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This paper investigates the possibility that an adaptive fedback controller can be designed and imple-
mented for the suppression of aircraft's structural vibration in the presence of any aeroelastic/aeroservoelastic
interaction, instead of using the non-adaptive notching filers. Currently aircraft with non-adaptive control
laws usually include roll-off or notch filters to avoid AE/ASE interactions. However, if changes in the air-
craft configuration are significant, the frequencies of the fxible modes of the aircraft may be shifted and the
notch filters could become totally ineffective. With the prgposed adaptive feedback control technology, the
flexible dynamics can be consistently estimated via systemdntification algorithms and its undesirable effects
are suppressed through a robust feedback control law, whil¢he whole systems stability is being maintained.
The proposed feedback control technique is demonstrated i a 6-DOF nonlinear F/A-18 AAW model for the
suppression of the aeroelastic/aeroservoelastic interaan.

[. Introduction

To date, because of the slender, more flexible, and/or gztgslign of the next generation aircraft such as Morph-
ing UAVs, HALEs, Oblique Flying Wings, sensorcrafts, etghere there is insufficient frequency separation between
the rigid body dynamics and relatively low frequency aesstt/aeroservoelastic modes, flight control laws based on
the 6 d.o.f. rigid body model may result in unacceptableibtgmargins or undesirable response characteristicgaue
control input or turbulence. Therefore, to maintain gooahffyqualities of an aircraft, the aeroelastic/aeroseastéd
modes interaction to the rigid body dynamics has to be mirgohiusing appropriate methods.

The usual way to suppress the effects of the low frequenayetestic/aeroservoelastic modes on the rigid body
dynamics was performed through the notch filter design tigcien However, if changes in the aircraft configuration
are significant, the frequencies of the flexible modes of tfwait may be shifted and the notch filters could become
totally ineffective.

In this paper an indirect adaptive control algorithm isadlnced to suppress the aeroelastic/aeroservoelastiesmode
interaction. With this algorithm, poorly damped structuessonance modes induced by aero(servo)elastic interacti
can be monitored and modelled via system identificationrigghes. Such estimation techniques can use time-domain
measurements of input/output behavior to formulate a dyecalrmodel suitable for control system design for vibration
suppression. With the availability of a model, a model-bafe=dback control design methodology can be used to
dampen the resonance modes, and therefore reduce theebts eff the aeroelastic/aeroservoelastic modes on rigid
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body dynamics. The performance of the notch filters and tbpgwed adaptive control algorithm are compared and
validated with the use of the nonlinear F/A-18 AAW model griiged with the NASA AAW flight research controller.

[I. Adaptive Control Algorithm

The adaptive control algorithm implemented in this papetudes two part: aeroelastic/aeroservoelastic model
approximation using system identification techniques auist controller design based on the estimated aeroelas-
tic/aeroservoelastic model for the suppression of thead@stic/aeroservoelastic interaction.

Aeroelastic/Aeroservoelastic Model Approximation

Consider a linear, time-invariant, discrete-time system
y(t) = Y Gkyu(t — k) +v(t). (1)
k=0

The system Markov parameters(k) € R™v*™ define the relationship between the input signét) € R+, and
the output signaly(¢) € R™v, which contains an additive noise signal¢) € R"v. We assume that the input and
output signals are quasi-stationary and that the noigg, is stationary.

Such a system has an infinite number of state-space repaéeastof the form

z(t+1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) + v(t) )

given in terms of constant matricése R"*", B € R"*"« C € R™*" andD € R"*"«. The state-space matrices
are related to the system Markov parameter€tyy) = CA*~1B for k > 0 andG(0) = D. We assume that all
state-space representations are controllable and oleneand that they are minimal, that is the dimension of the
state equal to the system orderThe identification problem considered is to estimate @) gkistem orden and (ii)
state-space matrices B, C, andD from measured data generated by the above system. The probkstimating

a realization of the process that generat@s is not addressed. With the input signgl) and output signal(¢)
available, a time domain Subspace identification metloodtep based system identification methoan be directly
applied for the estimation of the system matrices3, C, andD.

