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ABSTRACT Today, the same principles are studied in discrete timetrepe
In this paper we develop a data based model, design a high itive and learning control literature [5]. The same corist&a
performance robust controller, and apply the controller@al- upon the system are needed as well as knowledge of the distur-

time to reduce narrowband acoustic noise from a cooling fan.  bance model. In practice, it is very difficult to precisely aebd
custom, portable enclosure houses the cooling fan. One &nd o the disturbance frequency and therefore many methods weere d
the enclosure is fitted with four speakers and four microgison  veloped to design controllers that were robust againstthier-
inside of a short duct, connected to a data acquisition syste tainty in the disturbance model or to design controllersitayx to
and a personal computer. Passive materials mounted attfteot  the disturbance. In [6] adaptive repetitive control is utesup-
end of the enclosure reduce backside noise. The frequetiog of  press vibrations. In [7] an equivalence between time-veyyi-
narrrowband noise is assumed unknown and therefore a dontro ternal models and adaptive feedforward control is showr8]in
design that can be updated in realtime is needed. The control the internal model is updated to cancel an disturbance with a
design that is presented uses a nominal model and a nominal unknown frequency. In [9] the adaptive internal model piple
controller. The nominal controller is enhanced by usingseld is discussed.

loop signals and taking into account the modeling error. €hd
result is a data-based method for updating a nominal colarol
to improve performance.

Landau et al. [10] used the youla parameterization of all sta
bilizing controllers for a SISO system to update the coterain-
line to reject the disturbance when the disturbance modehwea
completely known. It was assumed that the plant model was ex-
INTRODUCTION actandthe distu_rl_)ances had pqles on th_e unit circle. Thisa_de
has several benifits, one of which is a linear least squargs op
mization that can be used to enhance the current contralter f
improved performance. The drawback was the lack of robust-
ness that makes implementation difficult.

Many design methods have been developed to create feed-
back controllers that can remove periodic disturbancesthén
1960’s and 70’s much of the focus was on servocompensators
[1-4]. In this work, exact knowledge of the disturbance fre-
guency is required for cancellation to occur. The resultom- In this paper, we present an extention Landau’s work by con-
pensator satisfies the internal model principle [2]. sidering systems with uncertainty. The end resultis a caimsd

least squares optimization to enhance the nominal coetrdlhe
constraint is used to gaurentee robustness and is basedhgon

*Address all correspondence to this author.
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small gain theorem [11]. Obviously, the goals of robustraess
performance are conflicting and therefore there are mang-sit
tions where complete cancellation in the presence of uaiceyt

is not possible. To deal with this problem, we present a aesig
methodology to pick a model and nominal controller that can
gaurentee regulation over a frequency range.

The control design is applied to cancel acoustic noise emit-
ting from a cooling fan. Input/ouput data is used to fit a naghin
model and design a nominal controller. Robustness andaegul
tion analysis is used to verify the accuracy of the nominstey
and a simplified algorithm is used to update the controlleein
altime from closed loop signals. In the end, the canceltatib
narrowband disturbances is accomplished in a system with un
certainty and without knowledge of the disturbance fregyen

PROBLEM FORMULATION
General Problem

The general problem we are considering is shown in Fig. 1.
In this figure, the plan, is subjected to narrowband distur-
bancesd with an unknown frequency, magnitude, and phase.
The goal of the control design is to find a control@rthat will
stabilize the feedback system and rejects the narrowbaiatdi
bances.

—Cp

A

Figure 1. General control problem under consideration.

A model of the systen®y is obtained from data and a nom-
inal controllerC is designed that stabilizes the nominal feedback
system. In the case of stalilg, the controller can b€ = 0. The
idea is to perturlC to obtain the desired goals. To accomplish
this, the youla and dual-youla parameterizations will bedusi-
multaneously. Before we proceed with the control design vile w
first describe the acoustic system in more detail.

Acoustic System

Fig. 3 shows the layout of the acoustic system that we are

considering in this paper. The fan is used to cool the enodgsu

like a server or PC. However, due to the high speed of the fan,
acoustic noise is created. To combat the acoustic noisakspe

are mounted near the fan and feedback microphones are placed
near the speakers and downstream of the acoustic noise- To re
duce vibrations and turbulent noise the microphones arentadu

in acoustical foam. Additionally, for simplicity, the mmphone
signals are summed together and used as a single signagtbr fe
back. Similarly, the same signal is sent to the speakersasovi

are dealing with a single-input-single-output system.

