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SUMMARY

In this paper, we study the limitations of scheduling an internal model to reject disturbances with a
time-varying frequency. Hence, any adaptive method that uses scheduling and frequency estimation is
also limited in the same manner. The limitations of scheduling are to investigate by posing and solving
the problem of rejecting periodic disturbances from a multichannel system when the frequencies of the
periodic disturbances are changing rapidly in time by designing an scheduled controller that satisfies the
internal model principle. The periodic disturbances are modeled by a sum of sinusoids and the frequencies
of the disturbances are used for scheduling the controller. It is shown that a controller that regulates input
additive disturbances may not regulate the same disturbances added to the output of the system. This is
in contrast to the classical case where the frequency of the disturbances is constant. Copyright � 2011
John Wiley & Sons, Ltd.
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1. INTRODUCTION

It has been several decades since Davison [1], Francis and Wonham [2], Johnson [3] and others
presented their work on the robust servomechanism problem. Since this time, the internal model
principle has been used frequently to design controllers with asymptotic tracking and disturbance
rejection properties. However, the majority of these results have been stated for disturbances that
satisfy a linear time-invariant differential equation with known coefficients. Some results exist
for disturbances that satisfy time-varying differential equations [4], but this problem was studied
in the context of optimal control and thus the values of the coefficients are needed for all time.
Having future and past knowledge of the disturbance differential equation is very restrictive and
there are many application where this is infeasible. An alternative path is to use scheduling control
which only requires current and past information regarding the coefficients of the time-varying
differential equation that the disturbance satisfies.

When applied to a scheduling problem it has been observed in applications that the internal
model principle seems to hold. That is, if the internal model is scheduled at the same rate as
the disturbance, then favorable tracking and disturbance rejection properties have been observed.
For example, in [5] an adaptive repetitive controller is designed by estimating the frequency of the
disturbance and updating the compensator. In [6], adaptive repetitive control is used to suppress
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vibrations. In [7], an equivalence between time-varying internal models and adaptive feedforward
control is shown. In [8], the internal model is updated to cancel an disturbance with an unknown
frequency. In [9], the adaptive internal model principle is discussed.

In this paper, we develop the concept of a scheduled controller that satisfies the internal model
principle for rapidly time-varying disturbance dynamics. It is shown that disturbances on the
input and output of the plant must be considered separately, which is in contrast to the previous
results. Regulation of input additive disturbances is shown to be possible even when allowing the
disturbances to vary arbitrarily fast. It is also shown that a controller that completely rejects input
disturbances might not reject output additive disturbances. These results are of particular interest
to engineers working with optical or magnetic disk drives [5], tape drives, rotating mechanical
systems, noise control, and vibrations control [6, 10], where disturbances may enter at the output
of the system and can be time varying in nature.

2. BACKGROUND AND PRELIMINARIES

2.1. Linear parameter-varying systems

In this section, we define linear parameter-varying (LPV) systems and review some basic concepts
related to this topic. For more information, the interested reader is referred to [11].

Definition 1
Given a compact set �⊂Rn� , the parameter variation set F� denotes the set of all piecewise
continuous functions from R+ to � with a finite number of discontinuities in any finite interval.

Definition 2
Let AK (·)∈�(Rn�,Rnx ×nx ), BK (·)∈�(Rn�,Rnx ×nu ), CK (·)∈�(Rn�,Rny×nx ), DK (·)∈�(Rn�,

Rny×nu ), and � be given, where �(U,V ) is the space of continuous functions from U to V . An
nth

x -order linear, parameter-varying system is any system that satisfies[
ẋ(t)

y(t)

]
=
[

AK (�) BK (�)

CK (�) DK (�)

][
x(t)

u(t)

]
,

where �∈F�, x, ẋ ∈Rnx , u ∈Rnu , and y ∈Rny .

When considered as a function of time �(t)∈F�, the set of piecewise continuous functions from
R+ to � with a finite number of discontinuities in any finite interval. However, at any instance in
time �∈�, a collection of vectors.

Definition 3
Suppose that the parameter set � is given by

� = Co(�1,�2, . . . ,�N�)

=
{

N�∑
k=1

�i�i :�i�0,
N�∑

k=1
�i =1

}

then the system is called a polytopic linear parameter-varying system (PLPV).

