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Adaptive Feedforward Control for Gust Load Alleviation
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In this paper, an adaptive feedforward control framework is proposed for the suppression of aircraft structural
vibrations induced by gust perturbations to increase the resilience of the flight control law in the presence of the
aeroelastic/aeroservoelastic interactions. Currently, aircraft with nonadaptive control laws usually include roll-off
or notch filters to avoid aeroelastic/aeroservoelastic interactions. However, if changes in the aircraft configuration
are significant, the frequencies of the flexible modes of the aircraft may be shifted, and the notch filters could become
totally ineffective. With the proposed approach, the flexible modes can be consistently estimated in real time via a
proven system-identification algorithm. The identified flexible modes information is used in the proposed adaptive
feedforward control algorithm to adjust the parametrization of the basis functions in a feedforward controller. Along
with the recursive least-squares estimate, the feedforward controller is adjusted, and the structural vibration of the
aircraft induced by the gust perturbation can be largely suppressed. An F/A-18 active aeroelastic wing aeroelastic
model with gust perturbation based on the linear aeroelastic solver formulation is developed as a test bed to
demonstrate the proposed adaptive feedforward control algorithm.

Nomenclature

A(w) = denominator matrix polynomial
B(w) = numerator matrix polynomial
B;,(q) = orthonormal basis function

= damping matrix
F(q) = feedforward compensator
F, = external aerodynamic forces
Fr = thrust forces
Fj = aerodynamic forces from control surfaces
G(q) = transfer function from control surface to

accelerometer sensor
G(w) = frequency response function
H(q) = transfer function from gust perturbation to
accelerometer sensor

K = stiffness matrix
140 = gain vector
M = mass matrix
M, = external aerodynamic moments
My = thrust moments
M = aerodynamic moments from control surfaces
P(q) = all pass transfer function
P(1) = inverse correlation matrix
Q(s) = aerodynamic force coefficient matrix
q = forward shift operator
[T4] = transformation matrix
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T,(s) = Dryden vertical velocity shaping filter
Tipr(s) = low-pass filter

u(t) = control surface command

w(r) = gust perturbation

Xie = aerodynamic lag terms

y(1) = output signal

B = coefficients of the orthonormal finite impulse
response filter

Ap = aeroelastic incremental forces

Ay = aeroelastic incremental moments

N, = generalized coordinate

0 = unknown parameters to be estimated

A = forgetting factor

(1) = regress vector

Subscripts

ee = related to the elastic dynamics

i = [r, e, §] related to the airframe, elastic, control
related states

lat = related to the lateral dynamics plane

long = related to the longitudinal dynamics plane

re = related to the coupling between rigid-body dynamics
and elastic dynamics

rr = related to the rigid-body dynamics

L

CTIVE control techniques for the gust load alleviation/flutter

suppression have been investigated extensively in the last few
decades to control the aeroelastic response and improve the handling
qualities of the aircraft. Nonadaptive feedback control algorithms,
such as the classical single input/single output (SISO) techniques [1],
the linear quadratic regulator theory [2,3], the eigenspace techniques
[4,5], the optimal control algorithm [6], and the H, robust control
synthesis technique [7] are efficient methods for the gust load
alleviation/flutter suppression. However, because of the time-varying
characteristics of the aircraft dynamics due to the varying config-
urations and operational parameters (such as fuel consumption, air
density, velocity and air turbulence), it is difficult to synthesize a
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unique control law to work effectively throughout the whole flight
envelope. Therefore, a gain scheduling technique is necessary to
account for the time-varying aircraft dynamics.

An alternative methodology is the feedforward and/or feedback
adaptive control algorithms, by which the control law can be updated
atevery time step [8§—10]. With the novel development of the airborne
light detection and ranging (LIDAR) turbulence sensor, available for
the accurate measurement of the vertical gust velocity at a consid-
erable distance ahead of the aircraft [11], itbecomes feasible to design
an adaptive feedforward control to alleviate the structural loads
induced by any turbulence and extend the life of the structure. The
adaptive feedforward control algorithm developed in [10] showed
promising results for vibration suppression of the first wing bending
mode. However, an unavoidable constraint for the application of this
methodology is the usage of a high order finite impulse response (FIR)
filter. As aresult, an overwhelming computation effort was needed to
suppress the structural vibration of the aircraft.

In this paper, an adaptive feedforward control algorithm, in which
the feedforward filter is parameterized using orthonormal basis
expansions along with a recursive least-squares (RLS) algorithm
with a variable forgetting factor, is proposed for the feedforward
compensation of gust loads. With the use of the orthonormal basis
expansion, the prior flexible modes information of the aircraft
dynamics can be incorporated to build the structure of the feed-
forward controller. With this strategy, the order of the feedforward
filter to be estimated can be largely reduced. As a result, the compu-
tation effort is greatly decreased, and the performance of the
feedforward controller for gust load alleviation will be enhanced.
Furthermore, a fast Fourier transform (FFT)-based Polymax identi-
fication method and the stabilization diagram program [12] are
proposed to estimate the flexible modes of the aircraft dynamics.

The need for an integrated model of flight dynamics and
aeroelasticity is brought about by the emerging design requirements
for slender, more flexible, and/or sizable aircraft [such as oblique
flying wing, high altitude/long endurance (HALE), Sensorcraft,
morphing vehicles, etc.). Furthermore, a desirable unified nonlinear
simulator should be formulated in principle by using commonly
agreeable terms, from both the flight dynamics and the aeroelasticity
fields, in a consistent manner.