The fan creates two types of noise: broadband and narrow-
band noise. The narrowband noise is due to the blade pass fre-
quency (BPF) of the fan and is comprised of a fundamental fre-
quency and several harmonics. The broadband noise is due to
turbulence. Both types of noise are dependent upon the speed
of the fan. When the RPM of the cooling fan is increased the
BPF increases causing the fundamental frequency to irereas
Likewise, when the RPM increases, the turbulence incresses
therefore the broadband noise level will increase.

The fan noise is shown in Fig. 2. In this figure, it should
be clear that the fundamental frequency is approximatey 86
Hz and the broadband noise decreases as frequency increases
The goal of the active noise control system is to reduce the na
rowband acoustic noise. The control design that will be used
model-based and therefore before we start a good model of the
acoustic system is needed. The method used to obtain a model
and to approximate the model uncertainty will be descrilred i
the following sections.
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Figure 2.
cooling fan.

Power spectral density of the acoustic noise generated by the
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Figure 3. Active noise canceling system used to eliminate the unwanted noise from a cooling fan.

DUAL-YOULA PARAMETERIZATION

Consider representing a pla@t as a perturbation from a
nominal plantGy with the coprime factors of the nominal con-
troller C = Nc.D;* = D, !N, that internally stabilizes the feed-
back system of the nominal controller and nominal plant.sThi
gives the paramterization of all plants that are stabilibgca
given controllelC. The perturbed plant is given by

Go = Ng,Dg? (1)
= DgNa, 2)
3)

whereNg, andDg, a right coprime factors (rcfs) of the uncertain
plant andNg, andDg, are the left coprime factors.

The set of all plants stabilized by a given controller is give
below. From [12] and others

Theorem 1 (Dual-Youla Parameterization). Let G; with
rcf(Nx, Dx) be an auxiliary model that is stabilized by the con-
troller C with rcf(N;,D¢). Then a plant G is stabilized by C if
and only if there exists an R ® #,, such that

Ga = (Nx+ DcR) (Dx — NeR) L.
For a specific plant G the dual-Youla parameter is given by
Ro == D;l(l + GoC)71(60 - Gx)Dx.

In this paper, we are dealing with a SISo open loop stable
system and therefore we may chod@kse= 1 andNy = Gy«. This
implies that

_ Gx+DcRo

Co= T Nk @

This result will be combined with the parameterization of
all stabilizing controllers, called the youla parametatian, to
create a framework in which we may adjust the controller & th
presence of uncertainty.

YOULA PARAMETERIZATION

Next, consider reversing the roles of plant and controller.
This means perturbing a controller about the nominal factdr
the plant. The perturbed or enhanced controller is given by

Ca = Ne, D¢, (5)
=D Ne, (6)
(7)

whereNc, andDc, a right coprime factors of the enhanced con-
troller andNc, andDc, are the left coprime factors.

For a given plant, the set of all stabilizing controllers & b
low.

Theorem 2 (Youla Parameterization). Let C= N.D;! be
an internally stabilizing controller for the plant &= NyDy?,
where (Ng, Dc) and (N, Dx) are both rcfs. Then £= N(;ADgA1
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internally stabilizes the plantifi Q € R #,, s.t.

NCA =Nc+ DXQ
Dc, = Dc— NeQ-

For a stable SISO plant this parameterization can be special
ized by choosing the nominal controllsg = 0, D = 1 (which
is stabilizing) and choosing the coprime factors of the phmn
Ny = Gx andDy = 1. This gives the following parameterization
of all stabilizing controllers

__Q
- 1-GQ

Ca (8)

In the next section the youla and dual-youla parameteriza-
tions will be used simultaneously. This is called the doufaala
parmaeterization [13, 14].

DOUBLE-YOULA PARAMETERIZATION

Putting both the youla and dual-youla parameterizations to
gether gives the double youla paramterization. Suppode tha
there exists a nominal, internally stable, p@iy = NXD;1 and
C = N.D;! then the parameterization of perturbed plants and
controllers is given by

Ca = Ng, D¢, = (N + DxQ)(De — NeQ) *
Ga = Ng,Dg, = (Nx+ DcR)(Dx — NeR) ™+

This parameterization is shown in Fig. 4. Here the controlle
is perturbed by the rcfs of the nominal plant and the plangis p
turbed by the rcfs of the nominal controller.

