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Abstract

For most servo systems, servo performance is quantified by the variance of a
system dependent or user defined Servo Performance Signal (SPS). The smaller the
variance of the SPS, the better is the performance of the servo control system.
However, the variance of the SPS may be determined by both period and
non-repeatable disturbances for which the characteristics are often not known
a-priori during the servo algorithm design. Moreover, the servo control algorithm is
often limited to a standard Proportional, Integral and Derivative (PID) controller as
more complicated algorithms are viewed to be less robust. In this paper it is shown
how a standard (PID) servo control algorithm can be augmented with an additional
feedback loop that can be tuned automatically by estimating the actual disturbance
spectra seen in a system dependent or user defined SPS. Adaptation to the
disturbance spectra is done in lieu of possible model uncertainties in the servo
actuator, guaranteeing stability robustness. As such, the control algorithm provides
a Robust Estimation and Adaptive Controller Tuning (REACT) to disturbance
spectra to maximize servo performance by minimizing SPS variance in high
performance servo systems.

Key words: Servo Control, Adaptive Control, Data Storage Systems

1. Introduction

Optimizing a servo controller for a high performance servo system often requires an
intricate tuning of the servo controller to minimize the variance a system dependent or user
defined Servo Performance Signal (SPS), while maintaining robustness. As an example, the
Position Error Signal (PES) in a Hard Disk Drive (HDD) or a Linear Tape Open (LTO)
drive acts as a SPS that can be used to quantify the quality of the servo system during track
following. The smaller the variance of the PES, the better is the performance of the servo
control system. On the other hand, the servo controller should perform robustly in lieu of
product variations or dynamic uncertainty of the servo actuator.

In data storage applications SPS variance minimization is required to improve storage
density, while performance robustness is the mathematical concept of guaranteeing that a
single and well designed algorithm is guaranteed to yield the same performance on a large
class of servo actuators with similar dynamical properties. Obviously, performance and
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robustness are often conflicting requirements [1], unleashing the need to compromise
performance to ensure, at least, stability robustness. In addition, for optimal tuning of the
servo algorithm in terms of SPS variance minimization, a detailed model is needed of all
possible disturbances that will be present in the servo loop and contribute to the variance of
the SPS during servo operation. Such a model can be formulated reasonably well for
repeatable disturbances, but the knowledge on random or non-repeatable disturbances is
often lacking and only becomes available after the servo algorithm has been implemented.

To facilitate automatic tuning of the servo control algorithm to the disturbances seen in
the servo loop this paper proposes a methodology for Robust Estimation and Adaptive
Controller Tuning (REACT) [2] to minimize the variance of a servo performance signal
(SPS) in a high performance servo system. Such an algorithm can readily be applied to data
storage application such as a HDD or LTO drive in which the SPS can be measured via the
PES and used for automatic tuning purposes. The algorithm formulates the tuning of the
servo controller as a perturbation on a controller initially present in the servo system and
formulates conditions for stability robustness by considering a special Youla [3] and
dual-Youla [4] parametrization for possible uncertainty and product variations in the
actuator dynamics. The initial controller my well be a standard Proportional, Integral and
Derivative (PID) controller and provides a unique way of adjusting the controller to
accommodate and adapt to undesirable disturbances.

This paper gives an overview of the main idea behind the REACT algorithm to tune
servo controllers for data storage systems. Applications of REACT in the field of Active
Noise Control can be found in [5], while an application to a Linear Tape Open (LTO) drive
system is presented at the MIPE’09 conference [6] and the main ideas behind the adaptive
method will be summarized in this paper. The outline of this paper is as follows. Section 2
first gives an overview of the Youla parametrization used to formulate the perturbation of
the servo controller. This is followed in Section 3 by presenting the results on how model
uncertainty in actuator dynamics can be incorporated to ensure stability robustness during
servo controller tuning. Section 4 and 5 show how the parametrization can be used to tune
the servo control algorithm directly on the basis of data measured directly in an operational
servo loop and an example is given in Section 6.