H., Loop Shaping Controller Design Method

The H., loop shaping controller design method was developed bye&sland McFarlané.This method is favor-
able as it formulates the control design problem as a stdréttock problem for which an explicit solution exists
based on a Nehari-extension. The computation of the céatikdes not require an iteration and solutions are formu-
lated in the form of a Hankel-norm based model reduction feictv standard Algebraic Ricatti equations need to be
solved. TheH , loop shaping control design formulation is illustrated igu¥e 1.
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Figure 1. H Loop Shaping Control Design Formulation.

Essential to the automatic updating of the controller isube of a loop shaping in the controller design method-
ology that allows the computation of controllers,.,.(¢) that are, by themselves, also stable. The loop shaping can
be user specified or scaled by a scalar variable for autorsediing selection to obtain a stable, stabilizing feedback
controller. The scaling serves as Hg, loop shaping in the computation of the optimal controllefai®ws.

1. Define a weighted closed-loop modél,(q), given by
Galq) = aW(q)G(q)
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whereq is a variable gain antV/ () is a fixed filter that can be used to specify high frequencyafilbr other
desirable properties for the to-be computed contrdllgr.,(¢). G(q) is the identified model which models the
transient behavior of the resonance of the structure.

2. Solve the (weighted) 4-blocK ., optimization problem

Ga

Co = i TG, C)oc, T(Ga, O) = (1+0G)~ [ 1 C |

The optimization is guaranteed to find a controli€, that forms a stable feedback connection véth.
3. Check if the controlle€,, (¢) by itself is also stable. If not, reduce the valuexadnd go back to Item 1.

4. If the controllerC,, (¢) by itself is also stable, then compuig,.,; via
Cpert(q) = aW(q)Calq)

The resulting controlle€,,.,.(¢) will (internally) stabilizeG(¢q) and is by itself also stable. Stability 6f,.,.(q)
facilitates the on-line implementation of the controlleram additive perturbation to the original flight contraller

It should be noted that thH ., loop shaping controller design does not have the capabiliexplicitly deal with
the structure vibrations due to the external unmeasurabstenbation such as gust perturbation.

I1l. Effects of the Notch Filters on the Reduction of the Aercelastic/Aeroservoelastic
Modes Interaction

In order to evaluate the effects of the notch filters on thepeegsion of the aeroelastic/aeroservoelastic modes inter
action, and also investigate the feasibility of fig, Controller replacing the noth filters for aeroelastic/aervoelastic
vibration suppression, the NASA active aeroelastic wing\(A flight control system has been integrated into the cur-
rent Nonlinear F/A-18 AAW simulink model. The integrated\FL8 AAW model is illustrated in Figure 2. The NASA
AAW flight control system in Figure 2 is marked by a red colosdiipse. One notch filter located at 9.55 Hz was
added to the longitudinal control system, see Figure 3; hrektadditional notch filters located at 5 Hz, 7 Hz and
17 Hz were added to the lateral control system, see Figura thel following sections, the integrated F/A-18 AAW
closed loop linear model will be implemented to analyze fifects of the notch filters anél ., aeroelastic control on
the aeroelastic/aeroservoelastic modes suppression.

The effects of the notch filters can be validated by turningpfirihe notch filters in the longitudinal and lat-
eral control system. In this study, only the longitudinahdynics were focused on during the study of the aeroeal-
stic/aeroservoelastic interaction. At flight condition MD=85, H = 15 Kft, injecting a doublet command to the lon-
gitudinal stick, by turning on/off the notch filters, the sitation results can be compared and further illustrated in
Figures 5, 6, and 7. From the deflection of the control sugfaee-igure 7, normal acceleration responses at the
C.G. position in Figure 6 (a) and (b), and pitch rate respamdggure 5(d), it is easily observed that with the use
of the notch filter in the flight control system the aeroetdagroservoelastic modes interaction can be successfully
suppressed. However, from Figure 6 (a) and (b) it is clesgBnsthat the notch filters have no effects on the high
frequency oscillation reduction of the normal acceleratiesponse at left/right wing folder positiol,zy,023z and
Nzpmo23r. BY further investigation it was found that the normal aecation responses at the left/right wing folder
position, N zx.mo23z andN z,0235, Were dominated by two elastic modes located at 6 Hz and 18.8d4pectively.
However, other high frequency responses suciVag;; and N zg s are dominated by an elastic mode around 9.5
Hz. That is the reason why with a notch filter at 9.55 Hz, thénHigquency responses at the longitudinal direction
can be successfully suppressed.

