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ABSTRACT
In this paper we develop a data based model, design a high

performance robust controller, and apply the controller inreal-
time to reduce narrowband acoustic noise from a cooling fan.A
custom, portable enclosure houses the cooling fan. One end of
the enclosure is fitted with four speakers and four microphones,
inside of a short duct, connected to a data acquisition system
and a personal computer. Passive materials mounted at the other
end of the enclosure reduce backside noise. The frequency ofthe
narrrowband noise is assumed unknown and therefore a control
design that can be updated in realtime is needed. The control
design that is presented uses a nominal model and a nominal
controller. The nominal controller is enhanced by using closed
loop signals and taking into account the modeling error. Theend
result is a data-based method for updating a nominal controller
to improve performance.

INTRODUCTION
Many design methods have been developed to create feed-

back controllers that can remove periodic disturbances. Inthe
1960’s and 70’s much of the focus was on servocompensators
[1–4]. In this work, exact knowledge of the disturbance fre-
quency is required for cancellation to occur. The resultingcom-
pensator satisfies the internal model principle [2].

∗Address all correspondence to this author.

Today, the same principles are studied in discrete time repet-
itive and learning control literature [5]. The same constraints
upon the system are needed as well as knowledge of the distur-
bance model. In practice, it is very difficult to precisely model
the disturbance frequency and therefore many methods were de-
veloped to design controllers that were robust against thisuncer-
tainty in the disturbance model or to design controllers to adapt to
the disturbance. In [6] adaptive repetitive control is usedto sup-
press vibrations. In [7] an equivalence between time-varying in-
ternal models and adaptive feedforward control is shown. In[8]
the internal model is updated to cancel an disturbance with an
unknown frequency. In [9] the adaptive internal model principle
is discussed.

Landau et al. [10] used the youla parameterization of all sta-
bilizing controllers for a SISO system to update the controller on-
line to reject the disturbance when the disturbance model was not
completely known. It was assumed that the plant model was ex-
act and the disturbances had poles on the unit circle. This method
has several benifits, one of which is a linear least squares opti-
mization that can be used to enhance the current controller for
improved performance. The drawback was the lack of robust-
ness that makes implementation difficult.

In this paper, we present an extention Landau’s work by con-
sidering systems with uncertainty. The end result is a constrained
least squares optimization to enhance the nominal controller. The
constraint is used to gaurentee robustness and is based uponthe
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small gain theorem [11]. Obviously, the goals of robustnessand
performance are conflicting and therefore there are many situa-
tions where complete cancellation in the presence of uncertainty
is not possible. To deal with this problem, we present a design
methodology to pick a model and nominal controller that can
gaurentee regulation over a frequency range.

The control design is applied to cancel acoustic noise emit-
ting from a cooling fan. Input/ouput data is used to fit a nominal
model and design a nominal controller. Robustness and regula-
tion analysis is used to verify the accuracy of the nominal system
and a simplified algorithm is used to update the controller inre-
altime from closed loop signals. In the end, the cancellation of
narrowband disturbances is accomplished in a system with un-
certainty and without knowledge of the disturbance frequency.

PROBLEM FORMULATION
General Problem

The general problem we are considering is shown in Fig. 1.
In this figure, the plantGo is subjected to narrowband distur-
bancesd with an unknown frequency, magnitude, and phase.
The goal of the control design is to find a controllerC∆ that will
stabilize the feedback system and rejects the narrowband distur-
bances.
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Figure 1. General control problem under consideration.

A model of the systemGx is obtained from data and a nom-
inal controllerC is designed that stabilizes the nominal feedback
system. In the case of stableGx, the controller can beC = 0. The
idea is to perturbC to obtain the desired goals. To accomplish
this, the youla and dual-youla parameterizations will be used si-
multaneously. Before we proceed with the control design we will
first describe the acoustic system in more detail.

Acoustic System
Fig. 3 shows the layout of the acoustic system that we are

considering in this paper. The fan is used to cool the enclosure,

like a server or PC. However, due to the high speed of the fan,
acoustic noise is created. To combat the acoustic noise, speakers
are mounted near the fan and feedback microphones are placed
near the speakers and downstream of the acoustic noise. To re-
duce vibrations and turbulent noise the microphones are mounted
in acoustical foam. Additionally, for simplicity, the microphone
signals are summed together and used as a single signal for feed-
back. Similarly, the same signal is sent to the speakers so that we
are dealing with a single-input-single-output system.

The fan creates two types of noise: broadband and narrow-
band noise. The narrowband noise is due to the blade pass fre-
quency (BPF) of the fan and is comprised of a fundamental fre-
quency and several harmonics. The broadband noise is due to
turbulence. Both types of noise are dependent upon the speed
of the fan. When the RPM of the cooling fan is increased the
BPF increases causing the fundamental frequency to increase.
Likewise, when the RPM increases, the turbulence increasesand
therefore the broadband noise level will increase.

