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Abstract— A feedback connection of a Hammerstein system
and a linear controller provides a good approach to modeling
systems with static actuator nonlinearity or input saturation
during closed-loop experiments. This paper discusses the Out-
put Error (OE) identification of such closed-loop Hammerstein
systems that requires a nonlinear optimization due to the non-
convexity of the output error. An iterative IV (Instrumental
Variables) identification algorithm is proposed for the nonlinear
optimization. The basic idea is to express the nonlinear param-
eter estimation as an iterative IV estimation using gradient
based updates. The proposed iterative IV identification method
is applied to the simulation data from a Hammerstein system
with input static nonlinearity. The simulation study shows the
effectiveness of the proposed identification algorithms.

I. INTRODUCTION

A feedback connection of a Hammerstein system and a

linear controller can be used to represent a feedback system

with actuator nonlinearity. There has been much research

on the problem of identifying Hammerstein systems in a

open-loop setting [1] [2] [3] [4] [5] [6] [7] [8], while much

less attention has been paid to the problem of identifying

Hammerstein systems in a closed-loop setting. One of the

early works dealing with closed-loop Hammerstein system

identification can be found in [9]. In this work, Beyer et

al. proposed a closed-loop identification method for Ham-

merstein systems using the LS method, the GLS method

and the maximum likelihood method. In addition, Linard

et al. [10] extended closed-loop identification methods (a

two-stage method and using right coprime factorizations)

for linear dynamic systems to nonlinear dynamic systems

and De Bruyne et al. [11] presented gradient expressions

for a closed-loop parametric identification scheme. However,

these methods are based on linearization of a nonlinear

map between time domain signals. Recently, van Winger-

den and Verhaegen [12] presented an algorithm to identify

MIMO Hammerstein systems under open and closed-loop

conditions. They formulated an optimized predictor based

subspace identification algorithm in the dual space. Laurain

et al. [13] presented an IV method dedicated to closed-

loop Hammerstein systems. Comprehensive studies of block-

oriented nonlinear system identification can be found in [8].

In this paper, we focus on the Output Error (OE) iden-

tification of Hammerstein systems in a closed-loop setting.

Closed-loop identification is often used for control-relevant

identification where the goal is to estimate models suitable

for robust control design. It is then often only necessary to

model the plant dynamics, not noise properties. So it would

be natural to use an output error model structure [14].

It is well known that the direct use of input/output data,

generated from a closed-loop setting, results in biased esti-

mation due to the correlation between input and noise. The

main contribution of this paper is that we propose a method

that allows us to solve a nonlinear OE minimization problem

as an iterative linear optimization problem that is robust to

the correlation between input and noise. The basic idea is to

express the nonlinear parameter estimation as an iterative IV

estimation using gradient based updates similar to the method

in [15]. Convergence of the iterative steps guarantees a local

minimum of the OE minimization problem.

II. STATEMENT OF THE PROBLEM

The Hammerstein system in a closed-loop setting consid-

ered in this paper is shown in Figure 1. For identification

purposes, the reference input r(t) and the controller C(q)
are known, the input u(t) and output y(t) are measured,

whereas the intermediate signal x0(t), the static nonlinearity

f0(·) and the linear dynamic system G0(q) are unknown.

The disturbance v(t) is a filtered white noise, where the

filtering properties are unknown. The purpose of this study

is to propose an OE identification method for the consistent

estimation of the static nonlinearity f0(·) and the linear

dynamic system G0(q) in a closed-loop setting on the basis

of the measured signals, the input u(t) and output y(t), and

the knowledge of the controller C(q) .
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+

Fig. 1. Closed-loop Hammerstein system.

III. SYSTEM DESCRIPTION

A. Modeling of static nonlinearity

In feedback control systems, nonsmooth static nonlin-

earity, such as saturation, is common. A piecewise linear

approximation is an excellent way to estimate such nonlin-

earity for feedback control systems since we can achieve

good approximation with only a small number of parameters.

