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Abstract— This paper analyzes the peak covariance stability
properties of Kalman filtering for linear discrete-time systems
with irregular time intervals for sampling of output measure-
ments. Existing research on Kalman filtering with irregular
sampling mostly builds on probabilistic description of sampling
intermittence. In this work, we focus on the general case
of irregular sampling without probabilistic assumptions. The
obtained stability conditions show that the peak covariance
stability is influenced by the eigenvalue distribution of the state
matrix in the complex plane. The effectiveness of the analysis
is illustrated via a simulation based study on ocean flow field
estimation using submersible drogues that can measure position
intermittently and acceleration incessantly.

I. INTRODUCTION

The classical discrete-time KF is premised on the implicit
assumption of regular sampling of the output measurements.
However, it is sometimes unrealistic to obtain measurements
regularly in a few situations. Especially in applications of
process control, networked control systems, navigation and
guidance, and ocean surveillance, irregular time sampling
intervals are used to monitor a system. Thus the KF analysis
under irregular time sampling has been given much emphasis
recently.

When irregular sampling occurs, boundedness of the es-
timation error covariance in the KF has been studied exten-
sively in the setting that the availability of measurements
follows a stochastic process. It is common to employ an
auxiliary binary random variable γk: γk = 1 or 0 denotes
the measurement is available or not at time instant k,
respectively. The sequence {γk} are usually considered to
belong to either of the following two categories:
• Bernoulli process: γk’s are i.i.d. random variables,

with the probability distribution of p(γk = 1) = λ
and p(γk = 0) = 1 − λ. A lead has been taken
in [1] with the conclusion that there exists a critical
probability λc. If λ > λc, then the expectation of the
resulting estimation error covariance Pk is guaranteed
bounded (given the usual stabilizability and detectability
hypotheses), and divergent otherwise. Determination of
the value of λc is investigated in [2] and [3]. A novel
probability-based metric is proposed in [4] to evaluate
the KF performance. Specifically, the upper and lower
bounds of Pr (Pk ≤M) for a given M , are derived to
assess the KF.
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• Two-state Markovian process: Another interesting
exploration is to consider the Gilbert-Elliott channel
model, in which {γk} is modeled as a two-state Markov
chain. Sufficient conditions are derived in [5] for the
boundedness of the expectation of the peak estimation
error covariance. Some less conservative results are
obtained in [6], [7]. It is shown in [8] that the estimation
error covariance of the KF with Markovian intermittent
measurements has a power-law decay, with the critical
probability derived.

The following observations have motivated our research to
develop results for KF with irregular time sampling schemes:
• Observation 1: Probability distributions for intermittent

sampling are not easy to determine in practice. It is
a big challenge to know the type of the probability
distribution and the accurate probability values.

• Observation 2: Stochastic modeling may fail if the
measurements are sampled irregularly but not randomly
in many real-life applications.

In this paper, we will study the KF under general irregular
sampling without stochastic modeling. Irregular sampling has
been examined in the literature on system identification and
nonlinear predictive control, see [9]–[11]. For a continuous-
time system, state observability from irregularly sampled
measurements is discussed in [12] and [13]. However, it
is noted that analysis of the discrete-time KF with general
irregular sampling schemes has seldom been discussed. We
will hence contribute to this topic in this paper through
studying the boundedess conditions for the KF’s estimation
error covariance.

II. PROBLEM FORMULATION

Consider a linear discrete-time system Σd with the fol-
lowing state equation:

Σd : xk+1 = Axk +Buk + wk (1)

where A ∈ Rn×n, B ∈ Rn×p, x ∈ Rn is the state vector,
u ∈ Rp is the input vector, and w ∈ Rn is the process
noise vector, which is white Gaussian with zero mean and
covariance matrix Q ≥ 0. Here, the subscript k of a vector
ak denotes the k-th sampling time instant, i.e., ak := a(kTs),
where Ts is the standard sampling period. Sampling of the
output measurement of Σd is not regular in temporal scale.
The sampling durations are not fixed but the integer multiples
of Ts. It is convenient to use the binary variable γk to
denote the availability of the measurement at time instant
k. If the measurement is sampled, γk = 1; and γk = 0