The fan noise is shown in Fig. 2. In this figure, it should
be clear that the fundamental frequency is approximately 860
Hz and the broadband noise decreases as frequency increases.
The goal of the active noise control system is to reduce the nar-
rowband acoustic noise. The control design that will be usedis
model-based and therefore before we start a good model of the
acoustic system is needed. The method used to obtain a model
and to approximate the model uncertainty will be described in
the following sections.
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Figure 2. Power spectral density of the acoustic noise generated by the

cooling fan.
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Figure 3. Active noise canceling system used to eliminate the unwanted noise from a cooling fan.

DUAL-YOULA PARAMETERIZATION
Consider representing a plantGo as a perturbation from a

nominal plantGx with the coprime factors of the nominal con-
troller C = NcD−1

c = D̃−1
c Ñc that internally stabilizes the feed-

back system of the nominal controller and nominal plant. This
gives the paramterization of all plants that are stabilizedby a
given controllerC. The perturbed plant is given by

Go = NGoD−1
Go

(1)

= D̃−1
Go

ÑGo (2)

(3)

whereNGo andDGo a right coprime factors (rcfs) of the uncertain
plant andÑGo andD̃Go are the left coprime factors.

The set of all plants stabilized by a given controller is given
below. From [12] and others

Theorem 1 (Dual-Youla Parameterization). Let Gx with
rcf(Nx,Dx) be an auxiliary model that is stabilized by the con-
troller C with rcf(Nc,Dc). Then a plant G∆ is stabilized by C if
and only if there exists an R∈ R H ∞ such that

G∆ = (Nx +DcR)(Dx−NcR)−1.

For a specific plant Go the dual-Youla parameter is given by
Ro = D−1

c (I +GoC)−1(Go−Gx)Dx.

In this paper, we are dealing with a SISo open loop stable
system and therefore we may chooseDx = 1 andNx = Gx. This
implies that

Go =
Gx +DcRo

1−NcRo
(4)

This result will be combined with the parameterization of
all stabilizing controllers, called the youla parameterization, to
create a framework in which we may adjust the controller in the
presence of uncertainty.

YOULA PARAMETERIZATION
Next, consider reversing the roles of plant and controller.

This means perturbing a controller about the nominal factors of
the plant. The perturbed or enhanced controller is given by

C∆ = NC∆D−1
C∆

(5)

= D̃−1
C∆

ÑC∆ (6)

(7)

whereNC∆ andDC∆ a right coprime factors of the enhanced con-
troller andÑC∆ andD̃C∆ are the left coprime factors.

For a given plant, the set of all stabilizing controllers is be-
low.

Theorem 2 (Youla Parameterization). Let C = NcD−1
c be

an internally stabilizing controller for the plant Gx = NxD−1
x ,

where(Nc,Dc) and (Nx,Dx) are both rcfs. Then C∆ = NC∆ D−1
C∆
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internally stabilizes the plant iff∃ Q∈ R H ∞ s.t.

NC∆ = Nc +DxQ

DC∆ = Dc−NxQ.

For a stable SISO plant this parameterization can be special-
ized by choosing the nominal controllerNc = 0, Dc = 1 (which
is stabilizing) and choosing the coprime factors of the plant as
Nx = Gx andDx = 1. This gives the following parameterization
of all stabilizing controllers

C∆ =
Q

1−GxQ
(8)

In the next section the youla and dual-youla parameteriza-
tions will be used simultaneously. This is called the double-youla
parmaeterization [13,14].

DOUBLE-YOULA PARAMETERIZATION
Putting both the youla and dual-youla parameterizations to-

gether gives the double youla paramterization. Suppose that
there exists a nominal, internally stable, pairGx = NxD−1

x and
C = NcD−1

c then the parameterization of perturbed plants and
controllers is given by

C∆ = NC∆D−1
C∆

= (Nc +DxQ)(Dc−NxQ)−1

G∆ = NG∆D−1
G∆

= (Nx +DcR)(Dx−NcR)−1

This parameterization is shown in Fig. 4. Here the controller
is perturbed by the rcfs of the nominal plant and the plant is per-
turbed by the rcfs of the nominal controller.

From [13,14]

Theorem 3. Let Gx with rcf(Nx,Dx) be an auxiliary model that
is stabilized by the controller C with rcf(Nc,Dc). Then a plant
Go = (Nx +DcRo)(Dx−NcRo)

−1 with Ro ∈ RH∞ is stabilized by
C∆ = (Nc +DxQ)(Dc−NxQ)−1 with Q∈ RH∞ if

‖QR‖∞ < 1.

For stable SISO systems, we can chooseNc = 0, Dc = 1,
Nx = Gx, andDx = 1. From Eq. (4) this implies that

Ro = Go−Gx (9)

which is an additive uncertainty. This can be a restrictive repre-
sentation and by choosing a different nominal controller one will
arrive at a different expression for the uncertainty.

From Eq. (8) the controller parameterization is given by

C∆ =
Q

1−GxQ
.

