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ABSTRACT 

Improving storage density by means of an enhanced 

servo system typically requires the reduction of variance 

of the Position Error Signal (PES). The variance of the 

PES is determined by both period and non-repeatable 

disturbances for which the characteristics are often not 

known a-priori during the servo algorithm design. 

Moreover, the servo control algorithm is often limited to 

a standard Proportional, Integral and Derivative (PID) 

controller as more complicated algorithms are viewed to 

be less robust. In this document it is shown how a 

standard (PID) servo control algorithm can be augmented 

with an additional feedback loop that can be tuned 

automatically by estimating the actual disturbance spectra 

seen in the PES. Adaptation to the disturbance spectra is 

done in lieu of possible model uncertainties in the servo 

actuator, guaranteeing stability robustness. As such, the 

control algorithm provides a Robust Estimation and 

Adaptive Controller Tuning (REACT) to disturbance 

spectra to minimize PES variance in high performance 

servo systems in data storage applications. 

1. INTRODUCTION 

Optimizing servo controllers for high performance data 

storage applications require an intricate tuning 

performance in terms of Position Error Signal (PES) 

variance minimization, while maintaining robustness. 

PES variance minimization is required to improve storage 

density, while performance robustness is the mathemati-

cal concept of guaranteeing that a single and well de-

signed algorithm is guaranteed to yield the same 

performance on a large class of servo actuator with 

similar dynamical properties. Obviously, performance 

and robustness are often conflicting requirements [1], 

unleashing the need to compromise performance to 

ensure, at least, stability robustness. In addition, for 

optimal tuning of the servo algorithm in terms of PES 

variance minimization, a detailed model is needed of all 

possible disturbances that will be present in the servo 

loop and contribute to PES variance. Such a model can be 

formulated reasonably well for repeatable disturbances, 

but the knowledge on random or non-repeatable 

disturbances is often lacking and only becomes available 

after the servo algorithm has been implemented.  

To facilitate automatic tuning of the servo control 

algorithm to the disturbances seen in the servo loop this 

document proposes a methodology for Robust Estimation 

and Adaptive Controller Tuning (REACT) [2] to 

minimize PES variance in high performance servo 

systems for data storage applications. The algorithm 

formulates the tuning as a perturbation on an existing 

standard Proportional, Integral and Derivative (PID) 

controller and formulates conditions for stability 

robustness by considering a special so-called Youla [3] 

and dual-Youla [4] parametrization and possible 

uncertainty in the actuator dynamics. 

This document gives an overview of the main idea 

behind the REACT algorithm to tune servo controllers for 

data storage systems. Applications of REACT in the field 

of Active Noise Control can be found in [5], while an 

application to a Linear Tape Open (LTO) drive system is 

presented at the MIPE’09 conference [6]. The outline of 

this document is as follows. Section 2 first gives an 

overview of the Youla parametrization used to formulate 

the perturbation of the servo controller. This is followed 

in Section 3 by presenting the results on how model 

uncertainty in actuator dynamics can be incorporated to 

ensure stability robustness during servo controller tuning. 

Section 4 and 5 show how the parametrization can be 

used to tune the servo control algorithm directly on the 

basis of data measured directly in an operational servo 

loop and an example is given in Section 6. 

2. CONTROLLER PARAMETRIZATION 

A well-know result in controller design and 

optimization is the Youla parametrization [3] that allows 

the parametrization of the class of all stabilizing feedback 

controllers C for a given dynamical system G by a single 

stable dynamical system Q. The parametrization is given 
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in terms of coprime factorization of the dynamical system 

G and the feedback controller C that are defined as 

follows for Single Input, Single Output systems. 

Definition 1 (right coprime factors): Consider the pair 

of stable transfer functions ),( DN . The pair ),( DN is a 

right coprime factorization (rcf) of G if the following 

three items hold: 

a. there exists a pair of stable transfer function 

),( YX  such that 1=+ YDXN ,  

b. 0}det{ ≠D  and 

c. 1−= NDG  ◊ 

According to Definition 1, coprime factors ),( DN  are 

always stable transfer functions and item a. guarantees 

they do not have common unstable zeros, whereas item b. 

and c. guarantee that G can be written as the product of N 

and the inverse of D. A similar definition can also be 

given for the coprime factors ),( cc DN  of the feedback 

controller 1−= cc DNC . With the definition of coprime 

factors, the Youla parametrization [3] applied to a servo 

system reads as follows. 

Definition 2 (Youla paramerization): Let ),( DN  be a 

rcf of an actuator transfer function G and let ),( cc DN  be 

a rcf of a an initial feedback controller C that stabilizes G. 

