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Abstract: A feedback connection of a Hammerstein system and a linear controller provides a good
approach to modeling systems with actuator nonlinearity or input saturation during closed-loop exper-
iments. This paper discusses closed-loop identification of Hammerstein systems where both input and
output signals are correlated with noise, and time domain signals are related via a nonlinear map. The
static nonlinearity and the linear dynamic system are parametrized independently by using triangle basis
functions and rational functions respectively. The independent parametrization method causes over-
parametrization of the Hammerstein system, but parameter separation is conducted using a singular
value decomposition. An iterative Instrumental Variables (IV) method minimizing an (filtered) output
error (OE) is proposed to identify system parameters. The proposed iterative IV identification method is
applied to the experimental closed-loop time domain data from the servo actuator in a Quantum LTO-3
tape drive and the estimation result shows the effectiveness of the proposed algorithm.
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1. INTRODUCTION

An open-loop Hammerstein system has a block oriented struc-
ture where static input nonlinearity and linear dynamics are
separated. Usually, Hammerstein systems are parametrized lin-
ear in both the input static nonlinearity and the linear dynamic
system, so the parameter estimation is reduced to an ordinary
least squares (LS) technique or any of its improved versions
[Abony et al. (2000)]. Many approaches to identifying open-
loop Hammerstein systems have been introduced and some of
the recent closed-loop methods were built on these open-loop
techniques. The first researchers who studied this problem were
Narendra and Gallman (1966) where an iterative identification
method was proposed for Hammerstein systems utilizing the
alternate adjustment of the parameters of the linear and non-
linear parts of the systems. A non-iterative method to estimate
the parameters by minimizing the equation error was proposed
in Chang and Luus (1971). An optimal two-stage identification
for Hammerstein-Wiener systems was presented in Bai (1998).
A simple iterative technique for the estimation of parameters
in a Hammerstein model for the case when noise in the output
data is correlated was developed in Haist et al. (1973). Hsia
(1977) presented modified formulations of the generalized least
squares (GLS) estimation algorithm for system parameter iden-
tification. Haber (1988) introduced the two-step identification
method of the LS parameter estimation based on correlation
functions. Greblicki and Pawlak (1986) proposed an algorithm
using a nonparametric kernel estimate of regression functions
calculated from dependent data.

Even though there has been much research on open-loop Ham-
merstein system identification and closed-loop linear system
identification [Gilson and Van den Hof (2005)], there are lim-
ited results on combining these studies to provide systematic
closed-loop system identification methods for Hammerstein
systems in a closed-loop setting in which both input and output

signals are correlated with noise and time domain signals are
related via a nonlinear dynamic map. One of the early works on
the closed-loop identification of nonlinear systems can be found
in Beyer et al. (1979) where a closed-loop identification method
is proposed for Hammerstein systems using the LS method, the
GLS method and the maximum likelihood method. In addition,
Linard et al. (1997) extended closed-loop identification meth-
ods (a two-stage method and using right coprime factorizations)
for linear dynamic systems to nonlinear dynamic systems and
De Bruyne et al. (1998) presented gradient expressions for
a closed-loop parametric identification scheme. Unfortunately,
these methods are based on linearization of a nonlinear map
between time domain signals and the linearization imposes con-
straints on the actual nonlinear map to be identified. Recently,
van Wingerden and Verhaegen (2009) presented an algorithm to
identify MIMO Hammerstein systems under open- and closed-
loop conditions. Laurain et al. (2009) presented an IV method
dedicated to closed-loop Hammerstein systems. Although pow-
erful methods, the parametrization of the static nonlinearity was
not discussed in detail in van Wingerden and Verhaegen (2009)
and Laurain et al. (2009) .

The objective of this paper is to formulate a procedure that
allows unbiased parameter estimation of closed-loop Ham-
merstein systems using the IV technique with a specific
parametrization for a piecewise linear approximation of the
static nonlinearity. This specific parametrization is chosen due
to its efficiency in estimation of non-smooth static nonlinearity,
which is very common in feedback control systems. A feedback
connection of a Hammerstein system and a linear controller can
be used to represent a feedback system with actuator nonlinear-
ity (such as deadzone nonlinearity) or a closed-loop experiment
with input saturation. In this study, the closed-loop identifica-
tion problem for Hammerstein systems within such feedback
control systems is expressed as a simple iterative IV method
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and we illustrate how static nonlinearity and the linear dynamic
system can be estimated.