2.2. Problem formulation

The problem that we are considering is shown in Figure 1. In this figure, the plant G is a linear
continuous-time system with nu inputs, ny outputs, nG states, and the state-space realization is
given by

G :

[
ẋG(t)

y(t)

]
=
[

AG BG

CG DG

][
xG(t)

u(t)

]
, (1)
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1008 C. E. KINNEY AND R. A. DE CALLAFON

Figure 1. Problem formulation for multichannel periodic regulation. The scheduled MIMO controller C(�)
is used to reject time-varying sinusoids added to the input and output channels of the MIMO plant G.

where AG ∈RnG×nG , BG ∈RnG×nu , CG ∈Rny×nG , DG ∈Rny×nu . The input disturbance di ∈Rnu ,
the output disturbance do ∈Rny , and the scheduled controller C(�) are an LPV system given by

C(�) :

[
ẋc(t)

u(t)

]
=
[

AC (�) BC (�)

CC (�) DC (�)

][
xc(t)

y(t)

]
,

where AC (·)∈�(Rn�,RnC ×nC ), BC (·)∈�(Rn�,RnC×ny ), CC (·)∈�(Rn�,Rnu×nC ), DC (·)∈�(Rn�,

Rnu×ny ), and �∈F�. At each instance in time, the parameter � belongs to the compact set
�⊂Rn� .

For the purposes of investigating the properties of the closed-loop system, we will denote
the output sensitivity function as So := (I −GC)−1 and the input sensitivity function as Si :=
(I −CG)−1.

Each element of the input disturbance di and the output disturbance do is assumed to satisfy

ẋd = diag

([
0 �1(t)

−�1(t) 0

]
,

[
0 �2(t)

−�2(t) 0

]
, . . . ,

[
0 �Nd (t)

−�Nd (t) 0

])
xd ,

�i (t)∈ [�i ,�i ]

= Ad xd (2)

yd = Cd xd (3)

such that 0<�i<�i<∞. The parameter vector � is then given by

�(t)= [�1(t) �1(t) . . . �Nd (t)]T,

and throughout the paper it will be assumed that the parameter vector is measurable at the current
time. Thus, every input and every output channel of the plant is subjected to a sum of time-varying
periodic disturbance given by

yd (t)=
Nd∑

i=1
ai sin(�i (t))+bi cos(�i (t)),

�i (t)=
∫ t

0
�i (�)d�.

The plant is considered to be known and the problem is to design the scheduled controller C(�) to
achieve output regulation for all periodic input disturbances di and output disturbances do satisfying
(2) in each channel.
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For notational simplicity, we will assume that di and do are produced by

ẋi = AHi (�)xi , ẋo = AHo (�)xo,

di = CHi xi , do =CHo xo,
(4)

where

AHi =diag

⎛
⎜⎝Ad , Ad , . . . , Ad︸ ︷︷ ︸

nu times

⎞
⎟⎠ , AHo =diag

⎛
⎜⎝Ad , Ad , . . . , Ad︸ ︷︷ ︸

ny times

⎞
⎟⎠ ,

CHi =diag

⎛
⎜⎝Cd ,Cd , . . . ,Cd︸ ︷︷ ︸

nu times

⎞
⎟⎠ , CHo =diag

⎛
⎜⎝Cd ,Cd , . . . ,Cd︸ ︷︷ ︸

ny times

⎞
⎟⎠ .

These systems have the general form given by

ẋ(t)= A(�)x(t),

where �(t)∈F� is a piecewise continuous function with a finite number of discontinuities in any
finite interval that maps R+ to �, and � is a compact space.

It should be noted that when �i , i =1, . . . , Nd , are known constants, this problem is a subset of
the general servocompensator problem considered by Davison [1, 12], Francis and Wonham [2],
and more recently by de Roover et al. [13]. However, in this paper we will extend the results to
include compensation for time-varying systems.

2.3. Quadratic stability

In order to study the stability of the closed-loop system in the presence of rapidly changing
disturbance dynamics we will use the concept of quadratic stability.

Definition 4 (Quadratic Stability)
The LPV system ẋ(t)= A(�)x(t) is quadratically stable if there exists a matrix P>0 such that

P A(�)+ A(�)T P<0 ∀ �∈�.

Proposition 1
For a PLPV system quadratic stability reduces to

P A(�i )+ A(�i )
T P<0 ∀ i,

where the same matrix P>0 should satisfy the LMI condition for each vertex of �.

For quadratic stability of feedback systems, it is useful to investigate block triangular systems.
For this purpose we introduce the following lemma.

Lemma 1 (Xie and Eisaka [14, Lemma 2])
Consider the block matrix Q(�), where

Q(�)=
[

Q11(�) 0

Q21(�) Q22(�)

]
.

Suppose the matrices Q11(�) and Q22(�) are quadratically stable, as defined in Definition 4, and
Q(�) is a continuous-bounded function then Q(�) is quadratically stable.
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1010 C. E. KINNEY AND R. A. DE CALLAFON

2.4. Servocompensator results for constant frequency

Francis and Wonham [2] showed that the purpose of the internal model principle is to place closed-
loop blocking zeros where the unstable poles of the disturbance are located. This placement of the
closed-loop blocking zeros gives a controller that asymptotically rejects periodic disturbances (with
constant frequency) in the presence of non-destabilizing parametric uncertainty. A single-input-
single-output application of this principle requires that the controller denominator polynomial can
be factored into the disturbance polynomial and another part for stability [10].