A unified integration framework that blends flight dynamics and
aeroelastic modeling approaches with wind-tunnel or flight-test-data-
derived aerodynamic models has been developed in [13]. This
framework considers innovative model updating techniques to
upgrade the aerodynamic model with data coming from computa-
tional-fluid-dynamics/wind-tunnel tests for a rigid configuration or
for data estimated from actual flight tests when flexible configurations
are considered.

Closely following the unified integration framework developed in
[13], an F/A-18 active aeroelastic wing (AAW) aeroelastic model
with gust perturbation is developed in this paper, and this F/A-18
AAW aeroelastic model can be implemented as a test bed for flight
control system evaluation and/or feedback/feedforward controller
design for gust load alleviation/flutter suppression of the flexible
aircraft.

The outline of the paper is as follows. In Sec. II, a feedforward
compensation framework is introduced. Section III presents the
formulation of the orthonormal finite impulse filter structure. A brief
description of a frequency domain Polymax identification method is
presented in Sec. IV. In Sec. V, a RLS estimation method with a
variable forgetting factor is discussed. Section VI includes the
development of a linear F/A-18 AAW aeroelastic model and the
application of the adaptive feedforward controller to an F/A-18 AAW
aeroelastic model.

II. Analysis of the Feedforward Controller

To analyze the design of the feedforward controller F, consider the
simplified block diagram of the structural vibration control of the
SISO dynamic system depicted in Fig. 1. The gust perturbation w(r)
passes through the primary path H, the body of the aircraft, to cause
the structural vibrations. Mathematically, H can be characterized as

Gust perturbation.

w(r)

—T——*H

Fig. 1 Block diagram of the structural vibration control with
feedforward compensation.

the model/transfer function from the gust perturbation to the
accelerometer sensor position. The gust perturbation w(f) can be
measured by the coherent LIDAR beam airborne wind sensor. The
measured signal n(t) is fed into the feedforward controller F to
calculate the control surface demand u(f) for vibration compen-
sations. The structural vibrations are measured by the accelerometers
providing the error signal e(f). G is the model/transfer function from
the corresponding control surface to the accelerometer sensor posi-
tion, which is the so-called secondary path.

To apply the feedforward control algorithm for gust loads alle-
viation, developing a proper sensor to accurately measure the gust
perturbation is crucial for the success of the feedforward control
application. As mentioned in [11], such a sensor should meet the
following criteria:

1) The sensor has the capability to take a feedforward-looking
measurement of 50 to 150 m to ensure that the measured air flow is
the one actually affecting the aerodynamics around the aircraft.

2) The sensor must be able to measure the vertical wind speed.

3) The standard deviation of the wind-speed measurement should
be small, at least in the range of [2-4] m/s.

4) The sensor must be able to produce reliable signals in the
absence of aerosols.

5) The sensor must have a good longitudinal resolution (the
thickness of the air slice measured ahead).

6) The sensor must have a good temporal resolution.

A sensor system that meets these requirements is a so-called short-
pulse UV Doppler LIDAR and was developed in [11]. This short
pulse UV Doppler LIDAR was successfully applied to an Airbus 340
to measure the vertical gust speed [14]. The authors in [14] claimed
that the system was ready to be used to design feedforward control for
gust load alleviation.

Assuming a perfect gust perturbation signal can be measured via
the LIDAR beam sensor means n(¢) = w(¢) and the error signal e ()
can be described by

e(r) =[H(q) + G(@) F(g)w(?) (M

In case the transfer functions in Eq. (1) are known, an ideal
feedforward controller F(¢) = F;(¢) can be obtained by

ﬂ@=—§% @

in case F;(g) is a stable and causal transfer function. The solution of
Fi(g) in Eq. (2) assumes full knowledge of G(q) and H(q).
Moreover, the filter F;(¢) may not be a causal or stable filter, due to
the dynamics of G(g) and H(g), which dictates the solution of the
feedforward controller F;(g). An approximation of the feedforward
filter F;(g) can be made by an output-error-based optimization that
aims at finding the best causal and stable approximation F'(g) of the
ideal feedforward controller in F;(g), in Eq. (2).

A direct adaptation of the feedforward controller F(q, 6) can be
performed by considering the parameterized error signal e(z, 6):

e(1.0) = H(q)w(1) + F(q. 0)G(q)w(r) 3
Defining the signals
d(t) := H(Quw(n),  uy(1) :==G(q)w() )

where d(t) can actually be measured and u,(z) is the called filtered
input signal, Eq. (3) is reduced to
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Fig. 2 Block diagram of the structural vibration control with adaptive
feedforward compensation.

e(t, 0) = d(1) — F(q. O)us(1) ®

for which the minimization

N

1
min- > € (r. 6) ©)

t=1

to compute the optimal feedforward filter F(g, 0) is a standard
output error (OE) minimization problem in a prediction error
framework [15].

The minimization of Eq. (6) for lim,_, ., can be rewritten into the
frequency domain expression:

I%n/ﬂwH@”)+G@”ﬂWNﬂ9N2 )

using Parceval’s theorem [15]. It can be observed that the standard
OE minimization problem in Eq. (6) can be used to compute the
optimal feedforward filter F'(q, 0), provided d() and u,(t) in Eq. (4)
are available.