2. STATEMENT OF THE PROBLEM

The Hammerstein system in a closed-loop setting considered
in this paper is shown in Figure 1. For the sake of analysis,
the reference input r(t) and the controller map C(·) are known.
The linearity of the controller is not required as long as the
controller information is known. The measurement noise is a
colored noise that can be represented by a filtered white noise
as v(t) = H(q)e(t), and the filter is assumed to be unknown and
will not be estimated. For identification purposes, the input u(t)
and output y(t) are measured, whereas the intermediate signal
x(t) is unknown. The static nonlinearity f (·) and linear dynamic
system G(q) are unknown and need to be estimated.

In a closed-loop setting, the output y(t) and input u(t) are cor-
rupted by measurement noise v(t). Therefore, system param-
eter estimates obtained from general open-loop identification
methods that use the noise corrupted output y(t) and input
u(t) will be biased. The purpose of this study is to propose
a closed-loop system identification method for Hammerstein
systems in a closed-loop setting that yields unbiased system
parameter estimates for the linear dynamic system G(q) and
static nonlinearity f (·) under a unknown colored disturbance
v(t) from the available information (the reference input r(t), the
input u(t), the output y(t), and the knowledge of the controller).

f(.)
u(t) x(t)

y(t)

v(t)
r(t)   +

−
G(q)
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y

c
(t)

H(q)

e(t)

Fig. 1. closed-loop Hammerstein system.

3. SYSTEM DESCRIPTION

3.1 Modeling of static nonlinearity

In feedback control systems, non-smooth static nonlinearity,
such as saturation, is common. A piecewise linear approxima-
tion is an excellent way to estimate such nonlinearity for feed-
back control systems since we can achieve good approximation
with only a small number of parameters. As a result, a piecewise
linear approximation of the static nonlinearity f (·) is used in
this study. There are several basis functions that can be used to
obtain a piecewise linear approximate of the static nonlinearity.
The obvious choice is a piecewise linear function [Van Pelt and
Bernstein (2000)]. Another possible basis function is a piece-
wise triangle function [Gibson (2008)] as shown in Figure 2.
Using triangle basis functions fm(·), the static nonlinearity f (·)
is assumed to satisfy the following condition

sup
u(t)∈[umin,umax]

lim
M→∞

M

∑
m=1

µm fm(u(t))− f (u(t)) = 0 (1)

where the center location vector m = [m1 · · · mM]T , specify-
ing the center locations of triangle basis functions, spans the

amplitude of the input vector u = [u(1) · · · u(N)]T and the
amplitude vector µ= [µ1 · · · µM]T , specifying the amplitudes of
triangle basis functions at the center m, is to be estimated. The
condition in (1) indicates that the static nonlinearity f (·) can
be approximated arbitrary well with a dense grid of triangular
basis functions. A sparse grid will provide good approximation
for non-smooth nonlinearity if a critical point is well captured.
A denser grid is needed to approximate smooth nonlinearity,
which will be represented by piecewise linear functions.
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Fig. 2. Triangle basis functions.

3.2 Modeling of closed-loop Hammerstein systems

The noise corrupted output y(t) generated from a Hammerstein
system in a closed-loop setting is defined as

y(t) = G(q)x(t)+ v(t)

= q−td B(q)
A(q)

x(t)+H(q)e(t) (2)

where
x(t) = f (u(t))
A(q) = 1+a1q−1 + · · ·+anaq−na

B(q) = b0 +b1q−1 + · · ·+bnbq−nb

(3)

and td indicates the number of steps of time delay of the system.
Let η =

[
a1 · · · ana b0 · · · bnb

]T and we assume at least one
step time delay in G(q). The noise free output ŷ(t) is defined by

ŷ(t) =
B(q)
A(q)

x̂(t− td). (4)

In order to define ŷ(t), one only needs x̂(t− td), · · · , x̂(t−nb−
td) and ŷ(t−1), · · · , ŷ(t−na). Subsequently, in order to define
ŷc(t), one only needs information on the feedback control map
ŷc(t) =C(ŷ(t)). In case of a linear dynamic map, where

