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The unsteady, aerodynamically induced resonance of aircraft structures

may lead to potentially destructive vibrations when left unaccounted for in

flight control system design. Such aeroelastic modes are difficult to accu-

rately predict analytically, and computational models require calibration,

verification, and validation. The successful design of control systems that

actively suppress aeroelastic vibrations thus requires the capability to iden-

tify unbiased parametric estimates of aeroelastic resonance modes.

We present a novel subspace system identification method inspired by

covariance estimates and classical realization techniques that constructs sys-

tem estimates from measured input-output data. The resulting covariance-

based realization algorithm allows for the identification of parametric sys-

tem models from data sets of large signal dimension and is applicable to

data perturbed by colored noise and acquired in closed-loop operation due

to the unbiased estimation of cross-covariance functions, even in low signal-

to-noise conditions.

The algorithm is applied to data measured on board the NASA Active

Aeroelastic Wing F/A-18. The results demonstrate the effectiveness of the

algorithm in efficiently computing accurate, unbiased linear dynamic models
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from large data sets of high-dimensional signal sets obtain from aircraft in

flight.

I. Introduction

Vibrations due to aero-servo-elastic (ASE) dynamics of aircraft structures, commonly

referred to as flutter, have the potential to damage and destroy aircraft in flight if not

properly analyzed and suppressed. The current trend in the analysis of ASE dynamics is

to derive finite-element and computational-fluid-dynamic models of an airframe at various

flight conditions, and to interpolate and extrapolate the damping of flutter modes across the

full flight envelope. These computational models are then validated through ground testing

and, finally, in-flight testing before the aircraft can be considered operationally safe.1

In-flight analysis of flutter, however, is inherently difficult due not only to its dangerous

nature, but also to the unsteady, turbulent phenomena that induce it. These effects manifest

themselves as essentially non-deterministic disturbances, or noise, on acquired data. By na-

ture this noise is colored and correlated across all measured signals; perturbations on control

surface positions due to turbulent air flow are inherently correlated with the perturbations

measured in stress and acceleration on the aircraft. Attempts to analyze data generated from

in-flight experiments must take these facts into account to avoid inaccurate conclusions.

System identification is the discipline of constructing dynamic models from experimen-

tal data. Most identification methods assume that the noise on measured signals is either

white, uncorrelated, or both, and are thus ill-suited for identifying ASE dynamics. When

dealing with experimental data that does not meet these assumptions, techniques from the

analysis of stochastic processes must be incorporated into the identification methods used.

Additionally, many system identification methods are based on nonlinear optimizations over

cost functions that become extremely non-convex for large, high-dimensional data sets, mak-

ing them infeasible for ASE analysis, in which many sensors are employed to capture the

behavior of the airframe.

Traditional subspace methods2 have been previously applied to the identification of aeroe-

lastic dynamics using simulated data from an F-16 aircraft and measured data from a V-22

rotocraft.3 Such methods assume strictly deterministic inputs in order to remove the effects

of subsequent input on the propagation of the state dynamics and in order to de-correlate

the deterministic and non-deterministic subsystems. A subspace-based method for online

monitoring of aeroelastic damping was developed and applied to in-flight data by Mevel et

al.4 This method utilized output data only and relied on the auto-covariance of the data to

determine when statistically-significant damping of vibration modes dropped below a given

threshold. It did not, however, identify the input-output behavior of the aeroelastic phenom-
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ena and assumed no deterministic control-surface excitation during data acquisition. This

method was later extended to include known, strictly-deterministic inputs.5

These previous studies all assume disturbances to be white, which in practice is often

insufficient. Non-deterministic effects from turbulence, sensor noise, and, in the closed-loop

case, control-system feedback will inevitably produce colored noise on the output data. In

such cases, either the modes of the estimated system will be biased by the disturbance

spectrum,6 or, if the model-order is chosen to be artificially high, the observable modes

of the strictly non-deterministic subsystem will be estimated along-side the modes of the

deterministic subsystem but be incorrectly identified as controllable.7 This is particularly

problematic if the dynamic model is intended to be used for active flutter suppression, as the

control algorithm designed from the derived model will attempt to control the uncontrollable

modes. Additionally, treatment of the input as strictly deterministic is only possible if

the input measured is actuator commands. In this case, the derived model will include

actuator dynamics (such as servomotor dynamics) as well as aeroelastic dynamics. If actuator

positions are measured instead, the position measurements will include perturbations which

are correlated with the noise on the measured output data, and the effects of the input on

state-dynamics cannot be removed with the standard methods of orthogonal projections.