A piecewise linear approximation of the static nonlinearity

f0(·) using piecewise triangle functions [16] shown in Fig-

ure 2 is used in this study. Using triangle basis functions
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fm(·), the static nonlinearity f0(·) is assumed to satisfy the

following condition

sup
u(t)∈[umin,umax]

lim
M→∞

M∑

m=1

|µmfm(u(t))− f0(u(t))| = 0

(1)

where the center location vector m = [m1 · · · mM ]T , spec-

ifying the center locations of triangle basis functions, spans

the amplitude of the input vector u = [u(1) · · · u(N)]T

and the amplitude vector µ = [µ1 · · · µM ]T , specifying the

amplitudes of triangle basis functions at the center m, is to

be estimated. The condition in (1) indicates that the static

nonlinearity f0(·) can be approximated arbitrarily well with

a dense grid of triangular basis functions. Even a sparse grid

will provide good approximation for nonsmooth nonlinearity

if grid points are well chosen.

µ
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Fig. 2. Triangle basis functions.

B. Modeling of closed-loop Hammerstein systems

The output y(t) generated from a closed-loop Hammer-

stein system is defined as

y(t) = G0(q)x0(t) + v(t)

= q−tdB0(q)

A0(q)
x0(t) + v(t)

(2)

where v(t) is colored noise, x0(t) = f0(u(t)), and td
indicates the number of steps of time delay of the system.

We assume at least one step time delay in G0(q). The noise

free output ŷ(t) is defined by

ŷ(t) =
B0(q)

A0(q)
x(t− td), where

x(t) = f (û(t)) , û(t) = r(t)− ŷc(t), ŷc(t) = C(q)ŷ(t).
(3)

In order to define ŷ(t), one needs x(t−td), · · · , x(t−nb−td)
and ŷ(t−1), · · · , ŷ(t−na). Subsequently, in order to define

ŷc(t) = C(q)ŷ(t), where

C(q) =
d0 + · · ·+ dnd

q−nd

1 + c1q−1 + · · ·+ cnc
q−nc

, (4)

one needs ŷ(t), · · · , ŷ(t−nd) and ŷc(t−1), · · · , ŷc(t−nc).

IV. PARAMETRIZATION

In order to define a piecewise linear approximation of

the static nonlinearity f0(·), a finite value M in (1) can

be chosen, whereas the points m1, · · · ,mM of a grid over

[umin, umax] can be chosen linearly spaced or at strategic

locations. Each triangle function fm(u(t)) in (1) has nonzero

values through two segments and zeros elsewhere except for

the first and the last intervals of the grid.

fm(u(t)) =





u(t)−ml−1

ml −ml−1
for ml−1 ≤ u(t) < ml

ml+1 − u(t)

ml+1 −ml

for ml ≤ u(t) < ml+1

0 Otherwise

f1(u(t)) =





m2 − u(t)

m2 −m1
for m1 ≤ u(t) < m2

0 Otherwise

fM (u(t)) =





u(t)−mM−1

mM −mM−1
for mM−1 < u(t) ≤ mM

0 Otherwise

In each segment of the m-axis in Figure 2, the resulting

linear function as indicated by the (red/shaded) dashed line is

defined by two overlapping triangle functions in the segment,

as indicated by the two (blue) dotted lines. This piecewise

linear parametrization using triangle basis functions can

approximate not only a smooth but also a nonsmooth static

nonlinearity function f0(·). Let x̂(t, µ) = f(û(t), µ) be the

approximation of x(t), where û(t) is the noise free input and

µ is the amplitude parameter

µ =
[
µ1 · · · µM

]T
. (5)

Then, x̂(t, µ) can be written as

x̂(t, µ) = ρ(û(t))µ (6)

where ρ(û(t)) is defined as

ρ(û(t)) =

[
· · · 0

mk+1 − û(t)

mk+1 −mk

û(t)−mk

mk+1 −mk

0 · · ·

]
(7)

for mk ≤ û(t) < mk+1

where mk and mk+1 are the center locations of the triangle

basis functions. Let G(q, φ) be the estimation of G0(q) with

the system parameter

φ = [a1 · · · ana
b0 · · · bnb

] (8)

such that

G(q, φ) = q−tdB(q, φ)

A(q, φ)
where

A(q, φ) = 1 + a1q
−1 + · · ·+ ana

q−na ,
B(q, φ) = b0 + b1q

−1 + · · ·+ bnb
q−nb .