C(q) =
d0 + · · ·+dnd q−nd

1+ c1 + · · ·+ cncq−nc
,

only past values of ŷc(t) and ŷ(t) are needed to compute ŷc(t).
Then

û(t) = r(t)− ŷc(t), x̂(t) = f (û(t)) . (5)
As a result, noise free input and output signals are generated by
the known reference signal only. The linear difference equation
between the output y(t) and the intermediate signal x(t) is
defined as

y(t) =−
na

∑
i=1

aiy(t− i)+
nb

∑
j=0

b jx(t− td− j)+w(t)

where w(t) = A(q)v(t) and the intermediate signal x(t) is found
from the static nonlinearity f (·) as x(t) = f (u(t)). As a result,
the output y(t) is defined as

y(t) =−
na

∑
i=1

aiy(t− i)+
nb

∑
j=0

b j f (u(t− td− j))+w(t). (6)
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4. PARAMETRIZATION AND ESTIMATION

4.1 Parametrization of static nonlinearity and linear dynamics

In order to define a piecewise linear approximation of the static
nonlinearity f (·), a finite value M in (1) can be chosen, whereas
the points m1, · · · ,mM of a grid over [umin,umax] can be chosen
linearly spaced or at strategic locations. Each triangle function
fm(u(t)) in (1) has nonzero values through two segments and
zeros elsewhere except for the first and the last intervals of the
grid.

fm(u(t)) =


u(t)−ml−1

ml−ml−1
for ml−1 ≤ u(t)< ml

ml+1−u(t)
ml+1−ml

for ml ≤ u(t)< ml+1

0 Otherwise

f1(u(t)) =

 m2−u(t)
m2−m1

for m1 ≤ u(t)< m2

0 Otherwise

fM(u(t)) =

 u(t)−mM−1

mM−mM−1
for mM−1 < u(t)≤ mM

0 Otherwise
In each segment of the m-axis, the resulting linear function
as indicated by the (red/shaded) dashed line in Figure 2 is
defined by two overlapping triangle functions in the segment, as
indicated by the two (blue) dotted lines. This piecewise linear
parametrization using triangle basis functions can approximate
not only a smooth but also a non-smooth static nonlinearity
function f (·). With the amplitude vector µ= [ µ1 · · · µM ]

T , x(t)
can be rewritten as

x(t) = f (u(t))≈ ρ
T (u(t))µ (7)

where ρT (u(t)) is defined as

ρ
T (u(t)) =

[
· · · 0

mk+1−u(t)
mk+1−mk

u(t)−mk

mk+1−mk
0 · · ·

]
(8)

for mk ≤ u(t)< mk+1
where mk and mk+1 are the center locations of the triangle basis
functions.

Approximating the non-smooth static nonlinearity function f (·)
by the finite dimensional approximation in (7), (8), the output
vector Y = [y(1) · · · y(N)]T , with the output y(t) in (6), can be
written in matrix form as

Y = Φθ0 +W
where θ0 denotes the parameter to be estimated. Following the
parametrization of G(q) in (2) and (3) we see that the real
valued (na + M · (nb + 1))× 1 parameter θ0 has a structure
characterized by

θ0 = [ a1 · · · ana b0µ1 · · · b0µM

· · · bnbµ1 · · · bnbµM ]
T
.

In this parametrization, an arbitrary gain may be distributed
between the static nonlinearity and the linear dynamic system
[Chou and Verhaegen (1999); Wigren (1993)]. In order to avoid
an ambiguous gain, the scaling of either the linear dynamic
system or the static nonlinearity can be normalized. Here, we
choose to normalize the scaling of the linear dynamic system by
setting b0 = 1. The modified parameter vector θ to be estimated
is now defined as

θ =
[
θ1 · · · θna θna+1 · · · θna+M · · · θna+M·(nb+1)

]T (9)
where θ1, · · · , θna are used to capture a1, · · · , ana and
θna+1, · · · ,θna+M·(nb+1) are used to capture b1, · · · ,bnb , and

µ1, · · · ,µM . This parametrization method over-parametrizes the
Hammerstein system, but the separation of θ into b1, · · · ,bnb
and µ1, · · · ,µM is solved using a singular value decomposition
outlined in Section 4.3. The regressor data Φ is defined as

Φ = [ Φa Φbµ ] (10)

=
[

φ1(t) φ2(t) · · · φna+M·nb(t) φna+M·(nb+1)(t)
]

where

Φa =


−y(1−1) −y(1−2) · · · −y(1−na)
−y(2−1) −y(2−2) · · · −y(2−na)
−y(3−1) −y(3−2) · · · −y(3−na)

...
...