Alternative proposed methods of estimating ASE dynamics include applying frequency-

domain total-least-squares by restricting the identification to error-in-variables models,8

which allows for the incorporation of colored noise. An approach based on rational or-

thogonal basis functions incorporated static input and output nonlinearities and addressed

the issue of identifying parameter-varying models.9 Neither allows for the presence of cor-

related noise on both the input and output measurements, and unlike subspace methods,

these methods all require a priori parameterization of the dynamic system.

The goal of the material presented herein is to advance the state of in-flight aeroelastic

analysis by describing a system identification method that computes a linear dynamic system

of aeroelastically-induced vibration modes in the presence of colored and correlated noise on

both input and output measurements while remaining scalable to large, high-dimensional

data sets. The method uses estimated cross-covariance functions between signals to reduce

the effects of noise and focus on only the input-output behavior of a system. The result

is a subspace identification algorithm that generalizes realization theory by incorporating

results from stochastic processes and is thereby referred to as a Covariance-Based Real-

ization Algorithm (CoBRA) by the authors. The algorithm possesses resemblance to and

inspiration from the Eigensystem Realization Algorithm10 and the commonly associated Ob-

server / Kalman Filter Identification (OKID),11 identification methods used frequently in the

aerospace community.

The following section of the paper describes the algorithm in detail and discusses its re-
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lationship to other identification methods. The algorithm is then applied to data measured

from in-flight experiments performed with the NASA F/A-18 Active Aeroelastic Wing air-

craft, which includes a discussion of the various sources of bias that would result were the

identification to be performed from the input-output data alone. It is shown that CoBRA is

effective in modeling induced vibration modes for in-flight experiments. Results and future

work are discussed in the conclusion.

II. Identification from Dynamic Invariance

This section describes the algorithm to be later applied to the identification of ASE dy-

namics. After a preliminary background on stochastic processes necessary to define notation

and assumptions on the measured signals, we demonstrate how shifted data matrices can

be used to estimate the discrete-time invariant dynamics responsible for propagating the

state over samples of measured data, followed by a discussion of the relationship between

the algorithm and other subspace identification methods. Finally, it is shown that when

a purely white-noise input is used and the covariance function estimates computed over a

specific domain, the algorithm asymptotically generalizes to the well-known Eigensystem

Realization Algorithm.

II.A. Preliminary Theory of Stochastic Processes

Before presenting the proposed identification framework, we review some key results of

stochastic processes and linear systems. In the following, the time signal t is assumed to be

an integer index rather than a continuous time signal.

A signal s(t) ∈ Rns is said to be quasi-stationary if it satisfies the two conditions

Es(t) = ms(t), ||ms(t)||2 ≤ C ∀ t ∈ Z (1)

and

Rs(τ) = lim
N→∞

1

N

N∑
t=0

Es(t+ τ)s(t)T , ∀τ ∈ Z, ||Rs(τ)||2 ≤ C, (2)

for some C < ∞, where E denotes expectation, which has no effect if s(t) is strictly

deterministic. The function Rs(τ) : Z → Rns×ns is called the autocovariance function

of s(t). Similarly, if w(t) ∈ Rnw is a second quasi-stationary signal, then the function

Rsw(τ) : Z→ Rns×nw ,

Rsw(τ) = lim
N→∞

1

N

N∑
t=0

Es(t+ τ)w(t)T

is called the cross-covariance function of s(t) and w(t). If only N samples of data are
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available, the autocovariance and cross-covariance function estimates

R̂s(τ) =
1

N

N∑
t=0

s(t+ τ)s(t)T

R̂sw(τ) =
1

N

N∑
t=0

s(t+ τ)w(t)T

(3)

converge to Rs(τ) and Rsw(τ), respectively, as N → ∞.12 In this paper, all signals are

restricted to being quasi-stationary and zero mean.

Next, consider a linear, time-invariant, discrete-time system described by the state-space

equations

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t),
(4)

which relate the input u(t) ∈ Rnu to the state x(t) ∈ Rn and the output y(t) ∈ Rny in terms

of the constant matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, and D ∈ Rny×nu . Added to

the output is a possibly-colored noise signal v(t) ∈ Rny , assumed to be the realization of a

stationary, stochastic process that may or may not share dynamics with the system described

by (A,B,C,D). We limit (4) to include only minimal realizations13 of stable systems.