For a proper derivation of the adaptation of the feedforward filter
F, an approximate model G of the secondary path G is required to
create the filtered signal u,(#) for the adaptive filtering purpose. The
adaptation of the feedforward filter is illustrated in Fig. 2. The filtered
signal u(¢) and the error signal e(?) are used for the computation of
the coefficients of the feedforward filter by the adaptive filtering.
Thus, the coefficients of the feedforward filter ' can be updated at
each time constant for structural vibration reduction. Note that the
algorithm presented in Fig. 2 only works if G is scalar, as GF is
replaced by FG.

III.  Orthonormal Finite Impulse Response
Filter Structure

In general, the feedforward filter F in Fig. 1 can be realized by
adopting both the FIR structure as well as the infinite impulse
response (IIR) structure. Because the FIR filter incorporates only
zeros, it is always stable and will provide a linear phase response. Itis
the most popular adaptive filter, widely used in adaptive filtering.
Generally, the discrete time linear time invariant FIR filter F(¢) can
be presented as

L—-1
F(g)=) Bug™* ®)
k=0

where ¢! denotes the usual time shift operator, ¢~'x(7) = x(t — 1).
Adaptive filter estimation using FIR filters converges to optimal and
unbiased estimates, irrespective of the coloring of the noise on the
output data. However, a FIR filter is usually too simple to model
complex system dynamics, such as aeroelastic/aeroservoelastic
systems with many resonance modes being excited by atmospheric
perturbations. As a result, many tapped delay coefficients of the FIR
filter are required to approximate the optimal filter. Even though an
IIR filter is appealing as an alternative, the inherent stability and bias
estimation problems limit the use of an IIR filter for adaptive filtering
in aeroservoelastic systems.

To improve the approximation properties of the adaptive filter F in
Fig. 1, the linear combination of the tapped delay functions ¢~ in the
FIR filter of Eq. (8) can be generalized to the following form:

L—-1

F(g, 0) =) BiBi(q) )
k=0

where B, (q) are generalized (orthonormal) basis functions [16] that
contain some a priori knowledge on the desired filter dynamics. In
other words, the orthonormal basis functions that are used in the
parametrization of the orthonormal finite impulse response (ORTFIR)
filter will be tuned on the fly by taking full advantage of the modal
information embedded in the flight data.

A. Construction of the Orthonormal Basis Sets

The application of orthonormal basis functions to parameterize
and estimate dynamical systems has obtained extensive attention in
recent years. Different constructions of the orthonormal basis struc-
ture have been reported in [16—18]. It is assumed that the pole
locations are already known with the use of the standard open-loop
prediction error system identification methods. Suppose the poles
{&}i=1 5 .. n are known; an all pass function P(q) can be created by
these poles and is given as

P(q) = H[%} (10)

i=1
Let (A, B, C, D) be a minimal balanced realization of an all pass
function P(g) and define the input-to-state transfer function
By(q) = (gI — A)~'B; then, a set of functions B;(g) can be obtained
via

Bi(q) = By(q)P'(q) (11
and B;(q) has orthogonal property:

1 dg (1 i=k
%%Bi(q)B;(]/q)?—{o i ok (12)

The construction of the orthonormal basis function is illustrated in
Fig. 3. It should be noted that if B, (g) includes all the information of a
dynamical system, then only one parameter 3, needs to be estimated
to approximate this dynamic system. It means that the parameters
estimated will directly depend on the a priori system information
injected into the basis functions B;(q).

An important property and advantage of the ORTFIR filter is that
the knowledge of the (desired) dynamical behavior can be in-
corporated throughout the basis functions B;(g). As a result, an
accurate description of the filter to be estimated can be achieved by a
relatively small number of coefficients.

B. Illustration of the Orthonormal Finite Impulse Filter

A 4-degrees-of-freedom (DOF) lumped parameter system is
considered to demonstrate the advantage of using the ORTFIR filter
over the FIR filter. An illustration of this 4-DOF lumped parameter

systemis shownin Fig. 4, where k;and ¢;(i = 1, ---, 5) indicate the
+ + Y@
. O
+ +
Bo B Br-1

o [
N A
v(t)

Fig. 3 ORTFIR filter topology.
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Fig. 4 Lumped parameter system.

system stiffness and damping, respectively, and m;(i =1, --- , 4)
are the masses. The nominal values of these parameters are given as

ky = ky = ks = 1750
Cy =1Cy :O.S (13)

my=m,=my=my=1,

ky =k, =2000, ¢, =c3=c5=0.,

A mathematical model of this lumped system can be easily derived
with the use of Newton’s second law. The natural frequencies and
damping ratios of this lumped system are also obtained. For
simplicity purposes, all the units of this 4-DOF lumped system are
omitted. This mathematical model is applied in this case example as
the real model; an FIR model and ORTFIR model will be
implemented to approximate this real model, respectively. To
facilitate the model estimation using the input and output data of the
4-DOF lumped parameter system, a band-limited white noise (zero
mean) is injected into the 4-DOF lumped xparameter system, and an
additional band-limited white noise (zero mean) is added to the
output response to simulate the measurement noise. With the
collected input/output data, an FIR filter with varying order is applied
to fit the real model and the variance of the simulation error (the
difference of the measured and the simulated output) is used to
indicate the performance of the FIR filter.