. . .
...

−y(N−1) −y(N−2) ... −y(N−ana)



Φbµ =


ρT (u(1− td)) · · · ρT (u(1− td−nb))
ρT (u(2− td)) · · · ρT (u(2− td−nb))

...
...

...
ρT (u(N− td)) · · · ρT (u(N− td−nb))


with ρT (u(t)) in (8) and the equation error vector W =

[ w(1) · · · w(N) ]
T .

4.2 IV estimation

If a linear LS method is used to estimate the system parameters,
the estimated θ̂ will be biased in cases where the equation error
w(t) is not white noise. In order to overcome this problem,
an instrumental variable (IV) method can be used [Söderstöm
and Stoica (2002)]. The main idea of the IV method is to
modify the LS estimate by using general correlation vectors
called instruments so that the estimate of the system parameter
vector θ̂ becomes consistent for an arbitrary disturbance. An
instrument ξ is chosen to be uncorrelated with the equation
error vector W and correlated with the regressor Φ such that E[ξTW ] = 0

E[ξT Φ] is a nonsingular matrix
(11)

where 0 represents a zero vector and E represents the expecta-
tion operator. With the instrument ξ defined under the condition
given in (11), an asymptotically unbiased estimate is obtained
by using the IV estimate

θ̂
N
IV = (ξT

Φ)−1
ξ

TY (12)
that has the same dimension and structure as the modified
parameter θ in (9).

The instrument ξ can be defined by using a noise free output
ŷ(t) and a noise free input û(t). First, auxiliary models Ĝ and
f̂ are identified from closed-loop signals u(t) and y(t) using
the least squares method, and noise free signals ŷ(t) and û(t)
are generated with these auxiliary models using the known
reference signal r(t) as indicated in (4) and (5) respectively.
As a result, ξ is defined as

ξ = Φn f =
[
Φa,n f Φbµ,n f

]
(13)

where

Φa,n f =


−ŷ(1−1) −ŷ(1−2) · · · −ŷ(1−ana)
−ŷ(2−1) −ŷ(2−2) · · · −ŷ(2−ana)
−ŷ(3−1) −ŷ(3−2) · · · −ŷ(3−ana)

...
...

. . .
...

−ŷ(N−1) −ŷ(N−2) ... −ŷ(N−ana)
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Φbµ,n f =


ρT (û(1− td)) · · · ρT (û(1− td−nb +1))
ρT (û(2− td)) · · · ρT (û(2− td−nb +1))

...
...

...
ρT (û(N− td)) · · · ρT (û(N− td−nb +1))


It should be noted that the IV estimate as formulated in (12)
does not necessarily exhibit any optimality properties other than
the guarantee of giving a consistent estimate on average.

4.3 Parameter separation

As explained in Section 4.1, since the static nonlinearity and
the dynamic linear system are parameterized independently, the
system is over-parametrized by the modified parameter vector
given in (9). As the parameter estimate θ̂N

IV in (12) has the
same structure, we need to separate the parameters of the linear
dynamic system in

η = [ a1 · · ·ana b1 · · ·bnb ]
T

and the parameters for the piecewise linear approximation of
f (·) in

µ = [ µ1 · · · µM ]
T
.

Once θ̂N
IV in (12) is estimated, â = [â1 · · · âna ]

T is easily ob-
tained. The parameter vectors b̂ =

[
b̂1 · · · b̂nb

]T
and µ̂ can be

separated using the Singular Value Decomposition (SVD) [Bai
(1998)]. First the parameter vector θ̂N

IV is reorganized into Γbµ
given by

Γbµ =

 µ̂1 · · · µ̂M
...