Then all controllers 
QC  of the form 

1−= QQQ DNC  with 

DQNN cQ +=  and 

NQDD cQ −=  

(1) 

where Q is any stable transfer function, stabilize the same 

actuator transfer function G.  ◊ 

The Youla parametrization is a powerful result, as it 

allows us to parametrize all stable controllers for a 

specific servo actuator dynamics G via (right) coprime 

factors and a stable perturbation Q. Hence, as long as we 

keep the transfer function Q stable, the newly tuned or 

perturbed controller 1−= QQQ DNC  in Definition 2 will 

still stabilize the actuator dynamics G.  

The use of coprime factors is required for unstable 

actuator or controller dynamics to avoid the cancellation 

of unstable poles and zeros in our feedback loop during 

controller perturbations. However, the Youla 

parametrization can be simplified in case both the 

actuator dynamics G and the initial feedback controller C 

are known to be stable. With a stable actuator G, we 

obtain the trivial choice )1,(),( GDN =  for the rcf of G, 

while for a stable initial controller C we may choose 

)1,(),( CDN cc =  for the rcf of C. In that case, the newly 

tuned or perturbed controller 1−= QQQ DNC  in Definition 

2 will simplify to 

)1/()( GQQCCQ −+=  (2) 

and writing the newly tuned or perturbed controller 
QC  

as a feedback connection of the stable transfer function Q 

and the actuator model G. Again, as long as Q is stable 

the controller 
QC  stabilizes G.  

As a final note, the assumption of a stable actuator G 

also allows the initial controller C to be chosen as 0=C  

as a stable actuator G does not require a controller for 

stabilization. In that case 
QC  can be simplified further to 

)1/( GQQCQ −=  (3) 

However, any information on an initially designed 

controller C used in the stabilization or control of the 

actuator dynamics G can be used in the parametrization 

of the newly tuned or perturbed controller 
QC . 

3. ACTUATOR UNCERTAINTY 

The Youla parametrization as given in Definition 2 

assumes no modeling error or uncertainty on the (stable) 

actuator dynamics G to ensure stability of the newly 

tuned or perturbed controller 
QC  in (1) or (2). As a result, 

the only requirement for stability robustness is the 

stability of the perturbation Q in (1). In case of actuator 

uncertainty, an additional constraint on the actual “size” 

of Q will have to be imposed to guarantee stability 

robustness.  

The bound on the size of Q for stability robustness 

depends on how the uncertainty on the actuator dynamics 

G is described, e.g. additive or multiplicative uncertainty. 

However, describing the uncertainty on the actuator 

dynamics G also in a coprime framework allows a clear 

computation of the upper bound on the size of the 

perturbation Q. Following the ideas of a double-Youla 

parametrization [7], the following main result is given 

here. 

Corollary 1 (stability robustness for dual-Youla): Let 

),( DN  be a rcf of an nominal actuator transfer function 

G and let ),( cc DN  be a rcf of a an initial feedback 

controller C that stabilizes G. Now consider a stable 

uncertainty ∆ perturbing 1−= NDG  to 
∆G  given by 

1−
∆∆∆ = DNG  with 

∆+=∆ cDNN  and 

∆−=∆ cNDD  

(4) 

where ∆ is unknown but bounded by an H∞-norm 
1−

∞
<∆ γ . Then the uncertain actuator dynamics 

∆G  

with the controller perturbation 
QC  given in (1) yields a 

stable feedback system for all 1−

∞
<∆ γ  if and only if Q 

is stable and γ≤
∞

Q . ◊ 

The result in Corollary 1 indicates that next to the 

stability requirement of Q mentioned in Definition 2 we 

now also have a size constraint on Q measured by an 

H∞-norm. If we have no uncertainty, ∞=γ  and only the 

requirement on the stability of Q remains.  

The uncertainty ∆ on the nominal actuator dynamics G 

is structured according to a dual-Youla parametrization, 

as indicated in Figure 1. Although unfamiliar at first, it 

has been shown to have many favorable properties [7] 

compared to standard additive or multiplicative 

uncertainties. Similar to the argumentation used for the 

Youla parametrization, it can be seen that a stable 

nominal model G with a rcf )1,(),( GDN =  with an 
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initial controller 0=C  reduces  the uncertainty descrip-

tion in (3) back to a simple additive uncertainty 

∆+=∆ GG . However, any information on an initially 

designed controller C used in the stabilization or control 

of the actuator dynamics G can be used in the uncertainty 

description of the uncertain actuator dynamics 
∆G .  

4. AFFINE OPTIMIZATION 

Next to providing a parametrization of all stabilizing 

controllers, the Youla parametrization in (1), and its dual 

form for uncertainty representation, provides an another 

advantage for controller adaptation: all closed-loop 

transfer function are linear in the controller perturbation 

Q of (1). This can be seen as follows. 