2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

978-1-4577-1094-0/12/$26.00 ©2012 AACC 4795



otherwise. With the initial condition γ0 = 1, let us introduce
the following time sequence of measurement sampling:

t0 = 1, t` = inf{k : k > t`−1, γk = 1} for ` = 1, 2, · · ·

The new time index t` denotes the time instant when the `-th
measurement is sampled. We define the set

T = {t`+1 − t` : ` = 0, 1, · · ·}

which is the collection of all irregular sampling intervals.
The output equation of Σd is given by

yt` = Cxt` + vt` (2)

where C ∈ Rm×n, y ∈ Rm is the output vector, and v ∈ Rm
is the measurement noise vector, which is independent of
w, also white and Gaussian with zero mean and covariance
matrix R > 0.

For Σd, we adopt the following standard assumptions
throughout the paper:

(A1) (A,C) is detectable;
(A2) (A,Q

1
2 ) is stabilizable;

(A3) supT <∞.
The assumptions (A1)-(A2) are well known to guarantee
that, under regular single-rate sampling, the estimation er-
ror covariance of the Kalman filter converges to a unique
fixed point from any initial condition [14]. We have (A3)
established, since effective state estimation requires that the
sampling intervals be finite. If the matrix A is stable, it
is a trivial task to design a stable state estimator even
under irregular sampling. Thus only the unstable case is
particularly worth studying. In sequel, only an unstable A
will be considered.

We use the lifting technique [15] to deal with irregular
sampling. The lifted system Σl can be built from Σd:

Σl :


xt`+1

= Φ(t`+1, t`)xt` + Γ(t`+1, t`)ũt`+1,t`
(3a)

+Ω(t`+1, t`)w̃t`+1,t`
(3b)

yt` = Cxt` + vt` (3c)

where

Φ(t`+1, t`) = At`+1−t`

Γ(t`+1, t`) =
[
At`+1−t`−1B · · · AB B

]
Ω(t`+1, t`) =

[
At`+1−t`−1 · · · A I

]
ũt`+1,t` =

[
uT
t`
· · · uT

t`+1−2 uT
t`+1−1

]T
w̃t`+1,t` =

[
wT
t`
· · · wT

t`+1−2 wT
t`+1−1

]T
We denote the covariance matrix of w̃t`+1,t` be

∆(t`+1, t`) = diag(Q, · · · , Q︸ ︷︷ ︸
t`+1−t`

)

It is noted that the system Σl is linear time-varying.
The KF can be applied to optimal state estimation for Σl.
With the initializing condition x̂+

t−1
= E(xt−1), P+

t−1
=

E
[
(xt−1

− x̂+
t−1

)(xt−1
− x̂+

t−1
)T
]
. the KF is given in a two-

step procedure for ` ≥ 1:

• Step 1: Prediction

x̂−t` = Φ(t`, t`−1)x̂+
t`−1

+ Γ(t`, t`−1)ũt`−1
(4)

P−t` = Φ(t`, t`−1)P+
t`−1

ΦT(t`, t`−1)

+Ω(t`, t`−1)∆(t`, t`−1)ΩT(t`, t`−1) (5)

• Step 2: Update

Kt` = P−t`C
T(CP−t`C

T +R)−1 (6)

x̂+
t`

= x̂−t` +Kt`(yt` − Cx̂
−
t`

) (7)

P+
t`

= (I −Kt`C)P−t` (8)

where the superscripts “-” and “+” denote a priori and a
posteriori, respectively, and x̂ and P are the state estimate
and estimation error covariance matrix, respectively. At inter-
sample time instants, due to the lack of output measurements,
the propagation of state estimate is dependent only on the
state equation (1). Hence,

x̂−k = Ax̂+
k−1 +Buk−1 (9)

P−k = AP+
k−1A

T +Q (10)

x̂+
k = x̂−k (11)

P+
k = P−k (12)

for t` < k < t`+1.
The lifted KF in (6)-(12) can be decomposed into single

steps, resorting to using γk’s. Its equivalent expression is
given by the following equations:

x̂−k = Ax̂+
k−1 +Buk−1 (13)

P−k = AP+
k−1A

T +Q (14)

Kk = P−k C
T
(
CP−k C

T +R
)−1

(15)

x̂+
k = x̂−k + γkKk

(
yk − Cx̂−k

)
(16)

P+
k = (I − γkKkC)P−k (17)

If γk’s are Bernoulli or two-state Markov random variables,
there are a variety of works in the literature devoted to
studying the behavior of the binary switching Kalman filter
in (13)-(17), e.g., [1], [4], [5], to mention them. In this paper,
we will explore a general situation, breaking away from the
assumption that γk’s are random variables.