2. Controller Parametrization

A well-know result in controller design and optimization is the Youla parametrization
[3] that allows the parametrization of the class of all stabilizing feedback controllers C for a
given dynamical system G by a single stable dynamical system Q. The parametrization is
given in terms of coprime factorization of the dynamical system G and the feedback
controller C that are defined as follows for Single Input, Single Output systems.

Definition 1 (right coprime factors): Consider the pair of stable transfer functions (N, D).
The pair (N, D) is a right coprime factorization (rcf) of G if the following three items hold:

a. there exists a pair of stable transfer function (X,Y) suchthat XN +YD=1,

b. det{D}#0 and

c. G=ND" 0

According to Definition 1, coprime factors (N,D) are always stable transfer
functions and item a. guarantees they do not have common unstable zeros, whereas item b.
and c. guarantee that G can be written as the product of N and the inverse of D. A similar
definition can also be given for the coprime factors (N_,D,) of the feedback controller
C = N,_D_'. With the definition of coprime factors, the Youla parametrization [3] applied to
a servo system reads as follows.

Definition 2 (Youla paramerization): Let (N,D) be a rcf of an actuator transfer function G
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L | and let (N,,D,) be a rcf of a an initial feedback controller C that stabilizes G. Then all

) ' | 11 controllers C o of the form
}" C,=N,D,' with
HiN N,=N_+DQ and )
)
il
i [ ' 1 where Q is any stable transfer function, stabilize the same actuator transfer function G. %

The Youla parametrization is a powerful result, as it allows us to parametrize all stable

be = R o
_—

controllers for a specific servo actuator dynamics G via (right) coprime factors and a stable
11 perturbation Q. Hence, as long as we keep the transfer function Q stable, the newly tuned or
1 . perturbed controller C 0= N 0 D él in Definition 2 will still stabilize the actuator dynamics G.
The use of coprime factors is required for unstable actuator or controller dynamics to
i avoid the cancellation of unstable poles and zeros in our feedback loop during controller
! perturbations. However, the Youla parametrization can be simplified in case both the
actuator dynamics G and the initial feedback controller C are known to be stable. With a
stable actuator G, we obtain the trivial choice (N,D)=(G,1) for the rcf of G, while for a
stable initial controller C we may choose (N,,D,)=(C,1) for the rcf of C. In that case, the
1 newly tuned or perturbed controller C =N, Dél in Definition 2 will simplify to

———,

T R

C, =(C+0)/(1-GQ) (2)

and writing the newly tuned or perturbed controller C , asa feedback connection of the
stable transfer function Q and the actuator model G. Again, as long as Q is stable the
controller (C  stabilizes G and the feedback connection in (2) ensures this property.

As a final note, the assumption of a stable actuator G also allows the initial controller
C to be chosen as C=0 as a stable actuator G does not require a controller for
stabilization. In that case (C , can be simplified further to

C,=0/(1-GQ) €)

However, any information on an initially designed controller C used in the stabilization or
control of the actuator dynamics G can be used in the parametrization of the newly tuned or
perturbed controller C,. Moreover, the trivial choice (N,D)=(G,l) can be replaced by
any right coprime factorization such as a normalized coprime factorization to ensure the
uniqueness of the right coprime pair (N, D).

3. Actuator Uncertainty

The Youla parametrization as given in Definition 2 assumes no modeling error or
uncertainty on the (stable) actuator dynamics G to ensure stability of the newly tuned or
perturbed controller C, in (1) or (2). As a result, the only requirement for stability
robustness is the stability of the perturbation Q in (1). In case of actuator uncertainty, an
additional constraint on the actual “size” of Q will have to be imposed to guarantee stability
robustness.

The bound on the size of Q for stability robustness depends on how the uncertainty on
the actuator dynamics G is described, e.g. additive or multiplicative uncertainty. However,
describing the uncertainty on the actuator dynamics G also in a coprime framework allows a
clear computation of the upper bound on the size of the perturbation Q. Following the ideas
of a double-Youla parametrization [7], the following main result is given here.