From [13, 14]

Theorem 3. Let G with rcf(N, Dx) be an auxiliary model that
is stabilized by the controller C with rdfl;,D¢). Then a plant
Go = (Nx+ DcRo) (Dx — NeRo) ~ with R, € RH, is stabilized by
Ca = (Nc + DxQ) (D¢ — NxQ) 1 with Q € RH,, if

|QRlw < 1.

For stable SISO systems, we can choblse= 0, D¢ = 1,
Ny = Gx, andDyx = 1. From Eq. (4) this implies that

Ro = Go — Gx (9)

which is an additive uncertainty. This can be a restricteare-
sentation and by choosing a different nominal controller ol
arrive at a different expression for the uncertainty.

From Eq. (8) the controller parameterization is given by

Q

Chr= .
271-G6Q

Applying this controller to the true system gives the follog/
sensitivity function

1
=0 = 176,00 (o)
1
- (11)
1+Go(q) 176(3((3))Q(Q>
_ 1-Gx(@)Q(9) (12)
1—Gx(9)Q(a) + Go(a)Q(a)
~ 1-Gx(@)Q(q)
~ 1+ Re(@)Q(q) )
1
1+Gx(q)Ca(a) 14
1+Ro(9)Q(0q) -
()
1+ Ro(0)Q(q) ()
whereS, = Wé)%(q) is the sensitivity function for the nominal
plant.

From Eq. (15), it can be seen that nominal and robust perfor-
mance are coupled. For periodic disturbance, this is dgtaal
instance of the internal mode principle [2] sinG&(e/**)| =0
implies S(e/*) = 0 if 5o IS stable. This says that the
internal model principle is robust against any non-degtzibi
perturbations from the nominal system. This parametaoizaif
S(g) andRy(q) will be exploited to reduce disturbances while

maintaining stability.

CONTROLLER DESIGN
Controller Enhancement

The goal of the control system is to reduce the effect that the
disturbance has upon the output of the plant. From Eq. (1), t
output is given by

~ 1-Gx(@)Q(q)

YO = T Ri@)Q)

d(t) (16)

whered(t) is the acoustic noise from the cooling fan. For our
design, we will consided(t) to be periodic. Even though the
true system is not known, we can estimdte).
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Figure 4.

d(t) = y(t) — Gou(t) 17)
=Y(t) — (Gx+ Ro)u(t) (18)
= y(t) — Geu(t) — Rou(t) (19)

and since the nominal controll€r= N.D;* = 0 we get thatl(t)

is trivially measurable with the current controller. Thase tcur-
rent controller, the nominal model, and the closed loopagn
can be used to measuié). After the update has occurredt)
will be biased. This bias ter®d is given below

B(1) = - e ()
which gives
G
dt) =y+ 1_)((§;Xy—5d

We define an estimate dft) by d(t) given by

(20)
(21)

d(t) = y(t) - Gu(t)
= Rou(t) +-d(t)

Let Cp, = % be the controller that is implemented,
then using the sensitivity functiod,can be written as

d(t) = y(t) — Gyu(t) (22)
= (1+GxCay(®) (23)
=1+ GXCAk)%;)SEd(t) (24)

1
= TRode(t) (25)

Double-youla parameterization of Cp and Ga.

From theorem 3,Q should be constraint such that
|Qk(e1®)| < 1/|Ry(el®)| for all w. SinceRy,, Q¢ € RHx, and if we
impose that|R,Qx||- < 1 thend(t) will be nonzero and asymp-
totically the same frequency at). Henced(t) is a good esti-
mator ofd(t), in thatd(t) contains the same frequencies.

We want to minimize the variance gft) that is given by

_1-6(a)Q)

YO = T Ri@)Q)

()

However,Q(q) appears nonlinearly in the output equation and
d(t) is not known. This means that we cannot pose an optimiza-
tion in this form. To deal with this let us deno@(q) by the
current filter that is implemented, then

VO = T ) (26)
= (1- Gx(@)Q(@)d(t) (27)

Now we can parameteriZ@ such thaQy(q) = Q(6k,q). In
this form we can search for@such that the variance of

(t,@) = (1—Gx(a)Q(9,q))d(t) (28)
dt) = 1+ Ro(q])-Q(ek T (29)
=y(t) — Gxu(t) (30)

is minimized. Note thay is fixed and we are searching ovgr
This is not equivalent to minimizing(t), but is strikingly close
to a bootstrapping approach. In fagft, @) can be rewritten as

Gx(9)Q(@,q)
Gx(9)Q(6k,q)

£(t.9) = 1 y(t (31)
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where it can easily be seen thatif= 8 thene(t, @) = y(t). The fact thaiX is full rank comes from
We now have two options:

1) Gather a batch of data and update the controller once each Re(X)| %I 3 X
batch. e RS
2) Update the controller every time step.