From [2, 12], we have the following regarding linear MIMO systems that are subjected to
disturbances that satisfy a linear time-invariant differential equation.

Theorem 1 (Davison [1, Lemma 1])
The necessary and sufficient conditions that there exist an internal stabilizing controller for the
plant G, with a realization given by (1), such that limt→∞ ‖y(t)‖=0 for all input and output
disturbances satisfying (2) in each channel with �i (t)=ci ∈R is that the following all hold:

(i) (AG, BG) is stabilizable.

(ii) rank

([
AG −	I BG

CG DG

])
=nG +nyG ∀ 	∈
(Ad ).

(iii) (AG,CG) is detectable.

A controller that satisfies the above will have a realization [2, 12] given by

C(s)=

⎡
⎢⎢⎣

AC11 0
—

—
—

—
— BC1

AC21 AC22 BC2

CC2 CC2 DC

⎤
⎥⎥⎦ (5)

or equivalently

C(s)=

⎡
⎢⎢⎣

AC11 AC12

—
—

—
—

— BC1

0 AC22 BC2

CC2 CC2 DC

⎤
⎥⎥⎦ , (6)

where AC11 in the first realization or AC22 in the second is a model of the disturbance such that
the minimal polynomial of the disturbance divides AC11 or AC22 at least nyG times.

3. SERVOCOMPENSATOR DESIGN FOR TIME-VARYING FREQUENCY

3.1. Necessary conditions for regulation

Since the class of disturbances being considered here contains the constant frequency case, the
basic necessary condition for the existence of a parameter-varying servocompensator is easily
obtained from the constant case.

Corollary 1
The necessary conditions that there exist an internal stabilizing controller for the plant G, with
a realization given by (1), such that limt→∞ ‖y(t)‖=0 for all input and output disturbances
satisfying (2) in each channel is that Theorem 1 holds for each fixed �∈ [�i ,�i ]∀i .

It should be noted that the result mentioned in Corollary 1 is not sufficient in the case that the
frequency is time varying. The remainder of the paper will clearly prove this point, where it is
shown that the phase delay applied to the control signal as it passes through the plant response
is the reason for this phenomenon. Notice, in addition, that this is much more restrictive than the
constant frequency case in that the plant cannot have zeros at any frequency in [�i ,�i ] for each i.
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3.2. Sufficient conditions for regulation

In this section, we consider the asymptotic regulation of input and output disturbances that satisfy (2)
separately.

3.2.1. Input disturbances.

Lemma 2
Consider the state-space realization for the controller C(�) given by

C(�)=

⎡
⎢⎢⎣

AC11(�) 0

—
—

—
—

— BC1(�)

AC21(�) AHi (�) BC2(�)

CC1(�) CHi (�) 0

⎤
⎥⎥⎦ (7)

the input disturbance di (t) satisfying

ẋi = AHi (�)xi , (8)

di =CHi xi (9)

and the state-space realization for the plant given by (1).
Suppose that the gains AC11(�), AC21(�), BC1(�), BC2(�), and CC1(�) are chosen such that the

feedback system of G and C(�) is stable in the presence of the time-varying scheduling parameter
�∈F�, then

lim
t→∞‖y(t)‖=0,

where y =G(u+di ) and u =C(�)y.

Proof
To consider observability of the disturbance states, consider the A and C matrices of Si (�)Hi .
Define Ri (�) := I − DC (�)DG , and consider the following realization for the controller:

C(�)=

⎡
⎢⎢⎣

AC11(�) AC12(�)

—
—

—
—

— BC1(�)

AC21(�) AC22(�) BC2(�)

CC2(�) CC2(�) DC (�)

⎤
⎥⎥⎦ .

Then, we obtain (dropping �)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 Z13 BG R−1
i CHi

Z21 Z22 Z23 BC1 DG R−1
i CHi

Z31 Z32 Z33 BC2 DG R−1
i CHi

0 0 0 AHi

R−1
i DC CG R−1

i CC1 R−1
i CC2 R−1

i CHi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Z11 = AG + BG R−1
i DC CG, Z12 = BG R−1

i CC1, Z13 = BG R−1
i CC2,

Z21 = BC1CG + BC1 DG R−1
i DC CG, Z22 = AC11 + BC1 DG R−1

i CC1,

Z23 = AC12 + BC1 DG R−1
i CC2, Z31 = BC2CG + BC2 DG R−1

i DCCG,

Z32 = AC21 + BC2 DG R−1
i CC1, Z33 = AC22 + BC2 DG R−1

i CC2.
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1012 C. E. KINNEY AND R. A. DE CALLAFON

Now, apply the constant similarity transformation

T =

⎡
⎢⎢⎢⎣

I 0 0 0

0 I 0 0

0 0 I I

0 0 0 I

⎤
⎥⎥⎥⎦

and if we choose CC2(�)=CHi , AC22(�)= AHi (�), and AC12(�)=0, then we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 Z13 0