...
...

b̂nb µ̂1 · · · b̂nb µ̂M

 .
The singular value decomposition of Γbµ is given as

Γbµ =UΣV T

where U(nb+1)×(nb+1) and VM×M are orthogonal matrices, and
Σ(nb+1)×M is a rectangular diagonal matrix. The positive diago-
nal entries of Σ are called singular values. With the constraint,
b0 = 1, the parameter vectors η̂ and µ̂ can be calculated by

η̂ =
[

âT b̂T
]

=
[

θ̂N
IV (1 : na)

T U(:,1)/U(1,1)
]

µ̂T = σ1V T (1, :) ·U(1,1)

(14)

where σ1 is the largest singular value and U(1,1) denotes the
first nonzero element of U(:,1), where the notation (1,:) and
(:,1) are used to denote the first row and the first column in a
matrix respectively. In this way, the optimal system parameter
vectors b̂ and µ̂ are obtained by minimizing the matrix Frobe-
nius norm given by

[µ̂, b̂] = arg min
µ∈RM , b∈Rnb+1

||Γbµ− b̂µ̂T ||2F

with the constraint, b0 = 1.

4.4 Iterative IV estimation

Although the IV estimate described in Section 4.2 is not derived
explicitly to exhibit any optimality properties, the choice of
an instrument ξ can be refined to include some optimality
properties for the IV estimate. A general class of IV estimators
is given by

θ̂
N
IV = (ξT

Φ
L)−1

ξ
TY L

where
Y L =

[
yL(1) · · · yL(N)

]T
, yL(t) = L(q)y(t) (15)

and
ΦL =

[
φL

1(t) · · · φL
na+M·(nb+1)(t)

]
,

φL
i (t) = L(q)φi(t)

(16)

that allows an additional filtering of the output y(t) and the
regressor Φ with a filter L(q) [Söderstöm and Stoica (2002);
Ljung (1999)]. One optimality principle commonly used in IV
estimate is minimum variance optimality criterion. Since the
choice of the instrument ξ affects the parameter variance con-
siderably, the minimum variance optimality property depends
on the choice of the instrument ξ. This minimum variance
IV estimate can be obtained by using the following choice of
instruments

L(q) = H(q)−1A(q)−1

ξ = ΦL
n f (filtered noise free regressor) (17)

where H(q)−1 is the inverse of the noise filter in (2) and A(q)−1

is the inverse of A(q) in (3). The optimal choice of instruments
in (17) is motivated by minimizing a prediction error. In this
study, we are particularly interested in minimizing an (filtered)
Output Error (OE), motivating the choice of a fixed noise filter
H(q) = H∗(q). For an OE model, H∗(q) = 1 is chosen. As a
result, L(q) = A(q)−1 will be used in this study. This choice
of instrument requires prior knowledge of the pole locations of
G(q) in (2) and a noise free regressor Φn f in (13). Although
impractical at first due to the required prior information, this
problem can be solved by formulating an optimization scheme
for the optimal IV estimate allowing an iterative procedure to
update the necessary prior information. With an initial (IV)
parameter estimate θ̂N

IV = θ̂N
k to model the static nonlinearity f̂

and the linear dynamic system Ĝ, one could employ an iterative
solution that consists of the following computational steps:

Step 1 : Separate θ̂N
k into η̂ and µ̂ in (14) and generate noise

free input û(t) and noise free output ŷ(t) using (4)
and (5) respectively to define Φn f in (13).

Step 2 : Define the filter L(q, θ̂N
k−1) = A(q, θ̂N

k−1)
−1.

If the filter L(q, θ̂N
k−1) is unstable, project the poles

outside the unit circle inside the unit circle.
Step 3 : Define the instrument (filtered noise free regressor)

ξk−1 = ΦL
n f by filtering Φn f from Step 1, the

filtered output vector Y L
k−1 in (15), and the filtered

regressor ΦL
k−1 in (16).

Step 4 : Compute the IV estimate.
θ̂N

k = (ξT
k−1ΦL

k−1)
−1ξT

k−1Y L
k−1

Step 5 : Stopping criterion of the algorithm. If
‖θ̂N

k − θ̂N
k−1‖/‖θ̂N

k−1‖> ε, go to Step 1
In the above steps, the stable filter L(q), the filtered output
vector Y L, the filtered regressor ΦL and the instrument ξ are
updated using θ̂N

k−1 during the iterations over k. Step 1 creates
a noise free regressor Φ using the noise free input u(t) and the
noise free output y(t) generated from closed-loop simulations.
In Step 2 the filter L(q) is updated to provide the correct
filtering for the instrument ξ, the output vector Y , and the
regressor Φ in Step 3. Step 4 is the actual computation of the
IV estimate and Step 5 formulates a stopping criterion for the
algorithm by looking at the relative parameter error. With θ̂N

k ,
where N is large enough to capture the real parameter θ0, we
have

lim
N→∞

E{θ̂N
k }= θ0
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Fig. 3. Quantum LTO-3 tape drive.