For the first option, define the following cost function X7 . ) . o
N is a vandermonde matrix and since:Qu < 1rare distinct

1 1

)im %ti[(l—Gx(q)Q(e,q))(f(t)]z it is full rank. [zijll —zzil-l] is full rank, therefore“?ne&;] is full

rank by sylvesters inequality.

Bk 1 is found by the following minimization O

This proposition implies that an fir parameterization €@r
with Ng > 2 is sufficient for regulation of a sinusoid.

Using the batch method of updating the controller, we arrive
at the following theorem.

Oki1= argmin V(N,98) (32)
1Q(6.61%)|<1/[Ro(e®))|

This 6x1 minimizes the output variance of the nominal system Theorem 4 (Batch Update). Suppose thad is fixed with
when disturbed byl(t). Before we proceed, we need to pick a
suitable parameterization fQ. —

Clq) - Q(8,9)
Proposition 1. Suppose that ®,q) is a such that @,q) = A= 1— Gx(q)Q(8,q)
B0+ 012 1 + ... + By, 2 2N FL then given a set of distinct fre-
quencie® < wj <1, i=1,2,...,Ng and a set of complex numbers )
Q € C there exist®;, i = 1,2, ..., 2Ng such that Q(6,0) = 31°,8g~" with N > 2, d(t) = sin(at), y(t) =
Go(q) (t)+d(t), u(t) = —C(q)y(t), and the feedback system is
ey _ stable.
Q(eve ) = Qi7 I = 17 27 LKD) Nd Ch005$* by
Proof. Define 1 N
0" = argmin lim N £(6,1)2 (33)
1 el | g (@a-Dio Q8.1 |<1/|Rofeler) N7 &N ¢
1 e lw2 e*(ZNd*l”wZ
X=1. with £(8,t) = (1— G«(a)Q(6,@)d(t) andd(t) = y(t) — Gyu(t).
Loy g (N1 Then G(q) = % stabilizes G(q) and if
1 N
0" = argmm im = Zl
Q1 8
Q2 _
= 0:= : then
' Bang—1
On, d
’ 1- GO, Q) |
tI|m T R d(t)|=0
then form +R(Q)Q(87.9)
Re(X) ReY) Proof. Suppose thad(t) = sin(wet) and that
9 =
Im(X) Im(Y)

N
: : . . _1 0" = argmm i
X is full rank and invertible and theta is given By= X~Y. 2N £
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happens to stabilize the system. Then siNge> 2 and&(t) is a
sine wave {1 — Gx(q)Q(6,q))d(t) — 0 asN — co. This implies
that 1— G(e/“)Q(el“*) = 0 which means tha, = Q(6*,q)(1—
GxQ(6%,q)) ! satisfies the internal model principle. This implies
thatCx has poles on the unit circle locatedwas or equivalently
1-GxQ(6*,q) has zeros on the unit circle at the same frequency.

When we apply this controller to the true systgth) — 0
since the internal model principle is robust against all -non
destabilizing uncertainty. To see this fact recall from Eip)
that

~1-GxQ(6%,0)

T 1+ RoQ(e*,Q)d(t)

y(t)

which implies that the sensitivity function of the true ssthas
zeros at the frequency of the disturbance and hence bloeks th
disturbance. This proves the second assertion.

The first assertion is proved by applying the small gain prin-
ciple to the output equation. The sufficient condition faislity
is ||RoQ(6*,0)|| < 1, which is the condition used in the theo-
rem. Therefore regulation of the nominal system is the sasne a
regulation for the true system when robustness is satisfied.

O

The batch update theorem says that regulation is guaran-
teed if the batch size is large enough and the uncertaintypad s
enough. When there is no uncertainty, a large batch sizdlis st
needed. Therefore, batch updates are similar with or withou
certainty. The case where the controller is updated everg ti
step is strikingly different and will be considered next.