Furthermore, the Polymax identification method, described in
Sec. IV, is applied in this case example to estimate the four physical
modes. These estimated modes (shown in Sec. IV using the Polymax
method) are used for the basis function generation of the ORTFIR
filter. Finally, an eight-order ORTFIR filter is applied to approximate
the physical system. The estimation results are shown in Table 1.
From Table 1, itis clearly seen that with the FIR filter, the optimal FIR
filter will be of the 400th order, with the smallest simulation error at
36.18. However, with the simplest eight-order ORTFIR filter, the
variance of the simulation error is only 13.18, which is almost
three times smaller than that of the 400th order of the FIR filter.
Figure 5 compares the model estimation results using the 50th/200th-
order FIR filters and the 8th-order ORTFIR filter. From Fig. 5, it is
observed that, with the 50th-order FIR filter, the essential dynamics
of the physical system can hardly be approximated. With the 200th-
order FIR filter, even though the physical system can be correctly
approximated, the estimated model has evident variation (especially
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Table 2 Comparison between the identified
modes and the real modes

Number of modes Real modes Identified modes
f1, Hz 4.1866 4.1868
f>, Hz 7.8648 7.8630
f3, Hz 11.3191 11.3303
f4, Hz 13.1320 13.1320
¢y, % 0.5261 0.5622
&, % 0.9883 1.1035
&3, % 1.4224 1.4836
Cy4y %o 1.6502 1.6333

in the high frequency range). On the other hand, with 8th-order
ORTFIR filter, the physical system can be perfectly approximated,;
no visible variation of the estimated model was found in a wider
frequency range.

IV. Modal Parameter Estimation Frequency
Polymax Identification

A rather general frequency domain identification method, using
the standard least-squares estimator algorithm, is introduced and
applied to extract the modal characteristics of a dynamic system from
a set of measured data. Consider a set of noisy complex frequency
response function (FRF) measurement data, G(w;) (j =1, ---, N).
The approximation of the data by a model P(w) is addressed by
considering the following additive error:

E(w;) = G(w;) — P(w;), j=1 -, N (14)
Then, it is assumed that the model P(w) can be represented by a right
polynomial fraction matrix given by

P(w) = [B(o)][A(@)]! (15)
where P(w) € CP*" is the FRF matrix with p outputs and m inputs,
B(w) € CP*™ is the numerator matrix polynomial, and A(w) € C"*"
is the denominator matrix polynomial.

The matrix polynomial B(w) is parameterized by

np

B(w) =) Bi&() (16)
k=0

where B, € R”", and n, is the number of nonzero matrix

coefficients in B(w), or the order of B(w). The polynomial basis

functions are &, (w). For the continuous time model, &, (w) = —iwy.

For the discrete time model, &, (w) = e~**T (T is the sampling time).
The matrix polynomial A(w) is parameterized by

"a

A@) =) A a7
k=0

where A, € R™",
coefficients in A(w).

Assuming that the coefficients of the denominator A(w) are
[Ag, Ay, -+, A, ], aconstraint of Ay, =1, is set to obtain a stable
model to fit the measured frequency domain data. Here, a constraint
of A, =1, is adopted to extract physical modes from the measured
frequency domain data [19].

With A, = I,,, the poles of the estimated model are separated into
stable physical poles and unstable mathematical poles, from which a
very clean stabilization diagram can be obtained, and the physical

and n, is the number of nonzero matrix

Table 1 Model estimation results using FIR filter and the ORTFIR filter

Order 1000 500 400 300 200 100 50 8
Filter type FIR FIR FIR FIR FIR FIR FIR  ORTFIR
Variance of simulation error 42.53 3646 36.18 36.70 40.28 5291 70.10 13.18
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Fig. 5 Comparison of the model estimation using the FIR and ORTFIR
filters.

modal parameters of the real system can be estimated from a quick
evaluation of the generated stabilization diagram [20].

The stabilization diagram assumes an increasing model order
(number of poles noted in the left ordinate axis), and it indicates
where the poles are located on the frequency axis. As a rule, unstable
poles are not considered in the plot. Physical poles will appear as
stable poles, independent of the number of the assumed model order.
On the other hand, mathematical poles that intend to model the noise
embedded in the data, will change with the assumed model order.

As an example, the 4-DOF lumped system used in Sec. III is
applied in this section to demonstrate the Polymax identification
method. Figure 6a depicts the stabilization diagram for the 4-DOF
lumped system, in which four physical modes can be easily
appreciated with the parameter constraint of A, =1I;. The
estimation results can be easily extracted through the access of the
stabilization diagram, and they are shown in Table 2. However,
within A, = I, the physical modes are difficult to extract from the
stabilization diagram, because with this parameter constraint, all the
mathematical poles are also estimated as the stable poles. This
phenomenon is illustrated in Fig. 6b. In Figs. 6a and 6b, the solid
curve indicates the FRF estimate from the input and output time
domain data, and the dotted curve indicates the estimated model with
the highest order of 50. The right ordinate axis is the magnitude in dB,
which is used to present (in frequency domain) the magnitude of the
FRF and the estimated 50th-order model. The markers indicate
different damping values of each estimated stable pole displayed in
the stabilization diagram. The detailed meanings of these damping
markers are presented in Table 3.

In Table 2, the second column indicates the frequency and damping
of the true modes. The third column presents the estimated frequency
and damping of the true modes, using the proposed Polymax
identification method and stabilization diagram. Comparing the
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Table 3 Damping markers in the
stabilization diagram

Range of damping ratio

0<¢<0.1%
0.1% << 1%
1% < ¢ <2%
2% < ¢ <4%
4% < ¢ < 6%
6% < ¢

Marker sign

> <% X+

estimated modes and real modes (calculated from the mathematical
equation of motion of the 4-DOF lumped system) in Table 2, it is
obvious that the frequency f; and the damping, {;(i = 1, 2, 3, 4) of
these four physical modes are estimated consistently.