Corollary 1 (stability robustness for dual-Youla): Let (N,D) be a rcf of an nominal actuator
transfer function G and let (N_,D,) be a rc¢f of a an initial feedback controller C that
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b | stabilizes G. Now consider a stable uncertainty A perturbing G=ND™" to G, givenby

# I | |
1N G,=N,D; with
»‘ N,=N+D,A and 4)
T D,=D-N_A
f [ |
i f [ ! | where A is unknown but bounded by an H,-norm ||A|| < y . Then the uncertain actuator

' dynamics G, with the controller perturbation C, given in (1) yields a stable feedback
111 system for all ||A||w <y~ ifand only if Q is stable and ||Q||w <y. O

The result in Corollary 1 indicates that next to the stability requirement of Q
11 mentioned in Definition 2 we now also have a size constraint on ( measured by an
111 H,-norm. If we have no uncertainty, y =oco and only the requirement on the stability of O
! - remains. The uncertainty A on the nominal actuator dynamics G is structured according to a
‘ dual-Youla parametrization, as indicated in Figure 1.
[
!

Fig. 1: Block diagram of combined controller perturbation according to (1) and actuator
uncertainty given in (4). The signal e indicates the Servo Performance Signal (SPS).

4. Affine Optimization

Next to providing a parametrization of all stabilizing controllers, the Youla
parametrization in (1), and its dual form for uncertainty representation, provides an another
advantage for controller adaptation: all closed-loop transfer function are linear in the
controller perturbation Q of (1). This can be seen as follows.

Consider the output sensitivity function or transfer function S from the input
disturbance d to the output signal or PES e in Figure 1 given by

S=1/(1+G,C) )

Assuming the nominal actuator model G is stable, allows substitution of C =(C " given in
(2) to modify the sensitivity function Sin (5)to § o

S, =(1-G,0)/(1+G,C)=S(1-G,0) (6)

and indicating that the closed-loop transfer function that models the disturbance rejection
(sensitivity function) is /inear in the controller perturbation parameter Q. A similar result
can also be obtained when using the full freedom in right coprime factorization, allowing
the nominal actuator model also to be unstable.

The Youla parametrization allows affine optimization techniques to, for example,
minimize the 2-norm or co-norm of the (weighted) sensitivity function S as a function of Q.
Moreover, direct minimization of the variance of the SPS e in Figure 1 can be used for a
2-norm specification, allowing direct data-based closed-loop tuning of a minimum variance
controller [8] computed via the controller perturbation parameter Q. For that purpose, the
transfer function Q(g) must also parametrized in a linear affine form and here Q(g) is
chosen to be parametrized via a nth tap discrete-time Finite Impulse Response (FIR) filter
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0(4.0)=3 0,q" )

where ¢ denotes the time shift operator, n is the order of the FIR filter and g, the
parameters to be estimated in the FIR filter. The parametrization of the controller Cy(g) in
(2) and Q(q,0) in (7) provides a rich class of controllers that does not necessarily require
a specific parametrization of noise models to tune the feedback controller [9].

We like to point out that the perturbation Q(g,0) in (7) being added as a perturbation
on the initial controller C(g) in (2) is simply a tapped delay filter. FIR filtering can be
implemented relatively easily in existing DSP technology for fast data processing.
Obviously, the larger the order # of the FIR filter O(g,0) in (7), the better the resulting
servo performance will be. This is due to the fact that more FIR filter parameters ¢, can
be used to tune the controller C o (¢) and minimize the variance of the servo performance
signal e(?). We will illustrate this effect in the simulations study given in Section 7 where
the order n is varied and the effect on the SPS e(?) is documented.