Consider the situation where a new controller is updated ev-

ery time step. In this cas€y, = % andQ(641,q) is

found by minimizing the variance of

(t,@) = (1—Gx(a)Q(9,q))d(t) (34)
dt) = 1+ Ro(ql)Q(et T (33)
=y(t) — Gxu(t) (36)

In this case, the calculation f and implementation of the new

controller every time step results in a bootstrap algoritiSup-

pose, for a moment, th&,(q) = 0 then the resulting algorithm

is a RLS algorithm and convergence is guaranteed [10]. Tée ca

that we are considerinBo(q) # O results in a algorithm that is

very similar to a recursive pseudo linear regression (RALE)
First, rewritec in a familiar prediction-error form as

S(t, (P) = y(t) - Q((pv Q)G(t) (37)

with ¥ = d andu'= G,d. Sincey anduare measurable signals
(after filtering with known filters) we can pose a standard RLS
algorithm one(t, @). However, this algorithm does not take into
account the robustness requiremp@QR||» < 1 and therefore a
modification is needed. The modification that will be usedés p
sented in th@nline Enhancement Algorithm section. Before
we proceed with the algorithm a nominal model is needed.

System ldentification

Let Go(q), a linear discrete-time transfer function, denote
the true model for regulation. The model of the system is dbun
wia standard system identification techniques [15]. To geee
data that can be used for the identification, a white noiseasig
was sent into the speakers and the resulting signal wasdedor
with the feedback microphones. The input and output data is
shown in Fig. 5 (recall that the microphone signals are syeta
and the speakers are sent the same signal so that a SISO system
results). The microphone signal has some periodic comgsnen
indicating that the acoustic system has some resonancesmode
Note that, the acoustic system is composed of the speakdamp
fier, the speakers, that acoustic between the speaker amd-mic
phone, the microphone, and the microphone filter.

(]
o
oﬁ
58
oo
S
=
-0.1 ‘ : ‘ : ‘
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (sec)
5
gz
g8 O
n
-5 L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (sec)
Figure 5. Input and output data from the acoustic system.

The frequency respongg,(e/®), k = 1,2,...,N, between
the feedback microphones and the speakers is shown in Hig. 6.
this figure it can be seen that the acoustic system has mamy res
nance modes and even some non-minimum phase zeros that will
limit performance. This frequency response function, ivletc
with standard non-parametric methods, will be considendakt
the frequency response of the true system.

From the analysis of th@ filter given in the previous sec-
tions, it can be seen that we dedpeo satisfy two conditions
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Figure 6. Frequency response between the feedback microphone and
speaker.

1. [Q(e®?)] < 1/|Ry(e/®)] for all .
2. Q(e!") = 1/Gy(e!“®) wherewy, is the frequency of the dis-
turbance.

If these two conditions are satisfied then the feedback syste
is stable in the presence of the modeling error and reguladio
achieved.

This criteria also provides a method for determining which
nominal controller and system should be used if regulation i
wanted. The design methodology is outlined below:

1. Fit a model upon the input/output data.

2. Design a nominal controller.

3. If1/Gx(e®) < 1/R,(e/®) for the frequency range of interest
then quit. If not then goto 1.

After several iterations a suitable model was chosen by the

o

20
m
z
= -40
‘T -
(0] P
_60 F . -
80 ‘ ‘ ‘ ‘
10° 10" 10° 10° 10" 10°
1000
g T =
S ~ I
o -1000} Sons
a 1
= Y
o —2000}
-3000 : : : :
10° 10" 10° 10° 10* 10°

Frequency (Hz)

Figure 7. Frequency response of model Gy and the true system Gg.

80

-=-=1/Ro
60 —1/Gx

40

201

Magnitude (dB)

-20 L L L
10° 10" 10> 10° 10*
Frequency (Hz)

Figure 8. Criteria used to choose nominal model and controller.

above design method. Using an ARX model structure [15] and Online Enhancement Algorithm

a Steiglitz-Mcbride iteration a #Dorder model of the acoustic
system was found. The frequency response of the ntégahd
the true systent, is shown in Fig. 7. It can be seen that the
model captures the general trend but does not capture every s
gle feature of the true system, this would take a very higleord
system.

Step 3) of this design method is shown in Fig. 8. In this
figure, it can be seen that regulation is possible from 40@@a94
Hz. Notice that with this model regulation at high frequessads
not possible.