III. PEAK COVARIANCE STABILITY ANALYSIS

With the inspiration from the literature, e.g., [5], we shall
focus on analysis of peak covariance stability defined in this
section.

Definition 1: The peak covariance sequence {Pt`} is said
to be stable if Pt` < ∞ ∀` ≥ 1 for Pt0 < ∞. The filtering
system satisfies peak covariance stability if {Pt`} is stable.

A. Pathological & Degenerate Sampling Intervals

It is easily verifiable that the KF performance may suffer
seriously from the irregular sampling scheme. This indicates
that the intervals between two consecutive samples can
influence the KF behavior significantly.

4796



Before proceeding further, let us investigate the eigen-
values of A. Suppose that A has l distinct eigenvalues, µi
for i = 1, 2 · · · , l, each with multiplicities hi. Obviously,
Σli=1hi = n. These eigenvalues lie on different eigencircles
centered around the original point, depending on their own
magnitudes. If |µi| = |µj |, ∀i, j ∈ {1, 2, · · · , l}, they are on
the same eigencircle, the radius of which is given by |µi| or
equally |µj |. This leads to the definition about pathological
sampling intervals:

Definition 2: The sampling interval t`+1 − t` for ` =
0, 1, 2, · · · is pathological if t`+1 − t` ∈ P, where

P =
{
κ ∈ N\{0, 1} :

(
µi
µj

)κ
= 1, |µi| = |µj | > 1,

∀i, j ∈ {1, 2, · · · , l}
}

(18)

Otherwise, it is non-pathological.
Definition 2 can be briefly explained in the following way.

Let µi and µj be two distinct unstable eigenvalues of A with
|µi| = |µj |. Note that the eigenvalues of At`+1−t` are equal
to the t`+1 − t` power of the eigenvalues of A. Thus the
sampling operation is equivalent to mapping the eigenvalues
of A to new points on the complex plane. Lying on the same
eigencircle, µi and µj will be mapped to one coincidence
point and can not be distinguished any more, if the sampling
interval t`+1 − t` is pathological. The next lemma further
shows the property of the set P.

Lemma 1: Assume that µ is any unstable eigenvalue of
A (|µ| ≥ 1). For all κ ∈ N\{0, 1}, if µej2πi/κ for any
i = 1, 2, · · · , κ− 1 is an eigenvalue of A, then κ ∈ P.

Proof: It is straightforward to see that(
µ

µej2πi/κ

)κ
= 1

implying κ ∈ P. In addition, for all κ ∈ P, there exists
i = 1, 2, · · · , κ−1 such that µej2πi/κ is an eigenvalue of A.

If any sampling interval is pathological, we continue to
check if it is ‘degenerate’. It is known that there always exists
a similarity transformation M such that AJ := M−1AM ,
where AJ is the Jordan canonical form of A. Accordingly,
denote CJ := CM . For all κ ∈ P, define Gκ,α as the set
of eigenvalues with the same modulus α and suffering from
the pathological sampling interval κ:

Gκ,α =
{
µi, µj :

(
µi
µj

)κ
= 1, |µi| = |µj | = α, κ ∈ P,

∀i, j ∈ {1, 2, · · · , h}
}

(19)

Let AJ,Gκ,α be the block in AJ , with the diagonal entries
being the elements of Gκ,α, and CJ,Gκ,α be the associated
block in CJ .

Definition 3: The sampling interval t`+1 − t` for ` =
0, 1, 2, · · · is degenerate if t`+1 − t` ∈ D, where

D :=
{
κ ∈ P : CJ,Gκ,α is rank deficient

}
(20)

Otherwise, it is non-degenerate.
It is obvious that D ⊆ P. Indeed, a non-degenerate

sampling interval is non-pathological, but not vice versa.

B. Peak Covariance Stability

We have the following main theorem.
Theorem 1: If T ∩ D = ∅, the Kalman filter with

irregularly sampled measurements satisfies peak covariance
stability.