5. Closed-Loop and Data-Based Tuning

Based on the favorable properties of having an affine parametrization of Q(g,0) in any
closed-loop transfer function, the proposed controller structure based on the Youla
parametrization allows direct tuning of the Youla parameter Q on the basis of closed-loop
data. As indicated before, for optimization purposes the variance of the Servo Performance
Signal (SPS) e given in Figure 1 will be considered as an important indication of servo
performance. The variance of the SPS e is given by

var{e} = i e* (1) (®)

and computed over a final time interval of N data points. To minimize the variance of the
SPS e as depicted in Figure 1 and to use the affine parametrization result given in (6) and (7)
we need access to specific closed-loop signals for direct data-based tuning of the controller
perturbation parameter Q(g,d). Assuming disturbances that influence the variance of the
dude SPS e occur as an additive output disturbance d as indicated in Figure 1, we see that

e(t) = S,(q)d(1) ©))
and substitution of § o in (9) yields
e(1,0) = S(q)d(1) - 0(q.0)G ()S(q)d (1) (10)

so that minimization of the 2-norm of the time domain signal e(z,d) using the affine
parametrization in (7) requires access to the two closed-loop signals

»(0)=S(g)d(1) and (11)
v(1)=G,(q)S(q)d(1) = G,(q) (1)

The signal y(#) given in (11) is readily available, as this is the output signal e(z) when
the initial controller C(g) is implemented in the feedback loop for Q(g,0)=0. For the
computation of the signal v(¢) we need the (perturbed) actuator model G, (¢) that can be
approximated by the nominal model G(g) that is used also for the computing the
perturbation of the controller C to C o given in (2). The availability of the signals y(z)
and v(?) defined in (11) now allows the minimization of the variance of the SPS as function
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of the parameter & of the FIR filter Q(g,0) via

O=arg mingﬁ[y(r)—g(q,e)vm]z (12)

and becomes a standard Least Squares (LS) optimization for the affine parametrization of
0(q,0) given in (7). The LS optimization can be implemented recursively [8] to facilitate
adaptive tuning of the controller, but special conditions on the rate of change in the
parameters & has to be imposed to guarantee stability of the resulting time varying system,
as indicated in [2].

6. Robustness and Control Signals

Tuning of the controller C 0(@) in (1) or (2) can be done off-line based on
measurements of the closed-loop signal present in the servo loop or in-situ using recursive
Least Squares minimization. Although the Least Squares minimization in (12) based on the
closed-loop signals y(#) and w(?) given in (11) allows for a direct minimization of the
variance of the SPS e(?), any model uncertainties restrict the freedom in updating the
parameters ¢, in the FIR filter Q(q,0) given in (7) to guarantee stability robustness. As
summarized in Corollary 1, any unknown but H,-norm bounded uncertainty A modeled as a
dual-Youla perturbation A on the plant dynamics G requires

lotg. 04|, <1 (13)

to guarantee stability robustness while minimizing the variance of the SPS e(z). For scalar
systems, the optimization of Q(g,0) under the constraint (13) can be approximated over a
user-specified (dense) frequency grid

Q={w|o=0,k=12,...,N}
if a frequency dependent upper bound W (w,) with

W (w)A@)|<1 Vo, eQ (14)

is available to capture the frequency dependency of the unknown but H,.-norm bounded
uncertainty dual-Youla A. With the frequency dependent upper bound W (w) in (14) we
obtain

\Q(ef”k ,0)A(a, )| < ‘Q(ej‘”" LOW (o, )| <l Vo, e
allowing us to approximate the constraint in (13) with
O™, 0 (@<l Vo, e (15)

over a sufficiently dense frequency grid Q. Due the linear parametrization of Q(q,8)
given in (7), the constrained minimization that combines (12) and (15) via

b =argmin, Y [1(0) - 0@ 00 St |0, 0W @)1 VocQ  (16)

can casily be rewritten into a quadratically constrained quadratic programming (QCQP)
problem
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9=argmin€%6’TPO6’+q06’ s.t. %HP,{HT+qkT€ +r,<0 vk and 40=b  (17)
where the parameter 97 = [QT 0] and the constraint 40 =b with