If u(t) is selected to be quasi-stationary, then the stationary property of v(t) will result

in a quasi-stationary y(t).12 If ξ(t) ∈ Rnξ is some quasi-stationary signal that is correlated

with u(t) and v(t), then the cross-covariance functions Ruξ(τ) ∈ Rnu×nξ , Ryξ(τ) ∈ Rny×nξ ,

and Rvξ(τ) ∈ Rny×nξ will exist. If we define the cross-covariance of the state with ξ(t) as

Rxξ(τ) ∈ Rn×nξ , then the covariance functions may be expressed in terms of the state-space

matrices (A,B,C,D) as

Rxξ(τ + 1) = ARxξ(τ) +BRuξ(τ)

Ryξ(τ) = CRxξ(τ) +DRuξ(τ) +Rvξ(τ).
(5)

If, however, ξ(t) is chosen such that it is correlated with u(t) but uncorrelated with v(t),

then

Rvξ(τ) = 0 ∀ τ, (6)

and the relationship between Ruξ(τ) and Ryξ(τ) will be limited to the dynamics of the

deterministic subsystem. Examples of such ξ(t) include u(t) itself if the input data is unper-

turbed and in open-loop operation, or an external reference signal if the data is measured in

closed-loop operation.12

In this paper, it will always be assumed that u(t) is quasi-stationary, that v(t) is station-
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ary; thus y(t) is quasi-stationary and zero-mean due to the previously assumed stability of

A.

II.B. Identification from Dynamic Invariance of covariance functions

Subspace identification refers to a broad class of system identification methods that estimate

system dynamics without the need for iterative or nonlinear numerical tools. The general

approach of such methods is to estimate state-space system parameters from the row space of

some alternative matrix constructed from measured data. Although some notable exceptions

exist, by far the most common approach, and the one used in this paper, is to construct

block-Hankel matrices of measured data, then use various projection operations to isolate

the free-response of the system at subsequent time steps.2

The algorithm proposed in this paper differs from classical subspace algorithms in two

critically significant ways: we propose to solve for the system dynamics based on variation

of covariance-function estimates, and we solve for the system matrices based not on the

shift-invariance of the extended observability matrix, but on the one-time-step variation of

the measured data. Before defining the latter value precisely, we first review some of the

data-matrix equations central to subspace methods.

Let R̂yξ(τ) be an estimate of the cross-covariance function Ryξ(τ), as defined in (3),

computed over some domain τ ∈ [τmin, τmax]. A block-Hankel matrix consisting of l block

columns of i length sequences of R̂yξ(τ)

Ryξ =


R̂yξ(τmin) R̂yξ(τmin + 1) · · · R̂yξ(τmin + l − 1)

R̂yξ(τmin + 1) R̂yξ(τmin + 2) · · · R̂yξ(τmin + l)
...

...
...

R̂yξ(τmin + i− 1) R̂yξ(τmin + i) · · · R̂yξ(τmin + i+ l − 2)

 ∈ Riny×lnξ

may be expressed as

Ryξ = ΓRxξ + TRuξ + Rvξ, (7)

in which

Γ =
[
CT (CA)T (CA2)T · · · (CAi−1)T

]T
∈ Riny×n (8)

is the extended observability matrix,

Rxξ =
[
R̂xξ(τmin) R̂xξ(τmin + 1) · · · R̂xξ(τmin + l − 1)

]
∈ Rn×lnξ
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is the propagation of cross-covariance of the state x(t) with ξ(t),

T =


G(0)

G(1) G(0)
...

...
. . .

G(i− 1) G(i− 2) · · · G(0)

 ∈ Riny×inu (9)

is a block-lower-triangular-Toeplitz matrix of the system Markov parameters

G(k) =


0, k < 0,

D, k = 0,

CAk−1B, k > 0,

Ruξ =


R̂uξ(τmin) R̂uξ(τmin + 1) · · · R̂uξ(τmin + l − 1)

R̂uξ(τmin + 1) R̂uξ(τmin + 2) · · · R̂uξ(τmin + l)
...

...
...

