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Abstract: The methods of subspace system identification are extended to correlation function
estimates, explicitly addressing the increase in computational difficulty of identifying input-to-
state dynamics when correlation function estimates are used in place of input-output data for
multivariable identification problems. It is shown that the regressor used to solve a common
least-squares problem when identifying input-to-state dynamics is the state sequence of a dual
system of dynamics that have already been estimated. A new method of computing the regressor
is presented that dramatically improves the computational efficiency of estimating the input-
to-state dynamics when signals of high dimension are used. A simulation example demonstrates
the effectiveness of the method for both input-output data and correlation function estimates.

1. INTRODUCTION

Subspace identification methods form a popular class of
algorithms for identifying linear, state-space models from
experimental input-output data without requiring non-
linear optimization. Overviews of subspace identification
can be found in Van Overschee and De Moor [1996a],
Ljung [1999], Katayama [2005], and Verhaegen and Ver-
dult [2007]. Although usually concerned with time-domain
identification, subspace methods extend naturally to other
domains. In Van Overschee and De Moor [1996b] and
McKelvey et al. [1996], subspace methods were extended
to frequency-response function estimates, and in Di Rus-
cio [1995], Miller and de Callafon [2009], and Miller and
de Callafon [2010], subspace identification methods were
extended to correlation function estimates.

A consequence of extending subspace methods to corre-
lation function estimates is that the input-output signals
may become matrix-valued when correlation function esti-
mates are generated from multivariable data, effectively
increasing the dimension of the signals used. Although
the size of the matrices needed to estimate the range of
the extended observability matrix is reduced, this compli-
cates the least-squares identification of the input-to-state
dynamics commonly used in subspace identification; the
regressor needed to solve the linear-least-squares problem
becomes large and difficult to compute using standard
formulas currently available in the literature.

Subspace methods are particularly appealing in situations
when the measured signals are of high dimensions, since
alternative identification methods based on nonlinear op-
timizations frequently suffer from convexity issues, yet
memory availability is often a limiting factor when using
multivariable data sets with subspace methods. Difficulties
with increased dimension have thus far significantly lim-
ited the applications to which the authors have successfully
applied a correlation function-based approach.

To improve the efficiency of the linear-least-squares iden-
tification of input-to-state dynamics, we show that the
regressor can be formed from a set of state-sequences of
a dual system, which can be described by the state-to-
output dynamics that have already been estimated. This
alternative formulation is first demonstrated using stan-
dard input-output data and then extended to correlation
function estimates. The dramatic reduction in size of the
matrices used to solve for input-to-state dynamics greatly
increases the maximum possible dimensions of the input
and output signals as well as the maximum the size of the
data sets.

2. PRELIMINARIES

Consider a linear, time-invariant, discrete-time system
described by the state-space equations

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t)
(1)

which relate the input u(t) ∈ Rnu to the state x(t) ∈ Rn
and the output y(t) ∈ Rny in terms of the constant
matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, and
D ∈ Rny×nu . Added to the output is a possibly colored
noise signal v(t) ∈ Rny , assumed to be the realization of
a stationary stochastic process that may or may not share
dynamics with the system described by (A,B,C,D).

If u(t) is selected to be quasi-stationary, then the
quasi-stationary property of v(t) will result in a quasi-
stationary y(t) [Ljung, 1999]. This guarantees that the
auto-correlation function

Ru(τ) = E
[
u(t+ τ)u(t)T

]
∈ Rnu×nu

and the cross-correlation functions

Ryu(τ) = E
[
y(t+ τ)u(t)T

]
∈ Rny×nu

and
Rvu(τ) = E

[
v(t+ τ)u(t)T

]
∈ Rny×nu

will exist. If we define the cross-correlation of the state
with the input as
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Rxu(τ) = E
[
x(t+ τ)u(t)T

]
∈ Rn×nu ,

then the correlation functions may be expressed in terms
of the state-space matrices (A,B,C,D) as

Rxu(τ + 1) = ARxu(τ) +BRu(τ)

Ryu(τ) = CRxu(τ) +DRu(τ) +Rvu(τ).