(9)

With the parameters φ in (8) and µ in (5), the noise free

OE model output ŷ(t) now can be written as

ŷ(t, φ, µ) =
B(q, φ)x̂(t− td, µ)

A(q, φ)
=
B(q, φ)ρ(û(t− td))µ

A(q, φ)
.

(10)

Realizing that ρ(û(t−td))µ in (10) is a linear combination of

the time shifted noise free input signal weighted by µk, k =
1, · · · ,M , it can be verified that B(q, φ)ρ(û(t − td))µ in

(10) can be written in a linear combination of time shifted

inputs weighted by the parameter

θ̃ = [b0µ1 · · · b0µM · · · bnb
µ1 · · · bnb

µM ]
T
.
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In this parametrization, an arbitrary gain may be distributed

between the static nonlinearity and the linear dynamic system

[17] [18]. In order to avoid an ambiguous gain, the scaling of

either the linear dynamic system or the static nonlinearity can

be fixed. In this paper, we choose to normalize the scaling

of the linear dynamic system by fixing b0 = 1. As a result,

we will define the parameter

θ = [a1 · · · ana
µ1 · · · µM · · · bnb

µ1

· · · bnb
µM ]

T
∈ Rs×1, s = na +M · (nb + 1).

(11)

as the parameter to be identified, leading to the shorthand

notation

ŷ(t, θ) =
T (q, û(t− td), θ)

A(q, θ)
. (12)

With the chosen system parameter θ in (11), the output error

is defined as

ε(t, θ) = y(t)− ŷ(t, θ). (13)

A. IV estimation

An output error (OE) model requires a nonlinear optimiza-

tion (iterative search) due to the non-convexity of ε(t, θ) in

(13). Let

E(θ) = [ε(1, θ) · · · ε(N, θ)]
T

(14)

where ε(t, θ) is given in (13). Then, the parameter estimation

is given by

θ̂NOE = argmin
θ
V N (θ)

V N (θ) =
1

2N
ET (θ)E(θ).

(15)

The next theorem shows that the nonlinear optimization

problem in (15) can be rewritten as an IV estimation prob-

lem.

Theorem 1: Let the filtered regressor ΦL be defined as

ΦL =
[
ΦL

a ΦL
bµ

]
(16)

where

ΦL
a =




−yL(0) · · · −yL(1− na)
−yL(1) · · · −yL(2− na)

...
. . .

...

−yL(N − 1) · · · −yL(N − na)


 (17)

and

ΦL
bµ =




ρL(û(1− td)) · · · ρL(û(1− td− nb))
...

...
...

ρL(û(N − td)) · · · ρL(û(N − td− nb))


 .

(18)

yL(t) in (17) is defined as

yL(t) = L(q, θ)y(t), L(q, θ) =
1

A(q, θ)

where A(q, θ) is given in (9). In (18), ρL(û(t)) =
L(q)ρ(û(t)), where ρ(û(t) is given in (7) and û(t) is given

in (3) as the noise free input. Subsequently, let the instrument

ψT (θ) be defined as

ψT (θ) = −
dE(θ)

dθ

T

(19)

where E(θ) is given in (14) and the filtered output vector

Y L is defined as

Y L = [yL(1) · · · yL(N)]T . (20)

Then, the minimizing argument in (15) can be written as

θ̂NOE = (ψT (θ)ΦL)−1ψT (θ)Y L.
Proof: The minimum of V N (θ) in (15) can be obtained

by solving

dV N (θ)

dθ
=

1

N
ET (θ)

dE(θ)

dθ
= ~0 (21)

where
dV N (θ)

dθ
=

[
dV N (θ)

dθ1
· · ·

dV N (θ)

dθs

]

and ~0 represents a zero vector. With (19), (21) can be

rewritten as
1

N
ET (θ)ψ(θ) = ~0. (22)

Since E(θ) = Y − Ŷ (θ), where Y = [y(1) · · · y(N)]
T

and

Ŷ = [ŷ(1, θ) · · · ŷ(N, θ)]
T

, (22) can be rewritten as

ψT (θ) · [Y − Ŷ (θ)] = ~0. (23)

(23) can be rewritten as

ψT (θ) · [Y L
A − Ŷ L

T (θ)] = ~0 (24)

where
Y L
A =

[
Y L
A (1) · · · Y L

A (N)
]T
,

Y L
A (t) = A(q, θ)yL(t)

and

Ŷ L
T (θ) =

[
Ŷ L
T (1, θ) · · · Ŷ L

T (N, θ)
]T
,

Ŷ L
T (t, θ) = TL(q, û(t− td), θ).