V. Recursive Least-Squares Adaptive Algorithm

The adaptive algorithm to be implemented is the RLS algorithm
[21]. Given the input and output data, it can be written in regressor
form:

YOy =¢' (00 +e®).  O=[B. Br. ... Bl

where @' () = [ul(t), ..., ul_,(r)] is the available input data
vector, 6 is the parameter vector to be estimated of the ORTFIR
feedforward controller, and e(?) is the residue error. The parameters
can be identified with the available input-output data up to time 7 by a
standard RLS algorithm. It is well known that the RLS algorithm at
the steady-state operation exhibits a windup problem if the forgetting
factor remains constant, which will deteriorate the estimation results.
As aresult, a variable forgetting factor [22] is sought to prevent this
problem from occurring. The parameters 6 can be estimated by the
RLS algorithm using a variable forgetting factor through a two-step
approach at each sample time:

1. Compute the gain vector k(¢) and the parameters 6(z) at the
current sample time as

(18)

0(r) = 0(t — 1) + k()& (1) (19)
E(1) = y(1) — 0" (1 — D)g(1) (20)
k) = P= Do) o

M (D) + ¢" (Pt — D)

2. Update the inverse correlation matrix P(r) and the forgetting
factor A(7):

P(t) = A(0)'[1 = k()" (D]P(t — 1) (22)
50 T T T T 31
A Ax % 000 O 00000 O %0 * 00
A X Ax #% 0000 000000 O*0 * 00
AA* *<><>n<><><><><>nn<><><>***
AA ) oo oOooOOO O OL0 O ® {134
A" #/%\ 6 60T 0 OO OO O 000 * 00
#4340 0o oo OO0 O 000 O K —
4 IR d* % 0o 0o 0O AAOGOGD O %O 3
. +x Yoo 0000 0 000 O 0A{-42 =
L % O QO O O O O 000 6 #9 3
40H A x|f L0 b o !“-4 i ‘il R | 2
A x ** O 0 b ;||.‘ | [ MmNy A l‘ =
A x| o# wx o o all[dl NN i‘o!»‘"« _21_8«5
A xz % —x% O O o ¢|0 (O [D|FdA}PE D =
A x: % %% O O o 0100 9 Y16 %A O
A x % xx OO O 0 00O Qg OP ¢ old
A x % %% 6 0o ¢ ¢ ¢ o lojoo ¢  {-394
A x % %% O o o o ¢ o 60O O ¢
A x * O * ¢ o o ¢ ¢ o ¢ ¢ ¢ *
A x  x O ¢ o oo ¢ o oo o ¢
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Frequency [Hz]

=I1
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Fig. 6 Illustration of the stabilization diagram using the Polymax identification method.
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)‘(t) = )‘min + (1 - )‘min) : 27L(t)7 L(t) = round(p : é(t)z) (23)
where p is a design parameter that controls the change rate and the
width of a unity zone, and £(f) is the estimation error, which is
calculated via Eq. (20). The lower bound of A is defined by A,

In Eq. (23), it is shown that when the estimation error e(#) and L(7)
are small, 272 — 1 and A(f) — 1 at an exponential rate, and this
rate is controlled by p. When &(¢) increases to infinity, A reaches its
minimum value. The RLS minimization is posted as

J(0) =Yy Iy() — 00 p()P 24)
i=1

By choosing the variable forgetting factor, indicated in Eq. (23), the
fast decrease of the inverse correlation matrix P(7) can be avoided at
the beginning of the estimation. In general, this will result in an
accelerated convergence by maintaining a high adaptation at the
beginning of the estimation when the parameters 6 are still far from
the optimal value.

VI. Application to the Closed-Loop F/A-18
Active Aeroelastic Wing Linear Model
A. Linear Aeroelastic Solver Formulation Approach

A unified aeroelastic formulation to take into account the influence
of aeroelastic effects on the flight dynamic behavior of the whole
aircraft has been developed in [23].

A general formulation of a flexible aircraft with respect to a body-
fixed reference system driven by aerodynamic, thrust, and gravity (g)
forces and moments can be defined as

miVy +Q, x V, = Ry (E)[0,0, g]"} = Fy + Fs + Fr + Ap
IS+, xJIQ, =M, +Ms+ My + Ay, (25)

where, m and J are the air vehicle mass and inertia tensor, and R, o (E)
is the rotation mapping from the inertial to body axes (E = [¢, 6, ¥]).
Equation (25) is driven by the forces and moments on its right-
hand side, where F, and M 4 are the external aerodynamic forces and
moments on the air vehicle. F, and M, are a function of the
aerodynamic flight states (V, o, 8, E, . . ., etc.), Mach number, body
angular rates (£2,), and control surface deflections and are usually
obtained by wind-tunnel or flight tests. In either case, the quasi-
steady influence of the deformed air vehicle is included by con-
sidering flexible-to-rigid ratios or parameter identification (PID)
techniques, [24,25]. F5 and Mj are the aerodynamic forces and
moments from the control surfaces commanded by the flight control
system and pilot inputs, whereas F; and M include the thrust loads.
In addition, Ay and A, are the aeroelastic incremental loads due
to the structural deformation. Usually, these loads are assumed to be
quasi statics and can be computed by a static aeroelastic analysis.
However, this quasi-static assumption may not be sufficient for a
highly reconfigurable and flexible aircraft like the new generation of
morphing unmanned aerial vehicle, HALESs, etc., for which the
interaction between the dynamic structural deformation due to
unsteady flow and rigid-body motion can play an important role.
During the integration process, the aeroelastic equations of
motion (EOM) underwent two similarity transformation steps, and
so the generalized coordinates related with the six rigid-body modes
originally defined in the principle axes are mapped into the air-
frame states (stability axes definition). Specifically, for symmetric
maneuvers, the transformation matrix [T],,,, [23] reads as