Consider the output sensitivity function or transfer 

function S from the input disturbance d to the output 

signal or PES e in Figure 1 given by 

)1/(1 CGS ∆+=  (5) 

Assuming the nominal actuator model G is stable, allows 

substitution of 
QCC =  given in (2) to modify the 

sensitivity function S in (5) to 
QS   

)1()1/()1( QGSCGQGSQ ∆∆∆ −=+−=  (6) 

and indicating that the closed-loop transfer function that 

models the disturbance rejection (sensitivity function) is 

linear in the controller perturbation parameter Q. A 

similar result can also be obtained when using the full 

freedom in right coprime factorization, allowing the 

nominal actuator model also to be unstable.  

The Youla parametrization allows affine optimization 

techniques to, for example, minimize the 2-norm or 

∞-norm of the (weighted) sensitivity function S as a 

function of Q. Moreover, direct minimization of the 

variance of the PES e can be used for a 2-norm, allowing 

direct data-based closed-loop tuning of a minimum 

variance controller [8] computed via the controller 

perturbation parameter Q. For that purpose, the transfer 

function Q(q) must also parametrized in a linear affine 

form and here Q(q) is chosen to be parametrized via a nth 

tap discrete-time Finite Impulse Response (FIR) filter 

∑
=

−=
n

k

k qqQ
1

1),( θθ  (7) 

where q denotes the time shift operator and 
kθ the 

parameters to be estimated in the FIR filter. The 

parametrization of the controller CQ(q) in (2) and ),( θqQ  

in (7) provides a rich class of controllers that does not 

necessarily require a specific parametrization of noise 

models to tune the feedback controller [9]. 

5. CLOSED-LOOP AND DATA-BASED TUNING 

For computational purposes, the variance of the PES e 

given in Figure 1 is given by 

∑
=

=
N

t

tee
1

2 )(}var{  (8) 

and computed over a final time interval of N data points. 

To minimize the variance of the PES e as depicted in 

Figure 1 and to use the affine optimization result given in 

(6) and (7) we need access to specific closed-loop signals 

for direct data-based tuning of the controller perturbation 

parameter ),( θqQ . Assuming disturbances that influence 

the variance of the PES e occur as an additive output 

disturbance d as indicated in Figure 1, we see that 

)()()( tdqSte Q=  (9) 

and substitution of 
QS  in (9) yields 

)()()(),()()(),( tdqSqGqQtdqSte ∆−= θθ  (10) 

so that minimization of the 2-norm of the time domain 

signal ),( θte  using the affine parametrization in (7) 

requires access to the two closed-loop signals 

)()()( tdqSty =  and 

)()()()()()( tyqGtdqSqGtv ∆∆ ==  
(11) 

The signal y(t) given in (11) is readily available, as this is 

the PES when the initial controller C is implemented in 

the feedback loop or 0),( =θqQ . For the computation of 

the signal v(t) we need the (perturbed) actuator model 

)(qG∆
 that can be approximated by the nominal model 

G(q) that is used also for the computing the perturbation 

of the controller C  to 
QC  given in (2). The availability 

of the signals y(t) and v(t) defined in (11) now allows the 

minimization of the variance of the PES as function of 

the parameter θ of the FIR filter ),( θqQ  via 

∑
=

−=
N

t

tvqQty
1

2)](),()([minargˆ θθ θ
  

and becomes a standard Least Squares (LS) optimization 

for the affine parametrization of ),( θqQ  given in (7). 

The LS optimization can be implemented recursively [8] 

to facilitate adaptive tuning of the controller, but special 

Fig. 1: Block diagram of combined controller perturbation according to (1) and actuator uncertainty given in (4). 
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conditions on the rate of change in the parameters θ has 

to be imposed to guarantee stability of the resulting time 

varying system [2]. 

It should be noted that the LS optimization aims at 

minimizing the variance of the PES resulting in large 

control signals for the minimum variance controller [8]. 

To avoid large control signal, an additional penalty on the 

control signal 

)()()()( tdqSqCtu Q=  (12) 

can be imposed by including a (filtered version) of u(t) in 

(12) in the minimization of (11). Alternatively, control 

signals can be limited by adding an additional fixed filter 

stable and stably invertible F(q) into the controller 

perturbation 

)(),(),( qFqQqQF θθ =  (13) 

and possibly including the inverse of F(q) in the filtering 

of y(t) as used in the LS optimization. 

6. EXAMPLE 

Practical implementations of REACT have been 

reported in [5] and at the current MIPE’09 conference [6]. 