(25)

TL(q, û(t − td), θ) in (25) is filtered T (q, û(t − td), θ) in

(12) with the filter L(q, θ). Finally, (24) can be written as

ψT (θ) · [Y L − ΦLθ] = ~0

where ΦL is given in (16), ψT (θ) is given in (19), θ is given

in (11), and Y L is given in (20). As a result, θ̂NOE in (15)

can be written in IV expression characterized as

θ̂NOE = (ψT (θ)ΦL)−1ψT (θ)Y L. (26)

B. Calculation of the instrument

In this section, the instrument ψT (θ) in (19) is calculated

as

ψT (θ) = −
dE(θ)

dθ

T

=
dŶ (θ)

dθ

T

where

dŶ (θ)

dθ
=




dŷ(1, θ)

dθ1
· · ·

dŷ(N, θ)

dθ1
... · · ·

...
dŷ(1, θ)

dθs
· · ·

dŷ(N, θ)

dθs




T

.
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The following lemma summarizes the calculation of the

instrument ψT (θ).
Lemma 1: The instrument ψT (θ) in (19) is defined by

ψT (θ) = [ψa ψbµ]

where

ψa =




−ŷL(0) · · · −ŷL(1− na)
−ŷL(1) · · · −ŷL(2− na)

...
. . .

...

−ŷL(N − 1) · · · −ŷL(N − na)


 (27)

+




dŷ1(0) · · · dŷna
(1− td)

dŷ1(1) · · · dŷna
(2− td)

...
. . .

...

dŷ1(N − td) · · · dŷna
(N − td)


 (28)

and

ψbµ = ΦL
bµ +




dΦ1(1) · · · dΦM×(nb+1)(1)
...

...
...

dΦ1(N) · · · dΦM×(nb+1)(N)


 . (29)

ŷL(t) in (27) is defined as ŷL(t) = L(q, θ)ŷ(t, θ). dŷi(t) in

(28) is defined as

dŷi(t) =
1

A(q, θ)

dT (q, û(t), θ)

dθi
(30)

where
dT (q, û(t), θ)

dai
in (30) is defined as

dT (q, û(t), θ)

dai
=

(nb+1)·M∑

k=1

dΦbµ(t, k)

dû(t− p)

dû(t− p)

dai
θ̃k. (31)

ΦL
bµ in (29) is given in (18) and dΦi(t) in (29) is defined as

dΦi(t) =
1

A(q, θ)

(nb+1)·M∑

k=1

dΦbµ(t, k)

dû(t− td− p)

dû(t− td− p)

dθ̃i
θ̃k.

(32)
dΦbµ(t, :)

dû(t− p)
in (31) and (32) is defined as

dΦbµ(t, :)

dû(t− p)
=

[
dρ(û(t))

dû(t)
· · ·

dρ(û(t− nb))

dû(t− nb))

]

where

dρ(û(t))

dû(t)
=

[
· · · 0

−1

mk+1 −mk

1

mk+1 −mk

0 · · ·

]

when mk ≤ û(t) < mk+1, p = ceil

(
k

M

)
that rounds the

elements of
k

M
to the nearest integers greater than or equal

to
k

M
, and θ̃ = θ(na + 1 : s).

Proof: (i) Calculation of
dŷ(t, θ)

dθi

∣∣∣∣
i=1:na

. From (12),

ŷ(t, θ) =
T (q, û(t− td), θ)

A(q, θ)
. For brevity of notation, here-

after θ will be omitted if it does not lead to confusion in

notation. If we take the derivative of ŷ(t) with respect to

θi=1:na
, we obtain

dŷ(t)

dθi

∣∣∣∣
i=1:na

= −q−iT (q, û(t− td))

A(q)2
+

1

A(q)

dT (q, û(t− td))

dθi
.

(33)

For brevity of notation, let ai = θi=1:na
. Then, with (30),

(33) is written as

dŷ(t)

dai
= −ŷL(t− i) + dŷi(t− td).