T, -1 0 0 0 0 0](x
T, 0 0 1 0 0 0ffu
R, 0 0 0 0 1 0f)h
T.[7]0 -1 0 0 0 0]« (20)
T, 0 0 0 -V VvV oll|6
R, 0 0 0 0 0 1]lg

[Taliong

For an antisymmetric maneuver, [T ], is

T, 10 0 0 0 07y
R, 00 0 0 -1 0/|p
Rl _ |00 0o 0 0 —1|)p
P (Tlov o o o v|[rf *
R, 00 -1 0 0 0 ||¢
R, 00 0 -1 0 0 W
[TaTat

For an asymmetric maneuver, the matrix [7,] € R'>*!2 will be
composed by the proper allocation of the elements that form the rows
and columns of the [T}, and [T}, matrices.

In this new coordinate system, the linear aeroelastic EOM are

(RS i e
s2+ s+
0 Mee 0 Cee 0 Kee Ne
{ |: er(s) Qre (S) } { gu.\' } |: Qrﬁ (S) i|
=qu + 5,
Qer(s) Qee(‘y) Me Qeé(s)
1
n |: % QrG (S) :|U)G} (28)
QeG(s)

where wy; is the gust input; the elastic generalized coordinates 1, , the
input, and the §, vectors are

UZ = [nfw ] nt’Nﬂ ]T7 85 = [8elevv Sailv Srudv e ]T

It should be noted that the equations are only coupled via external
forces and moments. In addition, after the transformation is applied
to the generalized mass matrix of the finite element model, it is no
longer necessarily diagonal. In fact, the submatrix M,, associated
with the rigid-body modes is identical to the mass matrix in the flight
dynamics equation (i.e., the offdiagonal terms contain the products of
inertia):

M,, = diag(mls, J) 29)

Usually, the aerodynamic force coefficient matrix Q(s) is
approximated using the rational function approximation (RFA)
approach as

2 -1
06) =)+ f5s-+ sl + 0151~ [ 1R1) el Gy

where the [A;] (i=0, 1, 2), [D], and [E] matrices are column
partitioned as

[Al] = [Ar Ae Aé] (31)

where i = r, e, § are the airframe-, elastic-, and control-related states.
In this formulation, the [A;] coefficient matrices represent the
quasi-steady aerodynamic forces, and the remnant terms are used to
model the flow unsteadiness by the Padé approximation.
Using the minimum state approach during the RFA implemented
inthe ZAERO/ASE module [26], and due to the performed similarity
transformation, the aerolag terms are computed as

E:a.v
. Vv
th) = R+ (B By Ei Eul 501 ()
8[1
o =[D)x ) (33)

By including Egs. (30) and (32) into Eq. (28), the aeroelastic EOM
can now be easily partitioned in accordance with the airframe DOF,
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elastic dynamics, aerodynamic lag terms, a set of control inputs, and
gust perturbation as

éas Afu.s Aé s 0 0 0 Eus
ém Arro Arr, Areo Are, ArL éas
at=| 0 0o o 1 0 [{n
Ne Aero Aer. Aeeu Aee| AeL Me
Xy, E. E, 0 E, %R XL,
o0 0 0 0 0
Bro B’l Brz 8“ Tl Tw2
+10 o o [ds&t+l 0 o { .G} (34)
Wg
B€0 BFl sz 8“ Ble w2
L0 Ep O 0 Eg

where A; , Ag s and E; , are coupling matrices due to the similarity
transformation executed. Now, the aeroelastic incremental loads A F
and A, should be implemented in a way to allow a seamless
integration between the nonlinear flight dynamics and the linear
aeroelastic EOM. In fact, this can be easily achieved in accordance
with the partitions [shown in Eq. (34)] between the rigid, elastic,
and aerodynamic lag dynamics. Hence, the aeroelastic incremental
loads are computed similarly to the approximation given by
Eq. (30):

Ap _ L. L?
|:AMj| =qoo{A0,,4ne +A1,(V7/e +A2WW77€ +DrexLe (35)

Clearly, to implement this algebraic equation, the generalized
coordinate 7, = 1, —1,,, its rate 1,, its acceleration 7j,, and its
vectors, as well as the aerodynamic lag terms related with the elastic
modes x;,_, must be estimated at each time iteration.

Decoupling the airframe state &, and the aeroelastic state 7,
requires the decoupling of the aerolag states x; from the airframe
state £,, and the aeroelastic state 1,. According to Eq. (32), the
following augmented equation is devised to decouple the generalized
coordinate’s aerolag terms:

Ea s

{XLH\}_ %R 0 {me}_’_ EL* ELr 0 ELe éa,r
i 0 YR |\x, 0o 0 0 E,||n

e
0 05E; 0] “ 0 05E,; |(w
0 0.5E;5 O 0 0.5E,; | g

ii

S O O

Lo | _ RO
{ZLF }—[D D]{ X } 37

In this way, only elastic lag terms are considered to avoid any
possible coupling with the rigid-body airframe related states (i.e., &,
and &,, ). Now, the following differential equation is obtained,
combining the lower partition of Eq. (34) with the newly devised
Eq. (36):