To prove Theorem 1, the following lemmas will be needed.
Lemma 2: If T∩P, the pair (Aκ, C) is detectable for any

k ∈ T.
Proof: The reader may refer to [15] [16] [17] for some

existing discussion on the lemma. Here we give a proof for
completeness.

Let µ be any unstable eigenvalue of A. Define the complex
function

f(s) :=
sκ − µκ

s− µ
Note that f(s) is analytic everywhere. Its zeros are given by
µej2πi/κ for i = 1, 2, · · · , κ − 1. By the spectral mapping
theorem, the eigenvalues of f(A) are the values of f(s) at
the eigenvalues of A. According to the definition of P in
(18), none of the points µej2πi/κ, where i = 1, 2, · · · , κ− 1,
is an eigenvalues of A. Hence, 0 is also not an eigenvalue
of f(A), implying that f(A) is invertible.

It follows from the invertibility of f(A) that[
Aκ − µκI

C

]
=

[
f(A) 0

0 I

] [
A− µI
C

]
(21)

where µκ is the eigenvalue of Aκ. By (A1), we have
rank [AT − µI CT ] = n. Hence, we obtain from (21) that
rank [ (Aκ)

T − µκI CT ] = n This shows that (Aκ, C) is
detectable.

The lemma below can be developed on the basis of
Lemma 2.

Lemma 3: If T ∩ D = ∅, the pair (Aκ, C) is detectable
for any k ∈ T.

Proof: For simplicity and without loss of generality, as-
sume that all l eigenvalues of A are unstable, and that Gκ =
{µl−1, µl}, that is, µl−1 and µl are the only eigenvalues
affected by the pathological κ. Then we drop the subscript
‘α’ here for convenience. It is obvious from Lemma 2 that
rank [ (Aκ)

T − µκi I CT ] = n for i = 1, 2, · · · , l−2. After
Jordan canonical transformation, AJ and CJ are given by

AJ = diag ([AJ,1 · · · AJ,l−1 AJ,l ])

CJ = [CJ,1 · · · CJ,l−1 CJ,l ]

where AJ,i is the Jordan block associated with µiand CJ,i
is the corresponding block in C. Define

AJ,Ḡκ := diag ([AJ,1 · · · AJ,l−2 ])

CJ,Ḡκ := [CJ,1 · · · CJ,l−2 ]

AJ,Gκ := diag ([AJ,l−1 AJ,l ])

CJ,Gκ := [CJ,l−1 CJ,l ] .

For i = l− 1, l,
[ (
Aκ
J,Ḡκ

)T

− µκi I CT
J,Ḡκ

]
is of full rank

by Lemma 2, and so is
[ (
AκJ,Gκ

)T − µκi I CT
J,Gκ

]
due to

the full rank of CJ,Gκ . We additionally have Aκ
J,Ḡκ−µ

κ
i I is of

full rank as its diagonal elements are nonzero. Consequently,
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for i = l − 1, l, rank [AκJ − µκi I CT
J ] = n. Thus we have

rank [ (Aκ)
T − µκI CT ] = n, where µ is any eigenvalue

of A.
The proof of Theorem 1 is as follows.

Proof of Theorem 1: If T ∩ P = ∅, it follows from
Lemmas 2 and 3 that, (Aκ, C) is detectable for κ ∈ T. In
other words, (Φ(t`+1, t`), C) is detectable for ` = 0, 1, · · ·.
Thus there always exists Ksub

t`
such that Φ(t`+1, t`)−Ksub

t`
C

is stable. We can then construct a suboptimal estimator
x̂sub
t`+1

= Φ(t`+1, t`)x̂
sub
t`

+Ksub
t`

(yt`−Cx̂sub
t`

). The estimation
error is given by

x̃sub
t`+1

:= xt`+1
− x̂sub

t`+1

=
[
Φ(t`+1, t`)−Ksub

t`
C
]
x̃sub
t`

+ wt` −Ksub
t`

vt`

It is observed that the above error performance system
is stable. Then the associated estimation error covariance
P sub
t`

is upper bounded. Furthermore, given the same initial
condition, Pt` ≤ P sub

t`
, due to the KF’s optimality. Thus if

Pt0 <∞, then Pt` <∞. The proof is complete.
Theorem 1 shows that, the peak covariance stability of

the filtering system with irregular sampling is guaranteed
if the sampling intervals are non-degenerate (or futhermore,
non-pathological). From Theorem 1, some corollaries can be
derived to further reveal the stability properties.