R̂uξ(τmin + i− 1) R̂uξ(τmin + i) · · · R̂uξ(τmin + i+ l − 2)

 ∈ Rinu×lnξ

is a block-Hankel matrix of the cross-covariance of the input u(t) and ξ(t), and

Rvξ =


R̂vξ(τmin) R̂vξ(τmin + 1) · · · R̂vξ(τmin + l − 1)

R̂vξ(τmin + 1) R̂vξ(τmin + 2) · · · R̂vξ(τmin + l)
...

...
...

R̂vξ(τmin + i− 1) R̂vξ(τmin + i) · · · R̂vξ(τmin + i+ l − 2)

 ∈ Riny×lnξ

is a block-Hankel matrix of the cross-covariance of the noise v(t) and ξ(t).

Define the shifted Ryξ as

Ryξ =


R̂yξ(τmin) R̂yξ(τmin + 1) · · · R̂yξ(τmin + l − 1)

R̂yξ(τmin + 1) R̂yξ(τmin + 2) · · · R̂yξ(τmin + l)
...

...
...

R̂yξ(τmin + i− 1) R̂yξ(τmin + i) · · · R̂yξ(τmin + i+ l − 2)

 ∈ Riny×lnξ .

This may be expressed as

Ryξ = ΓARxξ + T+R+
uξ + Rvξ, (10)
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in which

T+ =


G(1)

... T

G(i)

 ∈ Riny×(i+1)nu

is the block-Toeplitz matrix of Markov parameters T extended by one block column and

R+
uξ =

 Ruξ

R̂uξ(τmin + i) · · · R̂uξ(τmin + i+ l − 1)

 ∈ R(i+1)nu×lnξ

is the block-Hankel matrix Ruξ extended by one block row.

Our goal is to estimate the parameter A that appears in (10). Doing so requires isolating

the row space of Γ by removing the row spaces of T and T+ in (7) and (10), respectively.

Define the projector matrix

Π = Ilnξ − (R+
uξ)

T
(
(R+

uξ)(R
+
uξ)

T
)−1

R+
uξ ∈ Rlnξ×lnξ .

This projector has the property7

RuξΠ = 0inu×lnξ

R+
uξΠ = 0(i+1)nu×lnξ

so that multiplication of (7) and (10) on the right by Π results in

RyξΠ = ΓARxξΠ + RvξΠ

and

RyξΠ = ΓARxξΠ + RvξΠ,

respectively. A persistently exciting input signal is sufficient to preserve the row space of Γ

in RyξΠ and RyξΠ.6,14

We are now prepared to precisely define the identification procedure. Suppose that Γ̂ is

an estimate of Γ. Then the least-squares estimate of the state dynamics over one time step

is

Â = arg min
Ā

∣∣∣∣∣∣ĀΓ̂†RyξΠ− Γ̂†RyξΠ
∣∣∣∣∣∣
F

= Γ†RyξΠ
(
Γ†RyξΠ

)†
,

(11)

in which (·)† represents the Moore-Penrose pseudoinverse. If at first the estimate Â appears
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arbitrary, note that if Γ, Ryξ(τ), and Ruξ(τ) are known exactly, (11) reduces to

Â = arg min
Ā

∣∣∣∣(Ā− A)RxξΠ
∣∣∣∣
F
. (12)

Hence the statement that (11) is a least-squares estimate of the propagation of R̂xξ(τ) in

one step of τ . Although there are several valid ways to find an estimate Γ̂, we choose to

employ the singular-value decomposition (SVD) of RyξΠ so that (11) reduces to a familiar

closed-form expression.

To estimate Γ, first observe that rank(Γ) = n. Hence

rank(RyξΠ−RvξΠ) = n.

Thus we choose to look for the closest rank-n matrix to RyξΠ in a 2-norm sense, that is

min
Q
||Q−RyξΠ||2 . (13)

Define the SVD

RyξΠ =
[
Un Us

]Σn 0

0 Σs

V T
n

V T
s

 , (14)

in which Σn is a diagonal matrix containing the first n singular values of RyξΠ, and Σs

contains the remaining s = iny − n singular values. The solution to (13) is then15

Q = UnΣnV
T
n .

Moreover, the error is given by

σn+1 =
∣∣∣∣UnΣnV

T
n −RyξΠ

∣∣∣∣
2
.

Thus if the system order n is unknown, it may be estimated by examining the singular values

of RyξΠ and searching for a significant drop-off.