y(t)

r(t)
u(t)

C(q) G(q)f(⋅)

x(t)

v(t)

oo

_

+

Fig. 4. Closed-loop experimental setup of a Quantum LTO-3
tape drive. The excitation signal r(t) and the linear con-
troller C(q) are known. The input to the static nonlinearity
u(t) and the output y(t) are measured. The static nonlinear-
ity f (·) and linear dynamic system G(q) are unknown and
need to be estimated under a unknown colored disturbance
v(t) (the dotted line indicates unknown parts and the solid
line indicates the known parts).

for each iteration step k. If the iteration converges, θ̂N
IV = θ̂N

k and
with the above asymptotic property we have found the optimal
solution that satisfies

θ̂
N
IV = solθE[ξT (Y L−Φ

L
θ)] = 0 (18)

where E represents the expectation operator and solθ means
solve the following equation for θ.

5. EXPERIMENTAL RESULTS

In this section, the proposed iterative IV method is applied to
the experimental closed-loop time domain data from the servo
actuator in a Quantum LTO-3 tape drive in order to identify
the actuator dynamics and static nonlinearity existing in the
closed-loop experiment. In this experiment, the tape drive was
running at 4m/s causing periodic disturbances due to Lat-
eral Tape Motion (LTM). An excitation signal r was added
to the output signal (the only change is from u(t) = r(t)−
yc(t) in Figure 1 to u(t) = C(q)(r(t)− y(t)) in Figure 4) and
the excitation level was chosen such that the control signal
u(t) to the plant was being saturated during the experiment.
A total of 1,406,251 actuator output measurements, in the
form of a Position Error Signal (PES) at 16bit resolution,
was measured for 70.3126sec sampled at 20kHz. The con-
troller C(q) implemented during experiments is known. Only
N = 10,000 (for 0.05sec) data was used for the system iden-
tification. M = 5 (the total number of grid points) with m =
[min(u) − 5 0 5 max(5)] is used to model static nonlinearity
(we can start with M > 5 and remove unnecessary grid points
as we go) and an 8th order model with 1 step time delay is used
to model the linear dynamic system. The configuration of the
experiment is shown in Figure 4. The results of applying the
proposed iterative IV identification method to the closed-loop
time domain data from the servo actuator in a Quantum LTO-3
tape drive is shown in Figure 5 and Figure 6.

Knowing that the LTO-3 drive has a saturation of ±5V on the
control input, it can be observed from Figure 5-(a) that the input
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Fig. 5. (a) The plot of the identified static nonlinearity function
f̂ (·). (b) The Bode plot of the identified linear dynamic
system Ĝ(q).

saturation is properly estimated. In addition, several resonance
modes have been estimated in the linear dynamic response of
the actuator as indicated in Figure 5-(b). The resulting closed-
loop Hammerstein system represents the LTO-3 actuator under
control with input saturation and the simulation of this closed-
loop Hammerstein system shows excellent agreement with the
experiment data, as shown in Figure 6.

6. CONCLUSIONS

An iterative IV method minimizing an (filtered) OE is proposed
to identify a Hammerstein system in a closed-loop setting.
Piecewise linear approximation is used for modeling static
nonlinearity due to its efficiency in dealing with non-smooth
static nonlinearities. The properties of an IV estimation depend
on the choice of the instrument. In this paper, an instrument
is chosen as a filtered noise free regressor where the filter is
derived by a priori knowledge of the pole locations of the linear
dynamic system and where the noise free regressor is computed
from simulated closed-loop input and output signals generated
by the known reference signal. For accurate computation of the
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Fig. 6. (a) The plot of the measured input signal u(t) and
the simulated intermediate signal xsim(t). The ±5V input
saturation is very nicely estimated. (b) The plot of the
measured output signal y(t) and the simulated output
signal ysim(t).

closed-loop signals and the filter, an iterative procedure that
updates the knowledge of the static nonlinearity and the linear
dynamic system is used. The effectiveness of the proposed
algorithm is shown by an experimental study of the servo
system in a Quantum LTO-3 tape drive in this paper.
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