It is well known that using the notch filters in the controllpato suppress the presence of any undesired elastic
modes is a standard automatic control practice in the aacespdustry. However, if changes in the aircraft configu-
ration are significant, due to any abrupt operating conatitichange, such as an unexpected massive store separation
and/combat related structural damage, the frequencidsedfiéxible modes of the aircraft may be shifted and the
notch filters could become totally ineffective. Under suaicuumstances, an adaptive control scheme through iter-
atively on-line estimating the aeroelastic/aerosensigalynamics and design of thé., aeroelastic controller for
aeroelastic/aeroservoelastic modes interaction sugiprewill overcome the issues arising from the usage of ttiemo
filters. In the following section, instead of using notchefik, at ., aeroelastic controller is designed based on the
model estimated using the system identification technicaresits performance will be evaluated.
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Figure 3. Longitudinal Flight Control System with Notch Fil ter at 9.55 Hz.
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Figure 4. Longitudinal Flight Control System with Notch Filters at 5.0 Hz, 7.0 Hz and 9.55 Hz.

IV. H, Control for Vibration Suppression without Notch Filter Int he Loop

To investigate the possibility of using a feedback conémib replace the notch filter. Following steps are consid-
ered:

1. At the flight simulation condition M = 0.85, H = 15 Kft, injéng a step input to the collective trailing edge
flapron, and collecting the acceleration respoNsg v s, a low order aeroelastic model is estimated using the
step based identification methad.

2. With the estimated low order aeroelastic model, a robastroller is then designed usind., loopshaping
control design method.

3. The performance of the designed controller is validatedrae different flight simulation condition: M = 0.85,
0.9, and M= 0.95 (H = 15 Kft).

H, Control Design at M = 0.85, H = 15 Kft

From the previous study we know that the notch filters havaiignt effects on the normal accelerations at
the C.G. position. Therefore, for comparison purposednduhe aeroelastic/aeroservoelastic model estimatidn an
H, control design process, the normal acceleration respansethe sensor locationyzsys, is used for model
estimation and feedback control design. Furthermore, tleative trailing edge flapron is used as the actuator to
feedback the control signal. To eliminate the effects framnotch filters, all the notch filters will be turned off dugin
the H,, control process.

By injecting a step input to the collective trailing edge flap, and collecting the respon$ézgys and input
step signal, a 10th order aeroelastic/aeroservoelastiehmestimated. With the use of the estimated modél a
controller can be designed using the loop shaplihg control design algorithms. To minimize the effects of the
aeroelastic controller on the rigid body dynamics, a basdffidter is implemented as the weighting function during
the control process, using the control design frameworkvshia Figure 1. Figure 8 evaluates the aeroelastic modes
suppression using thié., controller on the estimated model. Figure 8(a) presentdesigned bandpass filtér used
for control design; Figure 8(b) shows the frequency dombihgf the resulting controller. It is seen from Figure 8 (c)
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body pitch attitude angle of attack

—— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.85Mach —— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.85Mach
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(c) Roll Ratep(t). (d) Pitch Rateg(¢).
Figure 5. Closed Loop Response of the Linear F/A-18 AAW Aerdastic Model With/Without Notch Filters at M = 0.85, H = 15 Kift
(Longitudinal Stick Command).

that the peak located at 9.5 Hz is successfully reduced. iffeedomain response in Figure 8 (d) further validates the
effectiveness of thé/, controller.