Hence, we let Q = Γ̂R̂xξΠ be an estimate of RyξΠ. Γ̂ may then be taken from any

valid-dimensioned factorization of Q. We choose the factorization

Γ̂ = UnΣ1/2 R̂xξΠ = Σ1/2V T
n . (15)
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With Γ̂ taken from (15), (11) reduces to

Â = Γ̂†RyξΠ
(

Γ̂RyξΠ
)†

= Σ−1/2
n UT

n RyξΠVnΣ−1/2
n .

(16)

With Ĉ an estimate of C taken from the first ny rows of Γ̂, B and D can be shown to be linear

in the relationship between Ryξ(τ) and Ruξ(τ) and thus solvable via a linear least-squares

problem.12,16

Many modifications of the classical subspace identification problem can be applied to

the described algorithm with similar benefits, such as implementation of the projection by

means of the LQ decomposition6 and replacing the orthogonal projection with an oblique

projection.17

II.C. Relationship to Other Subspace Identification Methods

When the instrument ξ(t) is chosen to be the input signal u(t) or the composite signal

ξ(t) = [yT (t) uT (t)]T the algorithm resembles the MOESP family of algorithms,18 which

can be shown to reduce to forming cross-covariance estimates between the output and input

during the projection step.19 However, because PI-MOESP, PO-MOESP, and their related

variants, such as Robust N4SID17,20 rely on the null-space projection to de-correlate the noise

from the output data, they will only produce unbiased estimates when the input is noise-

free.21 Additionally, the orthogonal projection must be replaced with an oblique projection

to guarantee unbiased estimates in the case of colored output noise,18 which effectively limits

the size of the data matrices available for identification since some rows of the data matrices

must be selected to construct an oblique subspace.

An extension of MOESP has been proposed in which the system is perturbed by input,

output, and state noise, which may all be correlated, so long as all noise signals are white, and

this approach may be extended to the closed-loop case.21 If the input or output measurement

noise is colored, however, the estimates will once again become biased. Moreover, few of the

methods address the issue of bias on the estimates of B and D, which determine the location

of the system zeros. Identification via covariance-function estimates inherently guarantees

that the identification will be constrained to the deterministic content of the data for all

linear, time-invariant systems. Additionally, because covariance-function estimates may be

computed via the fast Fourier transform, effectively pre-averaging the data, the amount of

data that can be used for estimation purposes dramatically increases.
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II.D. Relationship to the Eigensystem Realization Algorithm

When the input data is purely white, the preceding algorithm can be shown to reduce to

a realization algorithm from noise-corrupted Markov parameters due to the autocovariance

function of the input approaching a unit impulse.22

To see this, let H be a block-Hankel matrix of system Markov parameters starting at

G(1),

H =


G(1) G(2) G(3) · · ·
G(2) G(3) G(4) · · ·

...
...

...

G(i) G(i+ 1) G(i+ 2) · · ·

 ∈ Riny×∞,

and let H be a block-Hankel matrix of Markov parameters starting at G(2),

H =


G(2) G(3) G(4) · · ·
G(3) G(4) G(5) · · ·

...
...

...

G(i+ 1) G(i+ 2) G(i+ 3) · · ·

 ∈ Riny×∞.

The data-matrix equations (7) and (10) can be expressed as

Ryξ = HRp
uξ + TRuξ + Rvξ

and

Ryξ = HRp
uξ + T+R+

uξ + Rvξ,

respectively, where Rp
uξ is a block-Toeplitz matrix of input data,

Rp
uξ =


R̂uξ(τmin − 1) R̂uξ(τmin) · · · R̂uξ(τmin + l − 2)

R̂uξ(τmin − 2) R̂uξ(τmin − 1) · · · R̂uξ(τmin + l − 3)

R̂uξ(τmin − 3) R̂uξ(τmin − 2) · · · R̂uξ(τmin + l − 4)
...

...
...

 ∈ R∞×l.

Suppose u(t) is a noise-free, white-noise input, and let ξ(t) = u(t− 1). Then R̂uξ(τ) will

converge to a unit pulse at τ = −1 as N → ∞. Let τmin = 0 and i > n. Then Ryξ = 0,

Π = Il, and HRp
uξ and HRp

uξ become finite products with Rp
uξ = Il. Hence

RyξΠ = H

RyξΠ = H.
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Thus (16) will asymptotically become a construction of a state-space realization from es-

timates of Markov parameters by means of the singular-value decomposition, which is the

ERA.10

III. Identification of Aero-Servo-Elastic Dynamics

The described dynamic-invariance-based identification algorithm was applied to in-flight

data taken from accelerometer and pressure measurements on the NASA Dryden AAW

F/A-18. Applying the preceding algorithm to ASE dynamics requires careful selection of

the instrument signal ξ(t) to ensure that the system estimate is unbiased. If ξ(t) is cho-

sen incorrectly, the result may be biased by either the noise process or unwanted system

dynamics.