Additionally, if the input and noise signals are uncorre-
lated (the system is operating in open-loop), then

Rvu(τ) = 0 ∀ τ.

A thorough discussion of quasi-stationary signals and the
relationships of correlation functions may be found in
Ljung [1999].

3. IDENTIFICATION OF STATE-TO-OUTPUT
DYNAMICS

The following is a brief review of subspace identification
methods that identify the parameters A and C from an
estimated range of the extended observability matrix. We
then extend the basic method to correlation function
estimates and discuss some of the advantages of doing so.

3.1 Identification from Input-Output Data

Traditional subspace identification involves creating block-
Hankel matrices of input and output data, each with i
block rows and l block columns, forming

U =


u(0) u(1) · · · u(l − 1)
u(1) u(2) · · · u(l)

...
...

...
u(i− 1) u(i) · · · u(i+ l − 2)

 ∈ Rinu×l

and

Y =


y(0) y(1) · · · y(l − 1)
y(1) y(2) · · · y(l)

...
...

...
y(i− 1) y(i) · · · y(i+ l − 2)

 ∈ Riny×l.

These data matrices are related to each other in terms of
a block-Toeplitz matrix

T =


D
CB D
CAB CB D

...
...

...
. . .

CAi−2B CAi−3B CAi−4B · · · D

 ∈ Riny×inu ,

an extended observability matrix

Γ =


C
CA
CA2

...
CAi−1

 ∈ Riny×n,

a matrix of states

X = [x(0) x(1) · · · x(l − 1)] ,

and a block-Hankel matrix of noise data

V =


v(0) v(1) · · · v(l − 1)
v(1) v(2) · · · v(l)

...
...

...
v(i− 1) v(i) · · · v(i+ l − 2)

 ∈ Riny×l,

as
Y = ΓX + TU + V. (2)

Multiplication of Y on the right by the projector matrix

Π = I − UT
(
UUT

)−1
U

will project Y onto the null space of U , resulting in

YΠ = ΓXΠ + VΠ. (3)

A rank-n approximation of Γ is calculated via the singular-
value decomposition, and least-squares estimates Â and Ĉ
are then found from the structure of Γ. Specifically,

Ĉ = Γ(1 : ny, :)

and

Â = (Γ(1 : (i− 1)ny, :))
†

Γ(ny + 1 : iny, :)

where Matlab-style indexing notation has been used, and
(·)† represents the Moore-Penrose pseudoinverse. Detailed
overviews and implementation aspects of subspace identi-
fication may be found in many places, particularly those
references cited in the introduction.

3.2 The Effects of Colored Noise on System Estimates

A potential issue with using input-output data to estimate
the extended observability matrix in this manner arrises
when the spectrum of the noise process v(t) cannot be
represented by additive white noise on the state equation
(1). To demonstrate this, suppose v(t) can be represented
as a filtered white-noise signal e(t), where

xv(t+ 1) = Avxv(t) +Ke(t)

v(t) = Cvxv(t) + e(t),
(4)

the pair (Av, Cv) is observable, and Av contains at least
one eigenvalue different from those of A. Letting

Tv =


I

CvK I
...

...
. . .

CvA
i−2
v K CvA

i−3
v K · · · I

 ,

Γv =


Cv
CvAv

...
CvA

i−1
v

 , Xv = [xv(0) xv(1) · · · xv(l − 1)] ,

and

Z =


e(0) e(1) · · · e(l − 1)
e(1) e(2) · · · e(l)

...
...

...
e(i− 1) e(i) · · · e(i+ l − 2)

 ∈ Riny×l,

the projected data-matrix equation (3) becomes

YΠ = ΓXΠ + (ΓvXv + TvZ) Π.