Z21 Z22 Z23 0

Z31 Z32 Z33 0

0 0 0 AHi (�)

Ri (�)−1 DC (�)CG Ri (�)−1CC1(�) Ri (�)−1CH 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

This implies that xi is unobservable and hence the input–output mapping does not depend upon
the disturbance states. If the remaining 3×3 block matrix Z is made stable, then all signals will
decay to the origin. It is straightforward to show that Si satisfies

ẋ(t)= Z x(t)+ Bu(t)

for some B. Thus, the stability of Z is equivalent to the stability of the feedback system of G
and C(�). �

Note that the requirement of stability in the preceding lemma is not equivalent to checking
the eigenvalues of the closed-loop system at each �, this would be the case if �(t) changes very
slowly. Much more is required and an obvious sufficient choice is to pick the control gains to
quadratically stabilize [15] the closed-loop system. It should also be noted that constant state-space
matrices for the controller AC11, AC21, BC1, BC2, and CC1 can be used if stability in the presence
of � is upheld. Only scheduling the internal model parameters AHi (�) and CHi (�) is required
for complete regulation. The additional scheduling of AC11(�), AC21(�), BC1(�), BC2(�), and
CC1(�) will improve the range of � for which stability holds. Moreover, the convergence rate to
obtain complete regulation can be improved with the additional scheduling since more freedom is
introduced into the LMI condition for quadratic stability in Definition 4.

There still remains a lot of freedom in the controller parameterization given in (7). In fact, this
is really an over-parameterization and by picking the control gains in a smart manner one can
arrive at two separate yet standard control problems. The following theorem explains this point.

Theorem 2
Consider the system given by (1) and the input disturbance that satisfy

ẋi = AHi (�)xi , di =CHi xi ,

where AHi (�)=diag(Ad (�), Ad (�), . . . , Ad (�)︸ ︷︷ ︸
nu times

), Ad (�) satisfies (2), and

�(t)∈
{

N�∑
k=1

�i (t)�i :�i (t)�0,
N�∑

k=1
�i (t)=1

}
.

Suppose that there exists P1>0, P2>0, Mi , Ni such that

P1Ai − Mi C̄ +AT
i P1 −C̄T MT

i <0, (11)

P2 AT
G + N T

i BT
G + AP2 + BG Ni<0 ∀ i, (12)
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where

Ai =
[

AG BGCHi

0 AHi (�i )

]
, C̄ = [CG DGCHi ]

then the scheduled controller given by

C(�)=

⎡
⎢⎢⎣

AG + BGCC1(�)− BC1(�)(DGCC1(�)+CG) 0

—
—

—
—

— BC1(�)

−BC2(�)(CG + DGCC1(�)) AHi (�) BC2(�)

CC1(�) CHi 0

⎤
⎥⎥⎦ , (13)

where [
BC1(�)

−BC2(�)

]
=

N�∑
k=1

�i (t)P−1
1 Mi , CC1(�)=

N�∑
k=1

�i (t)Ni P−1
2

will quadratically stabilize the closed-loop system and regulate the input disturbance, i.e.
limt→∞ ‖y(t)‖=0.

Proof
From Lemma 2, if we can stabilize the upper 3×3 block of (10) (denoted as Z ), then all signals will
decay to the origin. Since we are considering only the asymptotic regulation of disturbances and
the stability of the closed-loop system a sufficient choice is DC (�)=0. Next, apply the following
constant coordinate transformation:

T =

⎡
⎢⎣

I −I 0

0 0 I

0 I 0

⎤
⎥⎦

into Z , and choose AC11(�)= AG + BGCC1(�)− BC1(�)DGCC1(�)− BC1(�)CG and AC21(�)=
−BC2(�)(CG + DGCC1(�)) to obtain

T Z T −1 =

⎡
⎢⎣

AG − BC1(�)CG (BG − BC1(�)DG)CHi 0

BC2(�)CG AHi (�)+ BC2(�)DGCHi 0

BC1(�)CG BC1(�)DGCHi AG + BGCC1(�)

⎤
⎥⎦ ,

where it is now obvious that we can take CC1 to be a constant matrix if desired. From here we
can apply Lemma 1 to conclude that if the block diagonals are quadratically stable, then so is the
system. If (11) and (12) are satisfied with P1>0 and P2>0, then each sub-system is quadratically
stable. �

Remark 1
The interpretation is that the controller is placing ‘time-varying’ invariant zeros in the closed-loop
system that block the ‘time-varying’ eigenvalues of the disturbance model. It should be noted that
the classical time-invariant analysis using invariant zeros and eigenvalues cannot be used to make
this conclusion.

Remark 2
For a fixed frequency, this is the same controller as in [13], however, the derivation given here
considers making the disturbance unobservable in the system output and does not use the dual
system.

