), M22 = (I+CP̃22)
−1 and consider

models Gδ ,∆ ∈Pδ ,∆ given in (24). The negative feedback
connection of C and Gδ ,∆ is robustly stable and the H∞ per-
formance specification ‖Fu(M,diag(δ ,∆))‖∞ ≤ 1 is satisfied
all Gδ ,∆ ∈Pδ ,∆ iff µ∆(M) < 1 computed with respect to the
perturbation structure ∆ defined in (26).
As computation of µ∆(M) is in general NP-hard, over-

bounds can only be computed by a frequency point wise
evaluation of µ∆(M( jω)) over a frequency grid ω ∈ Ω [1].
Such frequency dependent overbounds can still be used to
check if µ∆(M( jω)) < 1 ∀ω ∈ Ω and robust performance
can be verified provided the frequency grid Ω is chosen to
be dense.
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B. Robust performance test for LTO actuator data

The robust performance test summarized in Theorem 1 is
a much stronger requirement than only robust stability. For
testing performance robustness based on the mixed struc-
tured and unstructured perturbation(MSU) modelP δ ,∆ given
in (24) and determined from the 15 frequency responses
given in Figure 2, a performance weighting function W s on
the disturbance rejection function (I+CG)−1 was chosen.
Randomly selecting 50 different models Gδ ,∆ ∈ Pδ ,∆ and

computing the amplitude of |(I +CGδ ,∆)−1| leads to the
amplitude Bode plot depicted in Figure 5.
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Fig. 5. Amplitude Bode plot of the error rejection for 50 randomly chosen
models from the Mixed Structured and Unstructured (MSU) perturbation
model given in (24) compared to the performance weighting function Ws

The result indicate that all chosen models satisfy the H∞-
norm based performance specification due toWs overbouding
all 50 error rejection functions. The results is formally
proven by the computation of the (upper bound) of µ ∆(M)
in Figure 6. As a frame of reference, in Figure 6 also the
robust performance results are plotted in case only an additive
uncertainty or dual-Youla unstructured uncertainty (DY) is
used without modeling the structural perturbations and indi-
cate that µ > 1 for those uncertainty descriptions. Clearly,
the Mixed Structured and Unstructured (MSU) perturbation
model Pδ ,∆ given in (24) yields less conservative results
when checking performance robustness.
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Fig. 6. Comparison of µ-based robust performance test when using
only Additive uncertainty, only Dual-Youla (DY) uncertainty or the Mixed
Structured and Unstructured (MSU) uncertainty

VII. CONCLUSIONS

Starting from multiple frequency domain measurements,
this paper presents a procedure to formulate a mixed struc-
tured and unstructured perturbation model. A separation
between parametric and unstructured uncertainty is achieved

by first estimating low order linear parameter models via
frequency domain curve fitting followed by a linear Princi-
ple Component Analysis (PCA). Remaining differences are
bounded by unstructured uncertainty on a dual-Youla param-
eter that uses prior information on a stabilizing feedback
controller. The favorable properties of the perturbation model
is demonstrated via a performance robustness test applied to
data from servo actuators in Linear Tape Open (LTO) drives.
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