Thus it is usually impossible to distinguish the range
of Γ from the range of Γv and Tv when finding a low-
rank approximation of ΓXΠ. The only way to consistently
estimate the eigenvalues of A will be to artificially choose
the system order high enough so that the eigenvalues
of both A and Av appear in Â. Although a subsequent
estimation of B and D will likely place blocking zeros
[Zhou et al., 1995] near the eigenvalues of Av, there is
no way to conclude if these zeros are masking the noise or
are part of the system dynamics.
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3.3 Identification from Correlation Function Estimates

Because the signals u(t) and y(t) share the same dynamics
as Ru(τ) and Ryu(τ), we may replace the input-output
data u(t) and y(t) in the identification algorithm with
Ru(τ) and Ryu(τ). Correlation-function data matrices

RU =


Ru(τ0) Ru(1 + τ0) · · · Ru(l − 1 + τ0)

Ru(1 + τ0) Ru(2 + τ0) · · · Ru(l + τ0)
...

...
...

Ru(i− 1 + τ0) Ru(i+ τ0) · · · Ru(i+ l − 2 + τ0)


∈ Rinu×lnu ,

RY U =
Ryu(τ0) Ryu(1 + τ0) · · · Ryu(l − 1 + τ0)

Ryu(1 + τ0) Ryu(2 + τ0) · · · Ryu(l + τ0)
...

...
...

Ryu(i− 1 + τ0) Ryu(i+ τ0) · · · Ryu(i+ l − 2 + τ0)


∈ Riny×lnu ,

RV U =
Rvu(τ0) Rvu(1 + τ0) · · · Rvu(l − 1 + τ0)

Rvu(1 + τ0) Rvu(2 + τ0) · · · Rvu(l + τ0)
...

...
...

Rvu(i− 1 + τ0) Rvu(i+ τ0) · · · Rvu(i+ l − 2 + τ0)


∈ Riny×lnu ,

and

RXU = [Rxu(τ0) Rxu(1 + τ0) · · · Rxu(l − 1 + +τ0)]

∈ Rds,
in which τ0 is some starting value of τ possibly < 0,
then replace the data matrices in the original identification
procedure, transforming (2) into

RY U = ΓRXU + TRU +RV U .

If Rvu(τ) = 0, then RV U = 0, and this becomes

RY U = ΓRXU + TRU .

Multiplication of RY U on the right by the null-space-
projection matrix

ΠR = I −RTU
(
RUR

T
U

)−1
RU ,

will remove the effects of the future auto-correlation func-
tions RU , resulting in

RY UΠR = ΓRXU .

And thus the range of Γ is isolated, regardless of the
contents of the noise.

Because the functions Ru(τ) and Ryu(τ) are unknown,
we replace them with estimates taken from N samples of
input-output data

R̂u(τ) =
1

N

N−τ−1∑
t=0

u(t+ τ)u(t)T

R̂yu(τ) =
1

N

N−τ−1∑
t=0

y(t+ τ)u(t)T ,

(5)

which, under the quasi-stationary assumptions of u(t)
and y(t) and the assumption that u(t) and v(t) are
uncorrelated, will converge to the true functions Ru(τ)
and Ryu(τ) as N →∞ [Ljung, 1999].

An interpretation of the projection in (3) as l → ∞ is
that the product XΠ approaches an expression containing
block-Toeplitz matrices of correlation functions Rxu(τ)
and Ru(τ). Methods for various model types developed
from this approach with correlation-function interpreta-
tions my be found in Chou and Verhaegen [1997] and its
references. Two important distinctions exist between these
methods and the preceding method: the block-Toeplitz
matrices formed in the asymptotic analysis of (3) will not
include information for τ < 0, hence less information is
used since Ryu(τ) is not symmetric; and the data matrices
of the preceding algorithm remain finite-dimensional as
N → ∞, greatly increasing the amount of data on which
the identification procedure may be applied.

4. IDENTIFICATION OF INPUT DYNAMICS

An often overlooked step of subspace identification is
the identification of the parameters B and D in (1). In
the following, we present a memory-efficient method of
calculating the regressor matrix that may be used to find
least-squares estimates of B, D, and an initial condition
x(0). We then extend the method to correlation function
estimates.