In the following two sections, we apply CoBRA to two separate experiments performed

during aeroelastic analysis of the AAW F/A-18. In the first experiment, the pathway be-

tween leading-edge flap (LEF) position measurements and airfame accelerometers and wing

pressure sensors is identified. The LEF position data is corrupted by disturbances on the

surfaces due to turbulent airflow across the wing, making unbiased input-output identifica-

tion directly from raw data impossible. In the second experiment, the response to differential

aileron position is measured. This experiment has the added complication of being performed

in closed-loop, so that the aileron positions are perturbed not only by airflow but by the

flight control system response to additional, correlated disturbances.

III.A. Collective Leading-Edge Flap Excitation

As a fist example, consider the identification of the response from the LEF to the acceleration

and pressure sensors. Signal pathways for the system are shown in Figure 1, in which Glef is

the collective LEF actuator dynamics and G the ASE dynamics of interest. The collective

LEF position u(t) is perturbed by a noise signal vlef(t) that must be assumed correlated

with the noise v(t) on the acceleration and pressure measurements y(t). The result is that

identification directly from u(t) to y(t) will be biased by the cross-spectrum of the two noise

signals, regardless of the identification algorithm used, unless steps are taken to de-correlate

them from the measured data.

G yGlef

vlef v

r
u

Figure 1. Leading-edge flap experiment signal pathways.
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The OBES excitation r(t) was chosen to be a minimax Crest factor multisine23 of band-

width between 3 Hz and 35 Hz. The power-spectral density (PSD) of the OBES signal is

shown in Figure 2. It can be seen that r(t) closely resembles white noise in the frequency

range of interest. The OBES reference signal r(t) is uncorrelated with either noise signal,

since it is deterministic; it may also be treated as quasi-stationary, since as a sum of sinu-

soids, its autocovariance function exists. Hence the mapping between the cross-covariance

functions Ryr(τ) and Rur(τ) is limited to the dynamics G, and we select ξ(t) = r(t) when

analyzing the data.
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Figure 2. Power-spectral density of OBES signal for collective LEF excitation.

The estimated cross-covariance function of the input and reference R̂ur(τ) is shown in

Figure 3. This can effectively be considered the covariance-function input into G. Only the

data in which the excitation signal r(t) is nonzero was used to calculate the PSD and cross-

covariance functions. The cross-covariance functions were further truncated to τ ∈ [−20, 100]

after calculation for identification purposes, since, as τ increases, the signal-to-noise ratio of

the cross-covariance estimates becomes prohibitively small.
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Figure 3. Cross-covariance function estimate between collective LEF position (u) and OBES signal (r) for LEF
excitation.

Because 94 signals were available for use in identification, an objective, quantitative
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criteria was created to determine which had a sufficiently high signal-to-noise ratio. Only

signals which had magnitude-square coherence with the OBES of at least 2/3 averaged over

the frequency range 3–35 Hz were selected from the available measurements. The locations

of used and unused accelerometers are shown in Figure 4. Only the top-front-left pressure

sensor was used. Although only 8 total signals were used for identification in this experiment,

the collective LEF input is intended to excite neither rigid-body moments nor high-frequency

bending moments on the wing, so the low number of usable signals is expected. Excitation of

other surfaces will naturally produce different selections of signals for identification purposes.

A sample of signals measured for the experiment is shown in Figure 5 and their relative

positions on the left wing of the aircraft in Figure 6. The samples marked with ‘*’ did not

meet the coherence criteria and were not used for identification purposes.

Used

Unused

Figure 4. Locations of used and unused accelerometers for the collective LEF experiment.

A linear, state-space, discrete-time model was constructed from the measured data using

the method proposed in Section II. The singular values of the projected data matrix (14)

are shown in Figure 7. The system order was chosen to be n = 4. Time-domain simulations

of the estimated model are shown with the measured data in Figure 8, in which the time-
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Figure 5. Sample of signals measured for the collective leading-edge flap experiment.