Corollary 1: If the matrix A has no two or more dis-
tinct unstable eigenvalues with the same modulus, the peak
covariance sequence is stable.

Proof: For the given condition, P = ∅ and thus T∩P =
∅ is satisfied, ensuring the peak covariance stability.

Corollary 2: For any eigenvalues of A that have the same
modulus, if the corresponding block of the matrix C in
Jordan canonical form is of full column rank, then the peak
covariance sequence is stable.

Proof: Note that D = ∅ is satisfied in this case, so the
peak covariance stability is ensured.

A question of interest here is: Can we determine the
accurate upper and lower bounds of the peak covariance?
Currently, there is no definite answer for the general case.
However, if narrowing the scope to scalar systems, we can
obtain some desirable conclusions.

For an scalar system (n = 1), the peak covariance stability
is always guaranteed, given the assumptions (A1)-(A3).
Define τ := inf T and η := supT, where 1 ≤ τ ≤ η < ∞.
Suppose there are two associated linear multi-rate systems,
which are generated by sampling the output of the system
Σd every τTs and ηTs, respectively. Implementation of the
KF to both systems yields two prediction error covariance
matrices, denoted by Pτ,` and Pη,`, respectively.

To proceed further, let us define the following mappings

f(X) := AXAT +Q (22)
g(X) := X −XCT(CXCT +R)−1CX (23)

where X ≥ 0. It is noted that

Pt`+1
= f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

t`+1−t`

◦g(Pt`) =: f t`+1−t` ◦ g(Pt`)

(a) (b)

Fig. 1. (a) Diagrammatic sketch of ocean flow field estimation (arrows: flow
direction, filled circles: drogues, dashed lines: depth profiles of drogues);
(b) the prototype of the drogue to be used.

where ‘◦’ denotes function composition. Similarly, Pτ,`+1 =
fτ ◦ g(Pτ,`), and Pη,`+1 = fη ◦ g(Pη,`).

Theorem 2: Assume n = 1. If the initial condition satis-
fies 0 ≤ Pτ,0 ≤ Pt0 ≤ Pη,0, then

Pτ,` ≤ Pt` ≤ Pη,` (24)

Furthermore, let P̄τ and P̄η , respectively, be the unique
positive solutions to the auxiliary equations X = fτ ◦ g(X)
and X = fη ◦ g(X). Then

P̄τ ≤ lim
`→∞

Pt` ≤ P̄η <∞ (25)

Proof: It is proven by [1] and [4] that f(X) and g(X)
are monotonically increasing with X . In addition, for a ≤ b,
we have fa(X) ≤ f b(X), since n = 1 and A is unstable.
Given 0 ≤ Pτ,0 ≤ Pt0 ≤ Pη,0, it follows that

0 ≤ fτ ◦ g(Pτ,0) ≤ f t1−t0 ◦ g(Pt0) ≤ fη ◦ g(Pη,0)

or equivalently

0 ≤ Pτ,1 ≤ Pt1 ≤ Pη,1

Repeating the above procedure inductively until `, we obtain
(24). For the associated multi-rate systems, there exist unique
P̄τ and P̄η such that P̄τ = fτ ◦ g(P̄τ ) and P̄η = fη ◦ g(P̄η),
respectively, in light of the theories of solutions to Riccati
equations. Hence, (25) is obtained from (24).

IV. APPLICATION EXAMPLE

In this section, we show the application of the KF with
irregularly sampled measurements to ocean flow estimation.
The scenario is shown in Fig. 1(a). A three-dimensional
ocean flow velocity field is considered. It is assumed to
be only dependent on depth but independent of time. A
few drogues are released at different locations, and then
travels along the flow through the field. Capable of arbitrary
vertical migration behaviors, each drogue has a motion of
submersion and surfacing, featuring different depth profiles.
During the process, the acceleration information of each
drogue is recorded, but the position information is available
only when the drogue is at water surface. Incessant accel-
eration and intermittent position measurements will be used
for reconstruction of the velocity profile of the drogue to
estimate the flow field.
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Fig. 2. The density and flow field profiles at a cross section.
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Fig. 3. The depth profile of the drogue released at 2.5× 104m.