3.2.2. Output disturbances. Next, we consider applying the controller in Lemma 2 to a plant with
output additive disturbances. In this case, when the frequency is rapidly varying, it will be shown
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1014 C. E. KINNEY AND R. A. DE CALLAFON

that the controller that regulated input disturbances will not be able to regulate output disturbances
for all plants.

Theorem 3
Consider the state-space realization for the controller C(�) given by

C(�)=

⎡
⎢⎢⎣

AC11(�) 0

—
—

—
—

— BC1(�)

AC21(�) AHo (�) BC2(�)

CC1(�) CHo (�) 0

⎤
⎥⎥⎦ (14)

the output disturbances do(t) satisfying

ẋo = AHo (�)xo, (15)

do =CHo xo (16)

and the state-space realization for the plant given by (1).
Suppose that the gains AC11(�), AC21(�), BC1(�), BC2(�), and CC1(�) are chosen such that the

closed-loop system of G and C(�) is stable in the presence of the time-varying parameter vector
�. Then there exists a plant satisfying the conditions of Theorem 1 for each �∈ [�i ,�i ]∀i , a set of
initial conditions, and a �(t)∈F� such that limt→∞ ‖y(t)‖ 	=0, where y =Gu+do and u =C(�)y.

Proof
We need to show that there exists a plant satisfying the given conditions, a set of initial conditions,
a controller, and a �(t)∈F�, such that limt→∞ ‖y(t)‖ 	=0.

For example, AG =−1, BG =1, CG =1, DG =0 satisfies the given conditions. Let us assume
that do(t) is a single time-varying sinusoid (this implies that �(t)=�(t)).

In this case the output is written as

ẋG(t)=−xG(t)+u(t), (17)

y(t)= xG(t)+do(t), (18)

do(t)= A sin(�(t)), �(t)=
∫ t

0
�(�)d�. (19)

This can be written as

y(t)=e−t x(0)+
∫ t

0
e�−t u(�)d�+do(t)

and for regulation it is required that eventually (as t →∞)∫ t

0
e�−t u(�)d�=−do(t).

Taking derivatives and denote u∗ as the steady-state control law gives

u∗(t)−
∫ t

0
e�−t u∗(�)d�=−ḋo(t)=−�(t)A cos(�(t))

and substituting gives

u∗(t)+do(t)=−ḋo(t)=−�(t)A cos(�(t)),

u∗(t)=−�(t)A cos(�(t))− A sin(�(t)).
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However, a controller that quadratically stabilizes the system for �∈ [1,5] and satisfies the theorem
is given by

C(�)=

⎡
⎢⎢⎢⎢⎢⎣

−12 0 0

—
—

—
—

—
—

– 1

1 0 � −1

1 −� 0 −1

−10 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ .

Now, define the coordinate transformation given by z =T x with

T =

⎡
⎢⎣

1 0 0

0 sin(�(t)) cos(�(t))

0 −cos(�(t)) sin(�(t))

⎤
⎥⎦

then in the new coordinates the controller becomes

C(�)=

⎡
⎢⎢⎢⎢⎢⎣

−12 0 0

—
—

—
—

—
—

— 1

sin(�(t))+cos(�(t)) 0 0 cos(�(t))−sin(�(t))

sin(�(t))−cos(�(t)) 0 0 cos(�(t))+sin(�(t))

−10 cos(�(t)) sin(�(t)) 0

⎤
⎥⎥⎥⎥⎥⎦

so that u(t)=−10xk1 +xk2 cos(�(t))+xk3 sin(�(t)). The control signal error ue(t) :=u(t)−u∗(t) is
given by

ue(t)=−10xk1 +(xk2 +�(t)A)cos(�(t))+(xk3+ A) sin(�(t)).

Now, suppose that �(t)=� is constant for 0�t<T1, pick T1 such that �(T1)=2�N1 (for some
natural number N1), and we pick the initial conditions to be xk1(0)=0, xk2(0)=−�(t)A, and
xk3(0)=−A, and x(0)=0 so that y(t)=0, 0�t<T1. Thus ue(t)=0 for 0�t<T1. Now, suppose
that �(T1)=� then since the controller states are integrated and cannot change instantaneously
we obtain

|ue(T )|=|(�−�)||A|cos(�(T1))=|(�−�)||A|>0.

This error will decrease to zero if �(t) is held constant, since the system is exponentially stable.
Next, choose an � such that �<|(�−�)||A| and let �(t)=� for T1�t<T2, where T2 is chosen

such that �(T2)=2�N2, |10xk1|<�/2, and |xk2 +�A|<�/2 hold. Let �(T2)=�. This can be done
since the closed-loop system is stable and when �(t) is a constant, the results from standard
servocompensator theory hold, which imply that ue(t)→0 exp. fast. Then, we obtain

|ue(T2)+10xk1(T2)| = |(xk2(T2)+�(T2)A)cos(�(T2))|,
|ue(T2)|+10|xk1(T2)|�|ue(T2)+10xk1(T2)| = |xk2(T2)+�(T2)A|,

|ue(T2)| � |xk2(T2)+�(T2)A|−|�/2|
� |−�A+�A±�/2|−|�/2|
� |�−�||A|−�>0.