1 e [0 OM} and p_ {Om}
1 r " len 1 1
11 ensures that indeed 97 :[HT 0]. For the quadratic minimization and the amplitude
t I 11 constraint in (16), it is easy to verify that the matrices P, and P, for all values k of the
i t frequency @, € Q) are positive definite. This makes the QCQP problem in (16) and (17)
' convex, allowing the computation of a unique minimum using interior point methods,
i k ' similar as in semidefinite programming [10].
: i'" v t _ Recursive solutions for the in-situ computation of a solution to the QCQP problem
ti : 1 ‘ would be challenging to implement in case of limited computational resources in the servo
Pl f{ system. For on-line tuning in the presence of model uncertainty and one can use a
! projection method [2] to enforce the constraints in (17). Otherwise the QCQP problem
111 formulation should be used to compute an optimal controller perturbation Q(g,f) using
off-line measurements of the closed-loop signals y(z) and v(z) in (11).
Finally, it should be noted that the LS optimization aims at minimizing the variance of
the SPS, possibly resulting in large control signals for the minimum variance controller [8].
To avoid large control signals, an additional penalty on the control signal

u(t) = Cy(q)S(q)d(?) (18)

can be imposed by including a (filtered version) of () in (18) in the minimization of (11).
Alternatively, control signals can be limited by adding an additional fixed filter stable and
stably invertible F'(g) into the controller perturbation

0r(4,0)=0(q.0)F(q) (19)

and possibly including the inverse of F(g) in the filtering of y(#) as used in the LS
optimization. Penalizing the control signal avoids the solution of the LS minimization that
computes the controller perturbation Q(g,0) to converge to the solution of a minimum
variance controller, with possible large control signals.

136
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7. llustration of REACT on Example System

Practical implementations of REACT have been reported in [5] for active noise control
and at the MIPE’09 conference for a Linear Tape Open (LTO) servo system [6]. To illustrate
the main concepts in this paper, a simulation example is used to illustrate the power of the
REACT algorithm, as it allows direct tuning of the feedback controller with respect to
disturbances.

With the simulation study in this paper we illustrate how the design of a simple initial
controller used to stabilize a poorly damped servo system can be augmented with an
adaptation strategy based on the REACT algorithm. The adaptation strategy perturbs the
initial controller to a more advanced servo controller that has tuned itself optimally towards
the disturbances present on the servo system. As such knowledge on the disturbances
present on the servo system is not known beforehand while designing the initial stabilizing
controller, the proposed REACT algorithm in this paper allows in-sifu tuning of the servo
controller while the servo system is in operation. As will be illustrated by the example, the
resulting servo performance will be greatly improved due to additional tuning of the initial
controller with the REACT algorithm.

For the example in this paper we consider the Zero Order Hold (ZOH) equivalent of a
continuous-time fourth order servo actuator model sampled at 10 kHz that models a low
frequency friction or flex cable mode and a high frequent poorly damped resonance mode.
A continuous-time fourth order model with two (lightly damped) resonance modes is given
by the transfer function model

2 .2
G(s)=— K2a)l aiz 2
(" +2p05+ @ )s™ +206,0,5 + ;)
with (20)
K =100, o, =10rad/s, @, =10 rad/s,
fi=j2 and p,=0.

where the numerical values for the undamped resonance frequencies ,, ®, the damping
ratios g, B, and the DC-gain K are just chosen for illustration purposes. The example in
this section can easily be reproduced for different (more detailed) actuator models. A Bode
plot of the discrete-time actuator model used in this example is given in Figure 2.
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Fig. 2: Bode plot of discrete-time Zero Order Hold equivalent of continuous-time 4"
order servo actuator model given in (20). Top figure: Amplitude Bode plot. Bottom
figure: Phase Bode plot.
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Without a-priori information on disturbances or performance constraints, the actuator
1 ' : model is controlled by a simple first order discrete-time Proportional Derivative (PD)
1 controller sampling at 10kHz and given by
F :‘ '
| i f —-0.995
- r Cla)=10.-4=2272 (21)
; I i ”" (@=10-""=0755
. . |
l ' 111 creating a feedback loop with a gain margin of 9dB at approximately 823 rad/s and a phase
! 1} | margin of 55.8 deg at approximately 200 rad/s.