The prototype of the drogue is shown in Fig. 1(b). We
have the drogue dynamics described by the differential
equation [18]

md̈(t) = c ·
(
vd(z, t)− ḋ(t)

)
·
∣∣∣vd(z, t)− ḋ(t)

∣∣∣ (26)

where m is the constant rigid mass plus added mass, d is the
displacement of the drogue, and c is the drag parameter that
quantifies the drag or resistance applied on the drogue in the
flow field. It is understood that the drogue has the irregular
sampling feature. When both underwater and at surface, the
drogue samples its acceleration d̈ and depth z regularly.
However, the displacement d is irregularly measurable – it
can be obtained only when the drogue is at the surface.
Here, the objective is to estimate vd(z, t), using (26) and
the measurements.

Define the states x1 := d and x2 := ḋ; also define
the acceleration term as the input to system because the
acceleration is available every time instant, that is,

u :=
c

m
·
(
vd(z, t)− ḋ(t)

)
·
∣∣∣vd(z, t)− ḋ(t)

∣∣∣ (27)

It then follows that

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u
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Fig. 4. (a) x1 vs. x̂1 (solid line: true values, dashed line: estimated
values, circle: the time instant when the sampling occurs); (b) x2 vs. x̂2;
(c) estimation of the along-front velocity.

Its discrete-time representation, by assuming zero-order hold
for the input variable u and using step invariant transfor-
mation to approximate the differentiation over half open
intervals [kT, (k + 1)T ), can be written as

xk+1 = Axk +Buk + wk

where
A =

[
1 T
0 1

]
, B =

[
1
2T

2

T

]
Here, the term wk is added to reflect the impact of the process
noise. Now the output y is the displacement that is irregularly
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measured at time instant t`:

yt` = Cxt` + vt`

where
C = [ 1 0 ]

It is verifiable that P = ∅ for the discrete-time state-
space model. Thus for any sequence of sampling intervals
T, the KF satisfies peak covariance stability when applied to
estimate the state variables x1 and x2 from the irregularly
sampled measurements y. Then the flow velocity vd(z, k)
can be computed using the inverse of (27).

A cross section of the along-front velocity field under
consideration is shown in Fig 2. The fronts are regions of
strong horizontal density gradient in the ocean. Inherently
unstable, they are usually sites of strong currents and eddy
formation. Due to the density gradient and Coriolis force,
the along-front velocity is yielded as illustrated. The field is
assumed as wide as 5× 104m and as deep as 80m.

Suppose no priori knowledge about the flow field is
available. Thus for simplicity, the drogues are released every
500m, though uneven distribution introduces no more diffi-
culties to this application. Each drogue can have a different
depth profile, with irregular diving and surfacing patterns.
The KF is implemented to every single drogue to estimate
the along-front velocities. Let us take a close look at the
drogue released at the position of 2.5 × 104m. Its depth
profile is shown in Fig. 3. As is seen, the time intervals of
underwater traveling are unequal, resulting in the irregular
sampling of the position measurement. Fig. 4 illustrates the
estimation results, including the displacement and velocity of
the drogue and the along-front flow velocity. We observe that
the estimated values approach the true ones. In particular, the
flow estimation in Fig. 4(c) exhibits satisfactory performance,
with even small variations captured.

Finally, the flow field can be reconstructed by combining
the flow estimation results of all drogues. The reconstructed
flow field is compared with the true one in Fig. 5. Despite
the existence of minor differences, the reconstruction agrees
well with the original flow field, verifying the effectiveness
of the application of the KF with irregular sampling.

V. CONCLUSION

In this paper, we study the KF with irregularly sampled
measurements. When irregular sampling occurs, the KF
is still the optimal state estimator for linear discrete-time
systems. Sufficient conditions that guarantee the defined peak
covariance stability are derived. It is found that the stability
is closely related with the distribution of eigenvalues of A
in the complex plane. As a demonstration example, the KF
is applied to address ocean flow field estimation, which is a
compelling problem in oceanography and involves irregular
sampling, with adequate accuracy achieved.
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