4.1 Identification from Input-Output Data

With Â and Ĉ identified, estimates for B, D and x(0) may
be found by minimizing the least-squares error

min
B̂,D̂,x̂(0)

||y − ŷ||22 , (6)

where x̂(0) is an estimate of the initial state x(0),

y =


y(0)
y(1)

...
y(N − 1)

 ∈ RNny , ŷ =


ŷ(0)
ŷ(1)

...
ŷ(N − 1)

 ∈ RNny ,

and

ŷ(t) = ĈÂtx̂(0) +

t−1∑
k=0

ĈÂt−k−1B̂u(k) + D̂u(t). (7)

The parameters B̂, Ĉ, and x̂(0) are linear in y− ŷ and may
be written as a right-hand product by use of the Kronecker
product, resulting in

ŷ(t) = ĈÂtx̂(0) +
(
u(t)T ⊗ Iny

)
vec(D̂)

+

(
t−1∑
k=0

u(k)T ⊗ ĈÂt−k−1
)

vec(B̂).

We then group the unknown parameters into a single
vector to form

ŷ(t) =
[
φx0

(t)T φD(t)T φB(t)T
]  x̂(0)

vec(D̂)

vec(B̂)


= φ(t)T θ.

where

φx0
(t)T = ĈÂt ∈ Rny×n (8)

φD(t)T = u(t)T ⊗ Iny ∈ Rny×nuny (9)

φB(t)T =

t−1∑
k=0

u(k)T ⊗ ĈÂt−k−1 ∈ Rny×nun. (10)
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Thus the minimization problem (6) is now a linear-least-
squares problem of the form

min
θ

1

N

N−1∑
t=0

∣∣∣∣y(t)− φ(t)T θ
∣∣∣∣2
2
. (11)

In practice, a significant computational limitation is the
calculation of the regressor φTB(t). The Kronecker product
in (10) results in calculation and summation of O(N3/2)
matrices of size ny × nun. Memory limitations will dra-
matically limit the maximum N that may be used for
computing φ(t)T , particularly for multivariable data of
large dimension. This problem may be compounded when
the method is extended to correlation function estimates.

4.2 Identification from Correlation Function Estimates

To extend the least-squares estimation of B, D, and
x(0) to correlation function estimates R̂u(τ) and R̂yu(τ)
calculated over τ ∈ [τ0, τ1], we replace (6) with

e = min
B̂,D̂,R̂xu(τ0)

∣∣∣∣∣∣R̂yu − β∣∣∣∣∣∣
F

(12)

where R̂xu(τ0) is an estimate of Rxu(τ0),

R̂yu =


R̂yu(τ0)

R̂yu(τ0 + 1)
...

R̂yu(τ1)

 ∈ RPny×nu

β =


β(τ0)

β(τ0 + 1)
...

β(τ1)

 ∈ RPny×nu ,

where P = τ1 − τ0 + 1, and

β(τ) = ĈÂτ R̂xu(τ0) +

τ−1∑
k=0

ĈÂτ−k−1B̂R̂u(k) + D̂R̂u(τ).

Vectorizing β(τ) and separating the unknown parameters

B̂, D̂ and R̂xu(τ0) with the Kronecker product results in

vec (β(τ)) =
(
Inu ⊗ ĈÂτ

)
vec(R̂xu(τ0))

+
(
R̂u(τ)T ⊗ Iny

)
vec(D̂)

+

(
τ−1∑
k=0

R̂u(k)T ⊗ ĈÂτ−k−1
)

vec(B̂),

and we obtain the new regressor

vec (β(τ)) =
[
φRxu(τ)T φD(τ)T φB(τ)T

] vec(R̂xu(τ0))

vec(D̂)

vec(B̂)


= φ(τ)T θ,

where

φRxu(τ)T = Inu ⊗ ĈÂτ ∈ Rnynu×nnu (13)

φD(τ)T = R̂u(τ)T ⊗ Iny ∈ Rnynu×nynu (14)

φB(τ)T =

τ−1∑
k=0

R̂u(k)T ⊗ ĈÂτ−k−1 ∈ Rnynu×nnu .(15)

Although the computation of correlation function esti-
mates in (5) reduces the number of matrices needed to
estimate B from O(N3/2) to O

(
P 3/2

)
, these matrices

have grown to size nynu × nnu., and the matrices needed
to estimate D have grown to size nynu × nynu. The
regression problem consequently becomes intractable for
high-dimensional multivariable systems without a more
efficient means of calculating φTB(τ).