Performance Validation of thH,, Controller at M = 0.85, H = 15 Kft

Implementing the designet, controller to the F/A-18 AAW nonlinear simulink model, thiensilation results
are plotted in Figures 9, 10, and 11. The simulation resuiltisout using theH ., controller are also plotted in the
same figures for comparison. From these plots, it is cleady shat:

e The vibration responses induced by the 9.5 Hz aeroelastiterace successfully suppressed with the use of the
H, feedback controller.

e The H,, feedback controller has little influence on the rigid dynesmesponse.

e The H,, feedback controller cannot reduce the vibration respofigkeonormal acceleration at wing folder
position, N zxmo23r @nd N zkme23- TO reduce the vibration responses of bdthy,,.003r and N zgm023L, @n
additional control activity should be considered.

Performance Validation of th& ., Controller at M = 0.90, H = 15 Kft

At flight simulation condition M = 0.90, H = 15 Kft, the simulah results with the feedback controller in the loop
are plotted in Figures 12, 13, and 14. The simulation reslitained at M = 0.90, H = 15 Kft are similar as those at
M =0.85, H = 15 Kft. It is also observed that:
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body normal acceleration at cockpit body normal acceleration at accelerometer

—— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.85Mach 35 —— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.85Mach
—— RB-FDM-IAFM, with Notch, no Cpert, no gust, 15Kft, 0.85Mach —— RB-FDM-IAFM, with Notch, no Cpert, no gust, 15Kft, 0.85Mach

= L -1
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(a) Normal Accel. at Pilot Locationy zp;; . (b) Normal Accel. at Sensor PositioN,zgns-
body normal acceleration at right wing folder body normal acceleration at left wing folder
—— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.85Mach —— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.85Mach
—— RB-FDM-IAFM, with Notch, no Cpert, no gust, 15Kft, 0.85Mach| —— RB-FDM-IAFM, with Notch, no Cpert, no gust, 15Kft, 0.85Mach|
af E af g

Time (s) Time (s)

(c) Normal Accel. at Right Wing Folder Position, (d) Normal Accel. at Left Wing Folder Position,
N zkmo23R- Nzkmo23L -

Figure 6. Closed Loop Response of the Linear F/A-18 AAW Aerdastic Model With/Without Notch Filters at M = 0.85, H = 15 Kift
(Longitudinal Stick Command).

e The vibration responses induced by the 9.5 Hz aeroelastiterace successfully suppressed with the use of the
H_, feedback controller.

e The H, feedback controller has little influence on the rigid dynesmiesponse.

e The H,, feedback controller cannot reduce the vibration respofskeonormal acceleration at wing folder
position, N zmo023z @NAN Zkmo23L.-

Performance Validation of th& ., Controller at M = 0.95, H = 15 Kft

At flight simulation condition M = 0.90, H = 15 Kft, the simulah results with the feedback controller in the loop
are plotted in Figures 15, 16, and 17. The simulation reslitained at M = 0.95, H = 15 Kft are similar as those at
M =0.85,H =15 Kftand M = 0.90, H = 15 Kft.

Finally, a frequency domain comparison of aeroelastiosamwoelastic system with/without notch filter and wittheiut
feedback controller in the loop is illustrated in Figure E&yure 18(a) shows bode plot of the aeroelastic/aeroskstie
model from collective trailing edge flapron to the normalelecation at Sensor Positiof z,.,,s with and without
notch filter, at M = 0.85. The aeroelastic/aeroservoelastdel is estimated using the system identification method.
Figure 18(b) shows bode plot of the aeroelastic/aeroskstie model from collective trailing edge flapron to the
normal acceleration at Sensor Positiofy..,,s with and without feedback controller, at M = 0.85. The simdam-
parisons are performed at other two flight conditions at M39@nd M = 0.95. From these comparisons, it is observed
that
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Figure 7. Closed Loop Response of the Linear F/A-18 AAW Aerdastic Model With/Without Notch Filter at M = 0.85, H = 15 Kift
(Longitudinal Stick Command).

e If the frequency change of the elastic modes is small, themblter indeed helps to reduce the aeroelas-
tic/aeroservoelastic mode interaction.