7, o I 0 0 ”
e Acey Acey, A Au 1.
i [T 0 E. YR o0 ||
Xy, 0 E,., O %R Xy,
0007 0 0
B, B, B, ’ Acy Aer, | | 8.
o ose o |7 B Bl |5
L 0 05E, 0 %7 0 0l
By B,
-0 0
Byt Bewn We
10 0sEy {wG} %)
L 0 05Eg] v
Bs

where 8 and §, are defined as the incremental airframe states and
inputs (perturbation from trim values):

55«: = é:as - %-as\o (39)

Sy =u—uyp (40)

€45, and u being the airframe state and input vectors computed at
some specific trim condition ab initio of the simulation run. Using a
short notation form, Eq. (38) can be expressed as

xe:Axe‘f’BlSUJl‘BzSg‘i‘B:;w (41)

The previous equation is used to estimate the elastic and lag states as a
function of the incremental control input (87, = [§7, 67, §%]") and
incremental airframe states (8 = [&] | 5; ]") at each time iteration.

The quasi-static elastic deformation 7,, is computed by static
residualization of the elastic modes; that is, the 1, =7j, = x;,, =0
condition needs to be fulfilled. Therefore, the quasi-static elastic
influence is estimated from Eq. (41) as

fce=0=>xe=—A71(BI(SU+BZ(3Xi—|—B3w) (42)

and from x,, the quasi-static elastic influence vector 7,, can be
recovered.

In summary, the linear aeroelastic solver will be built based on the
following:

1. Apply algebraic Eq. (35) to compute the incremental aeroelastic
loads Ay and A,,.

2. First-order differential Eq. (41) is used to compute the
generalized coordinate-related vectors 17,, 1,, and 7j,, as well as the
aerodynamic lag terms related with the elastic modes, x; .

3. Apply algebraic Eq. (42) to estimate the quasi-static defor-
mation vector 7, at that specific flight condition.

Figure 7 illustrates the interconnection of the F/A-18 AAW 6-DOF
dynamics subsystem, the incremental aeroelastic solver, the control
surface mixer, and the control command transform blocks.

B. Closed Loop F/A-18 Active Aeroelastic Wing Linear Model
with Gust Excitation

To demonstrate the proposed feedforward filter design algorithm,
a simplified closed-loop F/A-18 AAW linear Simulink model with
gust excitation is developed/implemented for the evaluation
purposes. This high-fidelity aeroelastic model was developed using
the following elements:

1) Six-DOF solver is generated using an Euler angles subsystem.

2) The generic flight control law is implemented.
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Fig. 7 Addition of the incremental aeroelastic loads solver to the nonlinear rigid-body 6-DOF subsystem.

3) Actuators and sensors are used. given as Tpp(s) = e Where a =200 rad/s is chosen in the
4) Aerodynamic forces and moments subsystem is created, using remainder of the section.
the set of nondimensional stability and control derivatives obtained The Dryden vertical velocity shaping filter is given as

through a set of AAW PID flight tests.

5) An incremental aeroelastic load solver is built, including gust V31 Tg s+ T;,

excitation generated by the ZAERO software system, using RFA T(s) = 0w, (s+1 /fg)2
techniques.

For continuous vertical gust perturbation, a low-pass filter where 7, = L, /v (L, = 1750 ft), and V is the aircraft body axis
followed by a Dryden vertical velocity shaping filter is used to shape velocity; 0,,, = 100 ft/s.
the power of the gust perturbation. The low-pass filter is used to For a more detailed development of the F/A-18 AAW Simulink
obtain the derivative of the gust perturbation. The low-pass filter is model with gust excitation, please refer to the NASA Small
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Fig. 8 Closed-loop F/A-18 AAW linear Simulink model.
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Business Innovation Research (SBIR) Phase 1 final report [27]. The
implementation of the adaptive feedforward control algorithm to the
linearized F/A-18 AAW Simulink model is illustrated in Fig. 8. It
should be noted that, during the simulation study considered in this
paper, the dynamics of the airborne LIDAR turbulence sensor have
not been considered. We assume that a perfect gust perturbation can
be measured by the airborne LIDAR turbulence sensor (i.e., the
sensor dynamics have an ideal constant dynamic of 1). However,
the practical effects of the airborne LIDAR turbulence sensor on the
performance of the feedforward controller have to be addressed in a
future study.

C. Implementation of the Adaptive Feedforward Control

The construction of the feedforward controller can be separated
into two steps: initialization and recursive estimation of the filter. In
the initialization step, a secondary path transfer function G(g) is
estimated, which is done by performing an experiment using an
external signal injected into the left and right trailing edge flaps as the
excitation signal and the error signal e(f) as the output signal.
Because é(q) is only used for filtering purposes, a high-order model
can be estimated to provide an accurate reconstruction of the filtered
input i4(7) via

it /() = G(g)w(r) 43)

as described in Eq. (4).

To facilitate the use of the ORTFIR filter, a set of modal parameters
needs to be extracted to build the ORTFIR filter using the frequency
domain Polymax identification methodology in Sec. IV. With i (1)
given in Eq. (43), and d(#) = H(q)w(r) in place, the modal
parameters can be easily estimated using the Polymax method. With
the signals d(r) and i/(r) and the basis function B;(g), a recursive
minimization of the feedforward filter is done via the recursive least-
squares minimization technique, described in Sec. V.