To illustrate the main concepts in this paper, a simulation 

example is used to illustrate the power of the REACT 

algorithm, as it allows direct tuning of the feedback 

controller with respect to disturbances. For the example 

in this paper we consider the Zero Order Hold (ZOH) 

equivalent of a continuous-time 4th order servo actuator 

model sampled at 10 kHz 

)2)(2(
)(

2

222

22

111

2

2

2

2

1

ωωβωωβ

ωω

++++
=

ssss

K
sG  

 

with 

100=K , 101 =ω rad/s, 3

2 10=ω  rad/s,  

211 =β  and 1.02 =β  

(14) 

that models a low frequency friction or flex cable mode 

and a high frequent poorly damped resonance mode. The 

actuator model is controlled by a 1
st
 order discrete-time 

Proportional Derivative (PD) controller sampling at 

10kHz and given by 

95.0

995.0
10)(

−

−
⋅=

q

q
qC  (15) 

creating a feedback loop with a gain margin of 9dB at 

approx. 823 rad/s and a phase margin of 55.8 deg at 

approx. 200 rad/s.  

For simulating the effect of REACT, a low-pass filtered 

unit variance white noise )(tε  together with a sinusoidal 

signal of 10Hz are used to create an additive disturbance 

)102sin(1.0)()()( ttqLtd ⋅+= πε  (16) 

where the low-pass filter )(qL  is a 4
th

 order dis-

crete-time Butterworth filter with a cutoff frequency of 

125 rad/s. Simulating the performance of the initial 

controller )(qC  in (15) in feedback with the ZOH 

equivalent of )(sG  in (14) yields the disturbance d(t) 

and PES e(t) depicted in Figure 2. Although there is 

disturbance attenuation, the existing PD controller 

)(qC in (15) has obviously not been optimized for the 

non-repeatable and low frequent periodic disturbances 

seen in the feedback loop.  

To optimize the feedback controller using the REACT 

algorithm, the controller )(qC  in (15) is perturbed to 

)(qCQ
 in (2) with only a 10

th
 order FIR filter ),( θqQ  in 

(7). To limit the control signal u(t) during the variance 

minimization of REACT, the filter F(q) in (13) is chosen 

as a low-pass 4
th

 order discrete-time Butterworth filter 

with a cutoff frequency of 1000π rad/s. Simulating the 

performance of the perturbed controller )(qCQ
 in (2) in 

feedback with the ZOH equivalent of )(sG  in (14) yields 

the end result depicted in Figure 3. 

 

It can be seen from the simulation that REACT improves 

the variance of the PES e(t), at only a small increase of 

Fig. 2: Simulation results for rejection of disturbance 

d(t) given in (16) for the initial controller C(q) given 

in (15). Top figure: actual disturbance d(t) and PES 

e(t). Bottom figure: control signal u(t). 

Fig. 3: Simulation results for rejection of disturbance 

d(t) given in (16) for the optimized REACT controller 

CQ(q) using a n=10 order FIR filter in (7) .  
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the control signal u(t). A comparison of the Bode plots of 

the initial controller C(q) in (15) and the controller 

)(qCQ
 in (2) is given in Figure 4.  

From Figure 4 it can be observed that the controller 

)(qCQ
 found after the optimization has increased the 

overall gain to provide non-repeatable disturbance 

rejection and created additional gain at low frequencies to 

target the low frequency disturbances.  

The improvement in disturbance rejection can also be 

seen in Figure 5 in which a comparison is made between 

the sensitivity functions S(q) in (5) and SQ(q) in (6). The 

additional gain at low frequencies in )(qCQ
 emulates an 

integrator that was missing in the PD controller C(q) and 

now creates a feedback loop with a gain margin of 

8.25dB at approx. 3500 rad/s and a phase margin of 52.3 

deg at approx. 865 rad/s. The advantage is that the 

resulting controller )(qCQ
 was found by automatic 

tuning based on data obtained from the closed-loop 

system using the initial controller C(q). 

7. SUMMARY AND CONCLUSIONS 

An initial (PID) servo control algorithm can be 

augmented with a Youla parametrization based pertur-

bation to formulate a self-tuning algorithm for a servo 

controller. For actuator dynamics that can be modeled by 

a stable transfer function, the parametrization is 

formulated as a feedback loop that uses the actuator 

model and a free, but stable, perturbation transfer 

function given by an Finite Impulse Response (FIR) filter. 

The parameters of the FIR filter can be found by an affine 

optimization based on closed-loop data to optimally tune 

the perturbed feedback controller. Uncertainty on the 

actuator model can be incorporated by bounding the 

allowable controller perturbation to provide a Robust 

Estimation and Adaptive Controller Tuning (REACT) to 

disturbance spectra to minimize PES variance in high 

performance servo systems in data storage applications.  
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Fig. 4: Amplitude (top) and phase (bottom) Bode plot 

of the initial controller C(q) and the optimized 

controller CQ(q) found via REACT. 

Fig. 5: Amplitude Bode plot of the initial sensitivity 

function S(q) in (5) and the optimized sensitivity 

function SQ(q) in (6) found via REACT. 