4.3 Efficient Computation of the Regressor

We begin by first reformulating the calculation of the
regressor for the raw data case and then extend to the
method to correlation function estimates . To avoid cal-
culating φB(t)T from (10) explicitly, we show that φB(t)T

may be calculated more efficiently as a set of state se-
quences of a dual system.

Theorem 1. Block element (i, j) of the transposed regres-
sor φB(t) in (10) is equivalent to the state sequence of the
system

φ
(i,j)
B (t+ 1) = ÂTφ

(i,j)
B (t) + ĈT ũ(i, j, t) (16)

computed with the initial condition φB(0) = 0n, in which

ũ(i, j, t) =

[
0j−1
ui(t)
0ny−j

]
.

Proof. First, observe that the transpose of (10) may be
expanded as

φB(t) =

t−1∑
k=0

(
u(k)T ⊗ ĈÂt−k−1

)T
=

t−1∑
k=0

[(
u(k)T ⊗ Iny

) (
Inu ⊗ ĈÂt−k−1

)]T
=

t−1∑
k=0

(
Inu ⊗ ĈÂt−k−1

)T (
u(k)T ⊗ Iny

)T
=

t−1∑
k=0

(
Inu ⊗

(
ÂT
)t−k−1

ĈT
)(

u(k)⊗ Iny
)
.

The first Kronecker product within the summation ex-
pands to the block-diagonal matrix

(
ÂT
)t−k−1

ĈT 0 · · ·

0
(
ÂT
)t−k−1

ĈT · · ·
...

...
. . .

 ,
and multiplication on the right by u(k)⊗ Iny results in

(
ÂT
)t−k−1

ĈTu1(k)(
ÂT
)t−k−1

ĈTu2(k)

...

 , (17)

where ui(k) is the i-th component of the input signal,
i ∈ [1, nu]. Because ui(k) is scalar, ui(k)⊗ Iny = ui(k)Iny ,
and we may reincorporate the summation to find
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φB(t) =

t−1∑
k=0

(
ÂT
)η
ĈT


u1(k)

0
0
...

 t−1∑
k=0

(
ÂT
)η
ĈT


0

u1(k)
0
...

 · · ·
t−1∑
k=0

(
ÂT
)η
ĈT


u2(k)

0
0
...

 t−1∑
k=0

(
ÂT
)η
ĈT


0

u2(k)
0
...

 · · ·
...

...


where η = t − k − 1. This is a convolution operation,
similar to (7), with ÂT in place of Â, ĈT in place

of B̂, and Ĉ replaced with In. Hence, φB(t)T may be
calculated as separate convolutions of significantly smaller
dimension. 2

Typically the fastest way to compute φTB will be to form
the nuny input signals ũ(i, j, τ) and to compute state-
sequences for each using (16). Efficient routines for com-
puting state-sequences of linear, time-invariant systems of
this type are commonly available in numerical software
packages, such as Matlab. The remaining regressors φTx0

and φTD are straightforward and far less expensive to
compute when using input-output data. We now extend
Theorem 1 to correlation function estimates.

Theorem 2. Block element (i, j) of the transposed regres-
sor φB in (15) may be calculated from state sequences of
the system

φ
(i,j)
B (τ + 1) = ÂTφB(τ) + ĈT ũ(i, j, τ) (18)

with the initial condition φB(τ0) = 0n, in which

ũ(i, j, τ) =

 0γ−1
R̂uα,ξβ (τ)

0ny−γ

 α = floor((i− 1)/nu)

β = floor((j − 1)/ny)

γ = mod(j − 1, ny)

,

where mod(r, s) : Z× Z→ Z is r modulo s, and floor(r) :
R → Z is the nearest integer ≤ r.

Proof. Expand (15) in the same manner as in Theorem 1
to find

φB(τ) =

τ−1∑
k=0

(
Inu ⊗

(
ÂT
)τ−k−1

ĈT
)(

Ru(k)⊗ Iny
)
.