With the noise free input û(t) in (3) and the controller C(q)
in (4), the derivative of û(t) with respect to ai is defined as

dû(t)

dai
= −

nc∑

j=1

cj
dû(t− j)

dai
−

nd∑

k=0

dk
dŷ(t− k)

dai
. (34)

(ii) Calculation of
dŷ(t)

dθ̃i
. From (12) and (18),

ŷ(t, θ) =
T (q, û(t− td), θ)

A(q)
= ΦL

bµ(t, :)θ̃

where θ̃ = θ(na + 1 : s). If we take the derivative of ŷ(t)
with respect to θ̃i, we obtain

dŷ(t)

dθ̃i
= ΦL

bµ(t, i)+

1

A(q)

(nb+1)·M∑

k=1

dΦbµ(t, k)

dû(t− td− p)

dû(t− td− p)

dθ̃i
θ̃k

(35)

where ΦL
bµ(t, i) is an element of ΦL

bµ defined in (18). Then,

with (32), (35) is written as

dŷ(t)

dθ̃i
= ΦL

bµ(t, i) + dΦi(t).

Similar to (34), the derivative of û(t) with respect to θ̃i in

(35) is defined as

dû(t)

dθ̃i
= −

nc∑

j=1

cj
dû(t− j)

dθ̃i
−

nd∑

k=0

dk
dŷ(t− k)

dθ̃i
.

C. Parameter separation

As explained in Section IV, since the static nonlinear-

ity and the dynamic linear system are parameterized in-

dependently, the system is over-parametrized by the mod-

ified parameter vector given in (11). As the parameter

estimate θ̂NOE in (26) has the same structure, we need

to separate the parameters of the linear dynamic system

in η =
[
a1 · · · ana

b1 · · · bnb

]T
, and the parameters

for the piecewise linear approximation of f(·) in µ =[
µ1 · · · µM

]T
. Once θ̂NOE in (26) is estimated, â =

[â1 · · · âna
]
T

is easily obtained. The parameter vectors

b̂ =
[
b̂1 · · · b̂nb

]T
and µ̂ can be separated using the singular
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value decomposition (SVD) [3]. First the parameter vector

θ̂NOE is reorganized into Γbµ given by

Γbµ =




µ̂1 · · · µ̂M

...
...

...

b̂nb
µ̂1 · · · b̂nb

µ̂M


 .

The singular value decomposition of Γbµ is given as Γbµ =
UΣV T , where U(nb+1)×(nb+1) and VM×M are orthogonal

matrices, and Σ(nb+1)×M is a rectangular diagonal matrix.

The positive diagonal entries of Σ are called singular values.

With the constraint, b0 = 1, the parameter vectors η̂ and µ̂
can be calculated by

η̂ =
[
âT b̂T

]

=
[
θ̂NIV (1 : na)

T U(:, 1)/U(1, 1)
]

µ̂T = σ1V
T (1, :) · U(1, 1)

(36)

where σ1 is the largest singular value and U(1, 1) denotes

the first nonzero element of U(:, 1), where the notation (1,:)

and (:,1) are used to denote the first row and the first column

in a matrix respectively.

D. Iterative IV estimation

Obviously, the IV solution in (26) cannot be used to

compute θ̂NOE as done in the IV estimate, because the right

hand side also depends on the solution θ. However, the

(parameter dependent) instrument ψk(θ) can be calculated

based on the previous parameter estimate θ̂Nk−1. Based on

information of a previous parameter estimate θ̂Nk−1, the actual

filtered input/output signals can be computed as

θ̂Nk = [ψT (θk−1)Φ
L(θk−1)]

−1ψT (θk−1)Y
L
k−1. (37)

The above expressions can be combined to summarize the

iterative IV procedure to compute an OE parameter estimate

θ̂NOE . With an initial parameter estimate θ̂NOE = θ̂Nk to model

the static nonlinearity f̂ and the linear dynamic system Ĝ,

one could employ an iterative solution that consists of the

following computational steps:

Step 1 : Separate θ̂Nk into η̂ and µ̂ in (36) and generate

noise free input ŷ(t) using (10) and noise free

output û(t) using (3).