For simulating the controller tuning effects of REACT due to unknown and
| unanticipated external disturbances during the operation of the servo system, a low-pass
filtered unit variance white noise g(r) together with a sinusoidal signal of 10Hz are used

to create an additive disturbance

where the low-pass filter L(g) is a fourth order discrete-time Butterworth filter with a

111 “ cutoff frequency of 125 rad/s.

11 Simulating the performance of the initial controller C(g) in (21) in feedback with the
f ZOH equivalent of G(s) in (20) yields the disturbance d(#) and SPS e(?) as depicted in

Figure 3 with an estimated variance of the SPS e(?) of 0.14717. Although there is significant

disturbance attenuation, the existing PD controller C(g) in (21) obviously has not been

optimized for the non-repeatable and low frequent periodic disturbances.

b
t E ‘ d(t) = L(g)e(t)+0.1sin(27 -10¢) (22)
l ]
|
F

- ——
Tl

04 T T T T
| disturbance

02 — 3PS

disturbance and 3PS

ZOH control

04 I I 1 1
0 1 2 3 4 &

time [sec]

Fig. 3: Simulation results for rejection of the disturbance d(?) given in (22) using the
initial controller C(g) given in (21). Top figure: actual disturbance d(?) and PES or SPS
e(t). Bottom figure: control signal u(z). Estimated variance of e(?) is 0.14717.

To optimize the feedback controller using the REACT algorithm, the controller C(q)
in (21) is perturbed to Cy(q) in (2) with a FIR filter Q(g,0) in (7). To illustrate the
effect of the order n of the FIR filter on the achievable servo performance, we choose
different orders # for the FIR filter (Q(g,0) in (7) varying from n=2 tapped delays lines to
n=T7 tapped delay lines. For each of FIR filters the controller C o(9) is adjusted using the
REACT algorithm. Furthermore, to limit the control signal u(#) during the variance
minimization of REACT, the filter F(g) in (19) is chosen as a low-pass 4™ order discrete-time
Butterworth filter with a cutoff frequency of 10007 rad/s.




"

e

rnal of Advanced Mechanical Design, -~ Vol.4,No.1,2010
ystems, and
Manufacturing

' | Running the closed-loop simulation and using the signals y(?) and v(?) as given in (11)
' 11 now allows an direct tuning of the controller perturbation Q(g,0) on the basis of the
1H available closed-loop signals. The tuning aims at minimizing the variance of the Servo

1 Performance Signal or PES e(?) in the presence of the unknown disturbances d(z?) given in
(22). The result will be a perturbed feedback controller C 0 (@) that will be better tuned

towards the disturbances experienced during the closed-loop operation of the servo system.

Simulating the performance of the perturbed controller C (@) in (2) in feedback with the

ZOH equivalent of G(s) in (20) for different orders » of the FIR filter Q(q,0) used in
the REACT algorithm yields the variance improvement listed in Table 1.

Table 1: Simulation results for rejection of the disturbance d(?) given in (16)
using a tuned controller C 0 (@) given in (2) based on REACT algorithm.

111 order Q(q,0) | variance e(z) | Improvement [%)]
1 1 0.067276 54.3
HI 2 0.065114 56.3
11 i E ! 3 0.013086 91.1
HIHHH 4 0.010706 92.7
" E} HIH 5 0.010448 92.9
1 1| 6 0.010405 92.9
1 7 0.010401 92.9
8 0.010401 92.9

From Table 1 if can be observed that even simple first order FIR filter with only a
single parameter ¢, already improves the variance of the PES with 54%. Adding more
tapped delay lines to the FIR filter improves the variance minimization of e(?) even further
and levels off at only a sixth order FIR filter. The perturbation Q(g,0) in (7) being added
as a perturbation on the initial controller C(g) in (2) is simply a tapped delay or FIR filter
that can be implemented relatively easily in an embedded system for fast data processing.
The results in Table 1 illustrate that indeed a better servo performance is obtained as the
order n of the FIR filter Q(g,0) in (7) is increased, as more FIR filter parameters ¢, can
be used to tune the controller C 2(9) and minimize the variance of e().