The term within the summation – similar to (17) –
becomesÂ

Tη ĈT
(
Ru1ξ1(k)Iny

)
ÂT

η

ĈT
(
Ru1ξ2(k)Iny

)
· · ·

ÂT
η

ĈT
(
Ru2ξ1(k)Iny

)
ÂT

η

ĈT
(
Ru2ξ2(k)Iny

)
· · ·

...
. . .


where η = t − k − 1. The above may be interpreted as a
convolution as in Theorem 1, and the result follows. 2

Additionally, the symmetry of Ru(τ) may be used to
reduce the necessary computation when using correlation
function estimates.

5. SIMULATION EXAMPLE

We provide a simulation example that demonstrates both
the improved consistency of using correlation function

estimates with colored noise and the efficiency of com-
puting the input-to-state regressor using the dual-system
approach. Let a linear, time-invariant, discrete-time sys-
tem be described by the state-space equations (1) with

A =


0.3 1 0 0 0
−0.04 0.3 1 0 0

0 0 −0.5 1 0
0 0 0 −0.1 1
0 0 0 −0.81 −0.1

 B =


1 0
0 1
1 0
0 1
0 0


C = I5 D = 05×2,

so that n = 5, nu = 2, and ny = 5. The input u(t) is
white noise with unit variance, the initial condition x(0)
is a random variable with covariance matrix

E[x(0)] = In,

and the noise-process v(t) ∈ Rny be described by a zero-
mean white noise signal e(t) ∈ Rny with correlation
function

Re(τ) = 0.01Inyδ(τ)
that is filtered through a linear, time-invariant system with
the fractional description

v(t) =
1

(q − 0.8) (q2 − 1.2q + 0.37)
Inye(t)

where q is the time-shift operator. The estimate Â was
computed three ways: using the Matlab System Identi-
fication Toolbox “n4sid” function [Mathworks, 2009] with
MOESP weighting selected, the same function with CVA
weighting selected, and from correlation function esti-
mates. For the correlation function estimates, an oblique
projection was used to remove the effects of future input,
as described in Van Overschee and De Moor [1996b]. The
“past” and “future” horizons for the projection of correla-
tion function data were taken from the n4sid results.

Plots of the eigenvalues of Â estimated from 100 simula-
tions are shown in Fig. 1. Data sequences of N = 2000
samples were used to generate estimates for N4SID and
correlation function estimates of length P = 17. The cor-
relation function estimates are centered around the poles
of the true system, while both N4SID weightings are biased
towards the poles of the noise-generating system. Plots of
the maximum singular values of the identified systems vs.
frequency can be seen in Fig. 2.

Not only did the correlation function estimates provide
identified systems that more closely match the true sys-
tems dynamics, but the dramatic reduction in over matrix
sizes also resulted in a roughly 92% decrease in computa-
tion time. When the formulas in (13), (14), and (15) were
used explicitly, the computations resulted in a memory
error, even when Matlab’s “kron” function was repro-
grammed to be more efficient.

6. CONCLUSIONS AND FUTURE WORK

We presented a memory-efficient way of estimating input
dynamics from correlation functions that. The correlation-
function approach was shown to provide consistent esti-
mates even in the case of highly colored noise in a simula-
tion example. Results from correlation function estimates
were compared with popular algorithms based on input-
output data and were shown to achieve estimates closer
to the dynamics of the true system using smaller matrices
than were necessary with the input-output data approach.
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Fig. 1. Plot of pole locations of 100 simulated identifica-
tions. ‘x’ marks the locations of the true system poles,
’+’ marks the locations of the noise process poles,
and the shaded regions are the locations of the iden-
tified poles. (a) N4SID with MOESP weighting, (b)
N4SID with CVA weighting, (c) correlation function
estimates.

Future work in this area might extend the correlation
function-based approach to closed-loop identification. If
the input and output noise are correlated, cross-correlation
functions of the input and output with an external refer-
ence signal could be estimated and used to identify un-
biased estimates of system dynamics. Also, exploring the
application of frequency-domain smoothing techniques on
the correlation function estimates could result in control-
relevant identification procedures.
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