Continuing on this process defines a profile for �(t)=�(t)∈F� that will not result in regulation. �

Remark 3
Under this structure the controller produces continuous signals. As the integral action of the plant
a discontinuous signal is required to cancel a quickly changing disturbance on the output.
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Remark 4
This theorem clearly proves that input and output disturbances need separate treatment for the
varying frequency case and the proof indicates why the same phenomenon does not appear in the
constant frequency case.

Following Remark 4, output disturbances require separate treatment from input disturbances.
Since the control signal must propagate through the plant before reaching the output the controls
signal lags behind quickly changing disturbances. This is due to the fact that general linear time-
varying systems do not commute with each other even in the SISO case. If, however, the disturbance
model Ho commutes with the feedback system, then regulation is assured.

Before we proceed, we need to define more regarding the disturbance model Ho if we are to
deal with commuting properties. Thus, we use the following notation:

Ho : ẋo(t)= AHo (�)xo(t)+ BHo u(t),

y(t)=CHo xo(t)+ DHo u(t),

where AHo (�) and CHo are defined in (4). For design purposes we may choose BHo =CT
Ho

and
DHo =0.

Lemma 3
Suppose that HoSo = So Ho then the scheduled controller is given by

C =

⎡
⎢⎢⎣

AC11(�) AC12(�)

—
—

—
—

— BC1(�)

0 AHo (�) BHo

CC1(�) CC2(�) 0

⎤
⎥⎥⎦ , (20)

where the gains AC11(�), AC12(�), BC1(�), CC1(�), and CC2(�) are chosen such that the feedback
system of G and C(�) is stable in the presence of the time-varying scheduling parameter �∈F� is
sufficient to asymptotically regulate the output of the plant (limt→∞ ‖y(t)‖) with realization given
by (1) in the presence of output disturbances that satisfy (2) in each channel.

Proof
Let Ro := (I − DG DC (�)) then

H So =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AHo BHo R−1
o CG BHo R−1

o DGCC1 BHo R−1
o DGCC2

—
—

—
—

—
—

—
—

— BHo R−1
o

0 Z̃11 Z̃12 Z̃13 BG DC R−1
o

0 Z̃21 Z̃22 Z̃23 BC1 R−1
o

0 Z̃31 Z̃32 Z̃33 BC2 R−1
o

CHo DHo R−1
o CG DHo R−1

o DGCC1 DHo R−1
o DGCC2 DHo R−1

o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Z̃11 = AG + BG DC R−1
o CG, Z̃12 = BGCC1 + BG DC R−1

o DGCC1,

Z̃13 = BGCC2 + BG DC R−1
o DGCC2, Z̃21 = BC1 R−1

o CG,

Z̃22 = AC11 + BC1 R−1
o DGCC1, Z̃23 = AC12 + BC1 R−1

o DGCC2,

Z̃31 = BC2 R−1
o CG, Z̃32 = AC21 + BC2 R−1

o DGCC1, Z̃33 = AC22 + BC2 R−1
o DGCC2,
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and if we apply the coordinate transformation

T =

⎡
⎢⎢⎢⎢⎣

I 0 0 −I

0 I 0 0

0 0 I 0

0 0 0 I

⎤
⎥⎥⎥⎥⎦

and pick BC2 = BHo , AC21 =0, and AC22 = AHo , then we obtain

H So =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AHo 0 0 0

—
—

—
—

—
—

—
—

— 0

0 Z̃11 Z̃12 Z̃13 BG DC R−1
o

0 Z̃21 Z̃22 Z̃23 BC1 R−1
o

0 Z̃31 Z̃32 Z̃33 BC2 R−1
o

CHo DHo R−1
o CG DHo R−1

o DGCC1 CHo + DHo R−1
o DGCC2 DHo R−1

o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

The disturbance states are uncontrollable and hence the input–output mapping does not depend on
them.

It is straightforward to show that So satisfies

ẋ(t)= Z̃ x(t)+ B̃u(t)

for some B̃. Thus, the stability of Z is equivalent to the stability of the feedback system of G and
C(�). �

Remark 5
This result agrees with constant frequency case since Ho = I ho implies that HoSo = So Ho when
the frequency is constant.

In the case if the output disturbance model Ho commutes with the feedback system, then the
following theorem can be used to design the gains of the controller.

Theorem 4
Consider the system given in (1) and the output disturbance that satisfy

ẋo = AHo (�)xo, do =CHo xo,

where AHo (�)=diag(Ad (�), Ad (�), . . . , Ad (�)︸ ︷︷ ︸
ny times

), Ad (�) satisfies (2), and

�(t)∈
{

N�∑
k=1

�i (t)�i :�i (t)�0,
N�∑

k=1
�i (t)=1

}
.