The simulation results for a seventh order FIR filter O(g,0) is depicted in Figure 4,
where a significant improvement of the servo performance signal SPS can be observed.

04 T T . T
disturbance
— 3PS -

02

disturbance and SPS
o

Z0OH control

104 L 1 1 L
0 1 2 3 4 5

time [sec)

Fig. 4: Simulation results for rejection of disturbance d(z) given in (22) for the optimized
REACT controller Cy(q) using a n=7 order FIR filter Q(g,0) in (7).
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It can be seen from the simulation in Figure 4 that REACT improves the variance of the
SPS e(?), at only a small increase of the control signal u(?). To illustrate the effect of tuning
of the controller Cy(q) achieved by the REACT algorithm, a comparison of the Bode
plots of the initial controller C(g) in (21) and the tuned controller C () in (2) for
different choices of the model order n of Q(q,0) in (7) is given in Figure 5. Only the
choice of order »=2 and the final order »=7 is plotted to keep the Bode plots readable.
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5401k
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Fig. 5: Amplitude (top) and phase (bottom) Bode plot of the initial controller C(g) in
(21) and the optimized controller Cy(g) obtained via REACT for different orders » for
the FIR filter O(q,0) in (7).

It can be observed from Figure 5 that a simple second order FIR filter Q(q,0) allows
the creation of an additional complex pole pair in the controller Cy(g). It can be seen that
this additional complex pole pair is used to create a resonance in the controller at 10Hz with
enough gain to reduce the periodic part of the disturbance d(?) given in (22). Further
increase of the allowable model order for the FIR filter to n=7 creates both an integrating
action in the controller and an additional increase of the overall gain. This allows the same
gain reduction of the periodic disturbance and additional reduction of the low frequency
parts in the disturbance d(z) given in (22).

When inspecting the shape of the frequency response of the controller C o(q) as given
in Figure 5, one could also design a good (low order) controller that achieves the same level
of disturbances attenuation. However, it should be pointed out that for such a design, the
disturbances d(t) in (22) should be known a priori. The power of the REACT algorithm is
that the initial controller C(g) is able to tune itself to Cp(g) on the basis of the (unknown)
spectral contents of the disturbance. Henceforth, REACT enables an in sifu tuning of the
controller a posteriori.

The improvement in disturbance rejection can also be seen in Figure 6 in which a
comparison is made between the sensitivity functions S(g) in (5) and Sy(g) in (6). Again, a
comparison is made for the choice of order »=2 and the final order »=7 for the FIR filter
0(q,0) in (7) to keep the Bode plot of the sensitivity function readable. The additional
gain at low frequencies in C,(q) emulates an integrator that was missing in the PD
controller C(g) and now creates a feedback loop with a gain margin of 8.25dB at approx.
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3500 rad/s and a phase margin of 52.3 deg at approx. 865 rad/s. The advantage is that the
resulting controller C o(q) was found by automatic tuning based on data obtained from the
closed-loop system using a simple initial controller C(g). The tuning has caused optimal
disturbance rejection in the servo performance signal (SPS) e(?) by direct minimization of
the variance of the SPS.

20 : :
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Fig. 6: Amplitude Bode plot of the initial sensitivity function S(g) in (5) and the optimized
sensitivity function Sy(g) in (6) found via REACT for different orders #» for the FIR filter

0(q,0) (7).

8. Summary and Conclusions

An initial (PID) servo control algorithm can be augmented with a Youla parametrization
based perturbation to formulate a self-tuning algorithm for a servo controller. For actuator
dynamics that can be modeled by a stable transfer function, the parametrization is
formulated as a feedback loop that uses the actuator model and a free, but stable,
perturbation transfer function given by a Finite Impulse Response (FIR) filter.

It is shown in this paper that the parameters of the FIR filter can be found by an affine
optimization based on closed-loop data to optimally tune the perturbed feedback controller.
Uncertainty on the actuator model can be incorporated by bounding the allowable controller
perturbation to provide a Robust Estimation and Adaptive Controller Tuning (REACT) to
disturbance spectra to minimize SPS variance in high performance servo systems in data
storage applications.
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