1

2

3*

4

5*

Figure 6. Locations of sample signals for the collective LEF experiment.
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Figure 7. Singular values of the projected data matrix for the collective LEF experiment (y-axis in log scale).

domain measured data was de-trended before plotting. Cross-covariance estimates from the

simulated data and measured data are shown in Figure 9. The units for the covariance

function estimates are arbitrary due to the multiplication of measured data with the OBES

signal.
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Figure 8. Sample of simulation results of the collective LEF experiment.

III.B. Differential Aileron Excitation

The second experiment examined is the identification of the response from the differential

aileron input to the acceleration and pressure sensors. Signal pathways are shown in Figure
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Figure 9. Sample of simulation cross-covariance estimates of the collective LEF experiment.

10. As before, the input u(t) is perturbed by a noise signal vail(t) and the output y(t) by a

noise signal v(t). Additionally, the system contains a feedback controller C, which augments

the excitation r(t) with a differential aileron command. The feedback signals to the control

system yC(t) are the result of both rigid-body and ASE dynamics, represented in a combined

system GC . The feedback yC(t) also contains a noise signal vC(t), which must be assumed

correlated with vail(t) and v(t).

G

v

y

vC

GC yC

vail

Gailr

C

u

Figure 10. Aileron experiment signal pathways.

Because vC(t) appears in the input u(t) after being filtered through the dynamics of GC ,

C and the aileron servo Gail, identification from u(t) to y(t) will provide an estimate biased
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by the subsystems Gail, GC , and C in addition to the various cross-spectra of v(t), vail(t),

and vC(t). As before, however, the reference signal r(t) is uncorrelated with the noise signals

and may be used as an instrument ξ(t) = r(t) to provide unbiased results.

The cross-covariance function estimate Rur(τ) for the differential aileron experiment was

very similar to Figure 3. Sample signals of the differential aileron experimental data are

shown in Figure 11. The signals shown are (1) lateral acceleration at the nose, (2) acceleration

at the right forward wing-tip, (3) axial acceleration at the right outer-wing, (4) acceleration

at the right aft wing-tip, (5*) acceleration at the right-aft wing-root, (6*) dynamic pressure

at the right top front pressure tap, (7) dynamic pressure at the right top rear pressure tap.

The same coherence-based criteria of the LEF experiment was used to determine which

signals were acceptable for identification purposes; signals marked by ‘*’ were designated

unacceptable and not used in the identification algorithm.

Locations of all used and unused accelerometers are shown in Figure 12. Observe that

the usable accelerometers are distributed primarily over the wings as one would expect from

a differential aileron excitation. The selected accelerometer in the nose measures lateral

motion, explaining its high coherence with the OBES signal.

A linear, state-space, discrete-time model was again constructed from the measured data

using the method proposed in Section II. The singular values of the projected data matrix

(14) are shown in Figure 13. The system order was chosen to be n = 10, which is naturally

larger than that of the LEF experiment due to the increase in the output dimension ny.

Additionally, the ailerons have much more inertial excitation than the LEF’s, being heavier

and a larger geometric proportion of the wings, so more responsiveness is expected overall.

Time-domain simulations are plotted with measured data in Figure 14, and comparisons

with cross-covariance function estimates in Figure 15. The enumeration is the same as in

Figure 11, and the previous comment about the units of the covariance function estimates

applies for this example as well.

As a final aside, we mention that the algorithm is capable of analyzing data from multiple

inputs and references and would, in theory, provide similar results were the two experiments

combined into a single experiment. Data for such an experiment, however, is currently

unavailable to the authors.

IV. Conclusion

We have presented a novel subspace identification algorithm that produces accurate,

unbiased, linear models from measured data of large signal dimension (ie. data acquired

from many sensors). The algorithm employs covariance function estimates, uses a dynamic-

invariance property of the output signals with a strong relationship to classical realization
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Figure 11. Sample of signals used for the differential aileron experiment.
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Figure 12. Locations of used and unused accelerometers for the differential aileron experiment.
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Figure 13. Singular values of the projected data matrix for the differential aileron experiment.
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Figure 14. Sample of simulation results of the differential aileron experiment.
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theory, and relies exclusively on reliable numerical linear algebra techniques and requires no

iterative solution. The convergence of covariance function estimates is used to handle large

data sets in both open- and closed-loop experiments. The algorithm has been successfully

applied to data measured in flight from the NASA Active Aeroelastic Wing F/A-18 for both

open-loop and closed-loop experiments.
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