Suppose that there exists P̃1>0, P̃2>0, M̃i , Ñi such that

Ãi P̃1 −B̃M̃i + P̃1Ã
T
i − M̃i

T
B̃

T
<0 (22)

P̃2 AG + Ñi CG + AT
G P̃2 +CT

G Ñi
T
<0 ∀ i, (23)

where

Ãi =
[

AG 0

−BHoCG AHo (�i )

]
, B̃

T = [BG − BHo ]
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then the scheduled controller given by

C(�)=

⎡
⎢⎢⎣

AG + BC1CG −(BC1 DG + BG)CC1 −(BC1 DG + BG)CC2

—
—

—
—

—
— BC1(�)

0 AHo (�) BHo (�)

CC1(�) CC2(�) 0

⎤
⎥⎥⎦ , (24)

where

[CC1(�) CC2(�)]=
N�∑

k=1
�i (t)Mi P̃1

−1
, BC1(�)=

N�∑
k=1

�i (t)P̃2
−1

Ni

will quadratically stabilize the closed-loop system and regulate the output disturbance if HoSo =
So Ho.

Proof
From Lemma 3, if we can stabilize the lower 3×3 block of (21) (denoted as Z̃ )

Z̃ =

⎡
⎢⎢⎣

AG + BG DC R−1
o CG BGCC1 + BG DC R−1

o DGCC1 BGCC2 + BG DC R−1
o DGCC2

BC1 R−1
o CG AC11 + BC1 R−1

o DGCC1 AC12 + BC1 R−1
o DGCC2

BHo R−1
o CG BHo R−1

o DGCC1 AHo + BHo R−1
o DGCC2

⎤
⎥⎥⎦

then all signals will decay to the origin. Since we are only considering the asymptotic regulation of
disturbances and stability of the closed-loop system a sufficient choice is DC (�)=0. If we choose
AC11 = AG + BC1CG −(BC1 DG + BG)CC1 and AC12 =−(BC1 DG + BG)CC2, then we obtain

Z̃ =

⎡
⎢⎣

AG BGCC1 BGCC2

BC1CG AG + BC1CG − BGCC1 −BGCC2

BHoCG BHo DGCC1 AHo + BHo DGCC2

⎤
⎥⎦ .

Next, apply the following constant coordinate transformation:

T =

⎡
⎢⎣

I I 0

0 I 0

0 0 I

⎤
⎥⎦

to obtain

T Z̃ T −1 =

⎡
⎢⎣

AG + BC1CG 0 0

BC1CG AG − BGCC1 −BGCC2

BHoCG BHo (DGCC1 −CG) AHo + BHo DGCC2

⎤
⎥⎦ .

Thus, by Lemma 1, we can make each diagaonal block quadratically stable to quadratically stabilize
the whole system. If P̃1> and P̃2>0 satisfy (22) and (23), then the system is quadratically stable. �

Remark 6
For a fixed frequency, this is the same controller as in [13], however, the derivation given here
considers making the disturbance uncontrollable in the system output.

The assumption HoSo = So Ho, indicating that the disturbance model commutes with the closed-
loop system, is very restrictive. Instead of restricting the class of disturbance models, we can try
to find sufficiency by restricting the class of plants that we are considering. Suppose that G is
stable and stably (causally) invertible. Then we may form an equivalence between input and output
disturbances by the following relation:

y =G(u+di )=Gu+do
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if di =G−1do. This gives the following realization for di :

ẋi (t)=
[

AG − BG D−1
G CG −BG D−1

G CHo

0 AHo (�)

]
xi (t), di (t)= [D−1

G CG 0]xi (t),

where (AG, BG,CG, DG) are the state-space matrices for G. This new system is still a PLPV
system with the same parameter set. With this approach, we arrive at the next result.

Corollary 2
Suppose that G is stable and stably (causally) invertible, and the scheduled controller C(�) satisfies
Theorem 2 with

ẋi =
[

AG − BG D−1
G CG −BG D−1

G CHo

0 AHo (�)

]
xi (t), di (t)= [D−1

G CG 0]xi (t)

then C(�) regulates all output disturbances satisfying

ẋo = AHo (�)xi (t), do(t)=CHo xo(t).

Proof
Since C(�) regulates di , we obtain limt→∞ ‖Si di‖=0. However

GSi di = G(I −C(�)G)−1di

= G(I −C(�)G)−1G−1do

= G(G −GC(�)G)−1do

= (I −GC(�))−1do

= Sodo

holds. Therefore

lim
t→∞‖GSi di (t)‖= lim

t→∞‖Sodo(t)‖=0.

Remark 7
In some special cases, when G−1do is still a PLPV system in �, the inversion of G can be
non-causal. An example of this is shown in Section 4.

Remark 8
This corollary indicates that if an output additive disturbance is present with a time-varying
frequency, performance will be greatly increased if an inverse or approximate inverse of the plant
is used for the control design.