In this section, a simplified algorithm is developed to resluc

the online computational burden. The optimization that we d
sire to solve is

0" = argmin

1 XN .
1Q(8.6%) | <1/ [Ro(el)| 2N Z x( ,0)d(t)]

however the constrainQ(8,el®)| < 1/|R,(el®)] increases the
computational complexity greatly. Instead of solving thisb-

To validate the model a chirp signal was sent into the lem, we will approximate this optimization by applying thene
speaker. The simulation error is shown in Fig. 9. Again, here straint onN; different grid points in the frequency domain and
it can be seen that the model captures the general trend of theby augmenting the cost function. Finally, the gridded craist

data but does not capture every single detail.

will be checked before updating the filter.
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Figure 9. Simulation of model and ouput of true system.

The modified optimization problem is given by

8" = argmin —% 1— Gx(q)Q(a)d(t))>+

Q(8,9)€RHe 2N

ZleigRo(eM)Q(eM)F

and if we choos®) to be an FIR filter as given below
Ng y
Q= i;eiq
then the optimization becomes

0* = argmin i S [(1— Gx(q)Q(q))d(t)]?+
=arg NZ x

A - . fi
" i;|Ro(er‘)|29T [real f;) imag(f;)] [”f;‘é( f?)} 0
where8 =81 6, ,..., By,|T andf, = [l @ . gbia]T,

If d(t) = sin(wet), wherew = 592 Hz then the resulting
Q(6%,q) for Ng = 20 is shown in Fig. 10. It is easily verified that
Q(67,q) satisfies all of the conditions for stability and regulation
The fact thaiQ(8*,q) (el®)| < 1/|Ro(el®)| implies stability and
the fact thatQ(8*,q)(e/“0) = 1/Gx(e/®) implies regulation. It
is also important to point out th&dy = 2 will achieve regulation
will not achieve stability. Therefore, for robustness, acrease
order forQ is needed.

80

o
)
(]
he]
Ei
=
o
[
s
0 L
-20 L L L
10° 10" 10° 10° 10*

Frequency (Hz)

Figure 10. Controller enhancement filter Q for a frequency of 592Hz.

If we further approximate the solution by using the instanta
neous gradient, like the normalized LMS filter [16], then vet g
the following update algorithm.

Bky1 = GOk —

elt) - (38)

T+ X(0)TX(0)

where e(t) = d(t) + 87 X(t), X(t) = Gx(q)[d(t — 1) d(t —
2),..., d{t—Ng)|T,

N¢ . !

andyis the step size. This creates an algorithm with low compu-
tational complexity that aims to remove narrowband disindes

in the presence of uncertainty. To gaurentee stability alchan

be added. 1fQ(8k 1,6/%)| < 1/|Ro(elX)|, k= 1,2, ...,N¢, then
implement the newQy, 1 otherwise not. This gives the following
algorithm for periodic noise reduction.

Algorithm 1 (Robust Periodic Noise Cancellation).
Define

fi= [ej‘*" AL eNej‘*"}T

N¢ ) :
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then for t=0,1,2,... 0

f. - - -Before Control

d(t) = y(t) — Gy(qu(t) -10¢ :i — After Control
6., =Gb —ue(t)L % L

1k 1T+ X(OTX() )
By = J O T QB @)R(E)] < 1 i o

6 if [Q(B),1,&)R(E)| £ 1Vi
CA _ Q(etJrla q)
“1 o 1-Gu(@)Q(Br+1,0)
=70 -
where [ is the step size. Frequency (H2)

Figure 11. Power spectral density of the acoustic noise generated by the
cooling fan before and after feedback control.

EXPERIMENTAL RESULTS

To analyze the control algorithm a separate, external micro
phone was used to measure the performance. The microphone
was located approximatly 6” from the outlet and slightly le t
side to reduce windage.

The algorithm described in the previous section was applied
to the system acoustic system described in the beginninigeof t
paper. The acoustic system is shown in Fig. 3. The fan pro-
duces broadband and narrowband disturbances. The goa of th
feedback system is to maintain stability and reduce theomarr
band disturbances in the presence of modeling error anautith
knowledge of the disturbance frequency.

The microphone signals are summed together and sampled
with a MultiQ3 12 bit signed AD/DA card, a Pentium based P.C.
is used to calculate the control signal, and the controlaign
sent out of the AD/DA card to each of the speakers.

Since the speed of the fan in not known, the closed loop
signals are used to update the nominal controller. Evenén th
presence of uncertainty, shown in Fig. 8, the controllebis #o
maintain stability and reduce the narrowband disturbanthe REFERENCES
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