e ltis feasible to apply the adaptive control algorithm fog Buppression of the aeroelastic/seroservoelastic mode
interaction instead of using notch filters.
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Figure 9. Closed Loop Response of the Linear F/A-18 AAW Aerdastic Model With/Without H., Controller at M = 0.85, H = 15 Kift
(Longitudinal Stick Command).
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Figure 10. Closed Loop Response of the Linear F/A-18 AAW Aemrlastic Model With/Without H.. Controller at M = 0.85, H = 15 Kft

(Longitudinal Stick Command).
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Figure 11. Closed Loop Response of the Linear F/A-18 AAW Aemrlastic Model With/Without H., Controller at M = 0.85, H = 15 Kft
(Longitudinal Stick Command).

American Institute of Aeronautics and Astronautics



8 (rad)

p (rad/s)

body pitch attitude

—— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.9Mach
—— RB-FDM-IAFM, no Notch, with Cpert, no gust, 15Kft, 0.9Mach

0.04
0.02
0
-0.02
-0.04) " H
0 5 10 15
Time (s)
(a) Pitch Anglef(t).
x107° body axis roll rate
1

—— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.9Mach
—— RB-FDM-IAFM, no Notch, with Cpert, no gust, 15Kft, 0.9Mach|

o (rad)

Ugens (rad/s)

angle of attack

0.0

—— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.9Mach
—— RB-FDM-IAFM, no Notch, with Cpert, no gust, 15Kft, 0.9Mach

-0.0: L L
0 5 10 15
Time (s)
(b) Angle of Attach,c(¢).
body pitch rate with sensor dynamics
—— RB-FDM-IAFM, no Notch, no Cpert, no gust, 15Kft, 0.9Mach
0.1f —— RB-FDM-IAFM, no Notch, with Cpert, no gust, 15Kit, 0.9Mach

-0.05

0 10 15 0 5 10 15
Time (s) Time (s)
(c) Roll Ratep(t). (d) Pitch Rateg(¢).
Figure 12. Closed Loop Response of the Linear F/A-18 AAW Aemrlastic Model With/Without H., Controller at M = 0.90, H = 15 Kft

(Longitudinal Stick Command).
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Figure 13. Closed Loop Response of the Linear F/A-18 AAW Aemrlastic Model With/Without H., Controller at M = 0.90, H = 15 Kft

(Longitudinal Stick Command).
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Figure 14. Closed Loop Response of the Linear F/A-18 AAW Aemrlastic Model With/Without H., Controller at M = 0.90, H = 15 Kft
(Longitudinal Stick Command).
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Figure 15. Closed Loop Response of the Linear F/A-18 AAW Aemrlastic Model With/Without H., Controller at M = 0.95, H = 15 Kft
(Longitudinal Stick Command).
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Figure 16. Closed Loop Response of the Linear F/A-18 AAW Aemrlastic Model With/Without H., Controller at M = 0.95, H = 15 Kft
(Longitudinal Stick Command).
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Figure 18. Performance Comparison of the Notch Filter and Fedback Controller on Suppression of the Aeroelastic Modesnteraction.
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V. Conclusions

In this paper, the possibility of applying an adaptive fesakbcontrol for the suppression of aircraft’s structural
vibration in the presence of any aeroelastic/aeroserstielateraction was investigated. In addition, the effentess
of implementation of the notch filters in the flight controbsgym for aeroelastic/aeroservoelastic vibration sugpras
was also studied. In the case that the change of the airanafigtiration is not significant, i.e., the frequencies of the
flexible modes of the aircraft only have small changes, theamaptive notch filters shall work properly. On the other
hand, with the proposed adaptive feedback control teclgypthe flexible dynamics can be consistently monitored
and estimated via system identification algorithms, andritdesirable effects can be successfully minimized through
a design of the robust feedback control law. Therefore gfdhanges of the aircraft configuration are significant, the
proposed adaptive feedback control outperforms the ndtelsffor the suppression of the aeroelastic/aeroserstela
modes interaction.
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