4. SIMULATION

To demonstrate the differences between time-varying and constant frequencies we will consider
the plant given by

G =
⎡
⎣−1

—
—

—
– 1

1 0

⎤
⎦ (25)
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and a controller that quadratically stabilizes the system and achieves input regulation for 1��(t)�5
given by

C(�)=

⎡
⎢⎢⎢⎢⎢⎣

−12 0 0

—
—

—
—

—
—

– 1

1 0 �(t) −1

1 −�(t) 0 −1

−10 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ . (26)

Sim. 1 In the first simulation, the disturbance di (t)=sin(�(t)) will be applied to the input of the
system and the controller in (26) is applied to the system. This controller satisfies Theorem 2
with BC1, BC2, CC1 as constants. This simulation will demonstrate the validity of Theorem 2
by showing that regulation of rapidly time-varying periodic disturbances applied at the input of
the system is possible.

Sim. 2 In the second simulation, the disturbance do(t)=sin(�(t)) will be applied to the output of
the system and the controller in (26) is applied to the system. This controller satisfies Theorem 2
with CC1, CC2, and BC1 as constants. This simulation will demonstrate the validity of Theorem 3
by showing that all controller that reject input disturbances will not necessarily reject output
disturbances when the frequency is rapidly varying.

Sim. 3 In the third simulation, we apply Corollary 2 with a non-causal inverse for G. The non-
causal inverse can be done in this case since a PLPV system results in the same parameter set.
This simulation demonstrates how output regulation is possible when the system is invertible as
proved in Corollary 2.
The plant G =1/(s+1) can be non-causally, stably inverted via G−1 =s+1. This changes the

disturbance model according to Corollary 2 as follows:

di (t)=
(

d

dt
+1

)
sin(�(t))=�(t)cos(�(t))+sin(�(t)).

This implies that the controller for Sim. 3 should be

C(�)=

⎡
⎢⎢⎢⎢⎢⎣

−12 0 0

—
—

—
—

—
—

— 1

1 0 �(t) −1

1 −�(t) 0 −1

−10 1 �(t) 0

⎤
⎥⎥⎥⎥⎥⎦ . (27)

Notice that due to the non-causal inverse CHi (�) is a function of �.
Figure 2 shows the result of the simulations. The top plot shows the instantaneous frequency

�(t), where it can be seen that the frequency is switching between 1 and 5 rad/s. In the plot,
the second from the top, the output of Sim. 1 is shown, denoted as ysim1(t). Notice that after the
output reaches zero, the output stays at zero even when the frequency is varying quickly. This is
in agreement with Theorem 2, which states the conditions for regulating input disturbances with a
rapidly time-varying frequency. In the third plot from the top, the result of Sim. 2 is shown, denoted
by ysim2(t). In this case, regulation of output disturbances is not achieved as proved in Theorem 3.
Finally, the bottom plot shows the output of Sim. 3. This simulation shows how regulation of
output disturbances is possible if the plant is invertible, in agreement with Corollary 2.

The control signals for the three different simulations are shown in Figure 3. Notice that the
difference between the second and third simulations is that the control signal in the third simulation
changes abruptly and the control signal in the second simulation slowly recovers from the abrupt
change in disturbance frequency which causes the output of the plant to grow and then recover.
The effect of these signal upon the output of the plant can be clearly seen in Figure 2.
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Figure 2. Three simulations of the affect that input and output disturbances with time-varying frequency
have upon the plant when connected in feedback. �(t) is the frequency of the disturbance, ysim1(t) is the
output of Sim. 1 that validates Theorem 2, ysim2(t) is the output of Sim. 2 that validates Theorem 3, and

ysim3(t) is the output of Sim. 3 that supports the claims of Corollary 2.

Figure 3. Control signals for the 3 different simulations. �(t) is the frequency of the disturbance, usim1(t)
is the control signal of Sim. 1 that validates Theorem 2, usim2(t) is the control signal of Sim. 2 that
validates Theorem 3, and usim3(t) is the control signal of Sim. 3 that supports the claims of Corollary 2.

5. CONCLUSIONS AND FUTURE RESEARCH

This paper considered scheduling controllers on the basis of disturbance frequency when the
frequencies of the periodic disturbance are varying rapidly. It was shown that complete regulation
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of rapidly varying input disturbances is possible provided stabilizing feedback and observer gains
can be found and the disturbance frequencies are contained in a compact set. In contrast, it was
shown that complete regulation of rapidly varying output disturbances is not guaranteed with
the same conditions. Complete regulation of output disturbances is guaranteed when the plant
is invertible or the time-varying disturbance model commutes with the feedback system. Thus,
scheduling on the basis of frequency is not sufficient for output additive disturbances when the
frequency is rapidly varying. Simulations were presented to support the claims and demonstrate
the difference that input and output disturbances have upon the plant.
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