Step 2 : Define the filter L(q, θ̂Nk−1) = A(q, θ̂Nk−1)
−1.

If the filter L(q, θ̂Nk−1) is unstable, project the

poles outside the unit circle inside the unit circle.

Step 3 : Define ΦL
k−1 in (16), ψT

k−1 in (19) , and filtered

output vector Y L
k−1 in (20)

Step 4 : Compute the IV estimate in (37)

θ̂Nk = (ψT
k−1Φ

L
k−1)

−1ψT
k−1Y

L
k−1

Step 5 : Stopping criterion of the algorithm. If

‖θ̂Nk − θ̂Nk−1‖/‖θ̂
N
k−1‖ < ε, stop.

Otherwise, go to Step 1

In the above steps, the stable filter L(q), the filtered output

vector Y L, the filtered regressor ΦL and the instrument ψT

are updated using θ̂Nk−1 during the iterations over k. Step

1 creates the noise free signals generated from closed-loop

simulations. In Step 2 the filter L(q) is updated to provide

the correct filtering for signals used in Step 3. In Step 3,

the regressor and the instrument are calculated based on the

gradient expression. Step 4 is the actual computation of the

IV estimate and Step 5 formulates a stopping criterion for

the algorithm by looking at the relative parameter error.

V. NUMERICAL EXAMPLE

In this section, numerical examples (Case 1 and Case 2)

using the proposed iterative IV method are presented. The

configuration in Case 1 is the same as the example that

appeared in [13] except that the controller gain is reduced for

the closed-loop system stability. In Case 2, only the input

static nonlinearity is replaced by saturation from Case 1
in order to compare the efficiency of the proposed method

for different static nonlinearities. An excitation signal r(t)
follows a uniform distribution with values between −2 and

2. The output disturbance v(t) is filtered white noise. Twenty

sets of estimation data with 2000 samples are generated

for the system identification. The M = 19 grid points

are equally spaced between min(u(t)) and max(u(t)) to

model static nonlinearity for Case 1. M = 5, with m =
[min(u(t)) − 1 0 1 max (u(t))]T is used for Case 2. An

2nd order model with 1 step time delay is used to model the

linear dynamic system. The configuration of the simulation

is shown in Figure 1.




Case 1
f0(u(t)) = sin(u(t))− 0.5sin(2u(t)) + 0.4sin(3u(t))

Case 2

f0(u(t)) =





1 if u(t) > 1
u(t) if |u(t)| ≤ 1
−1 if u(t) < −1

G0(q) =
0.0997q−1 − 0.0902q−2

1− 1.8858q−1 + 0.9048q−2

C(q) = 0.1
10.75− 9.25q−1

1− q−1

H(q) =
1 + 0.5q−1

1− 0.85q−1

The results of applying the proposed iterative IV identifica-

tion method to the closed-loop time domain data are shown

in Figure 3 and Figure 4. The results show that the proposed

method is very efficient in not only identifying nonsmooth

static nonlinearity due to the use of triangle basis functions,

but also in identifying smooth static nonlinearity.

VI. CONCLUSIONS

An iterative IV method minimizing the output error based

on gradient expression is proposed to identify a Hammerstein

system in a closed-loop setting. This method allows us to

solve a nonlinear OE minimization problem as an iterative

linear optimization problem. In the proposed IV method,

an instrument is calculated with filtered noise-free signals

and their gradients where the filter is derived by a priori

knowledge of the pole locations of the linear dynamic

system, and where the noise free signals are computed from

simulated closed-loop input and output signals generated by

the known reference signal. For accurate computation of the
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Fig. 3. Case 1: The plot of the identified static nonlinearity function
(top figure). The Bode plot of the identified linear dynamic system (bottom
figure). The black solid line indicates the real Hammerstein system. The
(colored) dashed lines indicate estimated systems by using twenty different
sets of data. The SNR of each data set spans the values between 23.545

and 25.480dB.

closed-loop signals and the filter, an iterative procedure that

updates the knowledge of the static nonlinearity and the

linear dynamic system is used. Convergence of the iterative

steps guarantees a local minimum of the OE minimization

problem. The simulation study shows the effectiveness of

the proposed algorithms in closed-loop identification of

Hammerstein systems.
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