The error signal e(7) can be selected as the vertical accelerometer
reading at the aircraft left/right wing folder positions (i.e., Nzy,003r
or Nzy,.032)- An alternative choice could be

e(f) = [Nzkmozsk ‘; Nzpmoose Nchi| (44)

In this paper, Eq. (44) is served as a feedback signal for the
feedforward filter design purpose. The advantage of choosing
Eq. (44) is that the rigid-body dynamics can be partly removed, and
the vertical wing bending is still observed.

Upon initialization of the feedforward controller, a 20th-order
ORTFIR model é(q) was estimated in order to create the filtered
signal @1 /(¢). The amplitude bode plot of the estimated é(q) is shown
in Fig. 9.

The modes used to build the orthonormal basis B;(g) are extracted
from the stabilization diagram in Fig. 10. From Fig. 10, five elastic
modes can be extracted, and they are shown in Table 4.

For implementation purposes, only L =2 parameters in the
ORTFIR filter are estimated. With a 10th-order basis B;(g), this
amounts to a 20th-order ORTFIR filter. To evaluate the performance
of the proposed ORTFIR filter for feedforward compensation, a 20th-
order FIR Filter is also designed to reduce the vertical wing vibration.

For a clear performance comparison between the FIR filter and the
ORTFIR filter, the frequency response of the Nz,,023z and Nz;,,0231
using the FIR filter and the ORTFIR filter are plotted in Figs. 11 and
12, respectively. The solid line in Fig. 11a is the auto spectrum of the
accelerometer measurement Nz;,,023z Without a feedforward con-
troller integrated in the system; the dashed line in Fig. 11a indicates
the auto spectrum of the accelerometer measurement Nzy,,003z With
the adaptive feedforward controller, using the FIR filter added in the
system; the dotted line in Fig. 11 shows the auto spectrum of the
accelerometer measurement Nzy,,0.3z With the adaptive feedforward
controller using the ORTFIR filter added in the system. Figure 11b is
the zoomed in plot of Fig. 11ain the frequency range of [4 30] Hz. It is
clearly seen that with the ORTFIR filter, a better magnitude reduction

Frequency Transfer Function
- — — Estimated Second Path Model

Magnitude [Db]

0 10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

Phase [deg]

0 10 20 30 40 50 60 70 8 90 100
Frequency [Hz]

Fig. 9 Bode plot of the estimated 20th-order secondary path model
G(9).
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Fig. 10 Stabilization diagram.

of auto spectrum of Nzj,gs3r can be obtained in most of the
frequency range compared with the FIR filter. Similar performance
could also be observed in regard to Nzj,03., Which is shown in
Figs. 12a and 12b.

The corresponding time responses are illustrated in Figs. 13 and
14. Figures 13b and 14b are the zoomed in plots of Figs. 13a and
14a, respectively. These time responses clearly demonstrate that,
with the adaptive feedforward controller using an ORTFIR filter, a
better structural vibration reduction can be obtained. From these
figures, it is clearly demonstrated that both the FIR filter and the
ORTFIR filter are efficient to reduce the normal acceleration at the
left wing folder position and the right wing folder position. With
the use of the both the ORTFIR filter and the FIR filter, the spectral
content of the Nzj,03r and Nzp,0s; have been reduced
significantly in the frequency range from 2 to 20 Hz. However, with
the use of the ORTFIR filter, more efficient vibration reduction
performances are expected compared with the FIR filter.

Table 4 Estimated modes of feedforward filter using
an FFT-based Polymax method

Mode number Polymax identification

Frequency, Hz Damping ¢, %
1 5.9246 45311
2 10.083 4.182
3 13.602 10.072
4 18.377 2.7409
5 21.569 25183
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Fig. 11 Spectral content estimates of the Nz;,,0,3z Without control (solid), with control using the 20th-order FIR filter (dashed), and using the 20th-order
ORTFIR Filter (dotted).
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Fig. 12 Spectral content estimates of the Nz;,,,3; Without control (solid), with control using the 20th-order FIR filter (dashed), and using the 20th-order
ORTFIR filter (dotted).
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Fig. 13 Time domain response of the Nz;,,0,3z Without control (solid), with control using the 20th-order FIR filter (dashed), and using the 20th-order
ORTFIR filter (dotted).
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Fig. 14 Time domain response of the Nz;,,,3;, without control (solid), with control using the 20th-order FIR filter (dashed), and with control using the
20th-order ORTFIR filter (dotted).
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VII. Conclusions

In this paper, an adaptive feedforward control methodology has
been proposed for the active control of gust load alleviation using an
ORTFIR filter. The ORTFIR filter has the same linear parameter
structure as a taped delay FIR filter, which is favorable for (recursive)
estimation. The advantage of using the ORTFIR filter is that it allows
the inclusion of prior knowledge of the flexible mode information of
the aircraft dynamics in the parametrization of the filter for better
accuracy of the feedforward filter.

In addition, by combing the flight dynamics model for rigid-body
dynamics and an aeroelastic solver for aeroelastic incremental loads
to accurately mimic inflight recorded dynamic behavior of the air
vehicle, a unified integration framework that blends flight dynamics
and the aeroelastic model is developed to facilitate the preflight
simulation.

The proposed methodology in this paper is implemented on an F/
A-18 AAW aeroelastic model developed with the unified integration
framework. The feedforward filter is updated via the RLS technique
with the variable forgetting factor at each time step. Compared with
a traditional FIR filter and evaluated on the basis of the simulation
data from the F/A-18 AAW aeroelastic model, it demonstrates that
applying the adaptive feedforward controller using the ORTFIR
filter yields a better performance of the gust loads alleviation of the
aircraft.
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