Applying this controller to the true system gives the following
sensitivity function

So(q) =
1

1+Go(q)C∆(q)
(10)

=
1

1+Go(q) Q(q)
1−Gx(q)Q(q)

(11)

=
1−Gx(q)Q(q)

1−Gx(q)Q(q)+Go(q)Q(q)
(12)

=
1−Gx(q)Q(q)

1+Ro(q)Q(q)
(13)

=

1
1+Gx(q)C∆(q)

1+Ro(q)Q(q)
(14)

=
Sx(q)

1+Ro(q)Q(q)
(15)

whereSx = 1
1+Gx(q)C∆(q)

is the sensitivity function for the nominal
plant.

From Eq. (15), it can be seen that nominal and robust perfor-
mance are coupled. For periodic disturbance, this is actually an
instance of the internal mode principle [2] since|Sx(ejωo)| = 0
implies So(ejωo) = 0 if 1

1+Ro(q)Q(q) is stable. This says that the
internal model principle is robust against any non-destabilizing
perturbations from the nominal system. This parameterization of
So(q) andRo(q) will be exploited to reduce disturbances while
maintaining stability.

CONTROLLER DESIGN
Controller Enhancement

The goal of the control system is to reduce the effect that the
disturbance has upon the output of the plant. From Eq. (15), the
output is given by

y(t) =
1−Gx(q)Q(q)

1+Ro(q)Q(q)
d(t) (16)

whered(t) is the acoustic noise from the cooling fan. For our
design, we will considerd(t) to be periodic. Even though the
true system is not known, we can estimated(t).
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Figure 4. Double-youla parameterization of C∆ and G∆.

d(t) = y(t)−Gou(t) (17)

= y(t)− (Gx+Ro)u(t) (18)

= y(t)−Gxu(t)−Rou(t) (19)

and since the nominal controllerC = NcD−1
c = 0 we get thatd(t)

is trivially measurable with the current controller. Thus the cur-
rent controller, the nominal model, and the closed loop signals
can be used to measured(t). After the update has occurredd(t)
will be biased. This bias termδd is given below

δd(t) = −
RoQ

1−QGx
y(t)

which gives

d(t) = y+
GxQ

1−QGx
y− δd

We define an estimate ofd(t) by d̂(t) given by

d̂(t) = y(t)−Gxu(t) (20)

= Rou(t)+d(t) (21)

Let C∆k := Qk
1−GxQk

be the controller that is implemented,

then using the sensitivity function,̂d can be written as

d̂(t) = y(t)−Gxu(t) (22)

= (1+GxC∆k)y(t) (23)

= (1+GxC∆k)
1−GxQk

1+RoQk
d(t) (24)

=
1

1+RoQk
d(t) (25)

From theorem 3, Q should be constraint such that
|Qk(ejω)| < 1/|Ro(ejω)| for all ω. SinceRo,Qk ∈ RH∞ and if we
impose that‖RoQk‖∞ < 1 thend̂(t) will be nonzero and asymp-
totically the same frequency asd(t). Henced̂(t) is a good esti-
mator ofd(t), in thatd̂(t) contains the same frequencies.

We want to minimize the variance ofy(t) that is given by

y(t) =
1−Gx(q)Q(q)

1+Ro(q)Q(q)
d(t)

However,Q(q) appears nonlinearly in the output equation and
d(t) is not known. This means that we cannot pose an optimiza-
tion in this form. To deal with this let us denoteQk(q) by the
current filter that is implemented, then

y(t) =
1−Gx(q)Qk(q)

1+Ro(q)Qk(q)
d(t) (26)

= (1−Gx(q)Qk(q))d̂(t) (27)

Now we can parameterizeQ such thatQk(q) = Q(θk,q). In
this form we can search for aφ such that the variance of

ε(t,φ) = (1−Gx(q)Q(φ,q))d̂(t) (28)

d̂(t) =
1

1+Ro(q)Q(θk,q)
d(t) (29)

= y(t)−Gxu(t) (30)

is minimized. Note thatθk is fixed and we are searching overφ.
This is not equivalent to minimizingy(t), but is strikingly close
to a bootstrapping approach. In fact,ε(t,φ) can be rewritten as

ε(t,φ) =
1−Gx(q)Q(φ,q)

1−Gx(q)Q(θk,q)
y(t) (31)
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where it can easily be seen that ifφ = θk thenε(t,φ) = y(t).
We now have two options:

1) Gather a batch of data and update the controller once each
batch.

2) Update the controller every time step.

For the first option, define the following cost function

V(N,θ) :=
1

2N

N

∑
t=1

[(1−Gx(q)Q(θ,q))d̂(t)]2

θk+1 is found by the following minimization

θk+1 = argmin
|Q(θ,ejω)|<1/|Ro(ejω)|

V(N,θ) (32)

This θk+1 minimizes the output variance of the nominal system
when disturbed byd̂(t). Before we proceed, we need to pick a
suitable parameterization forQ.

Proposition 1. Suppose that Q(θ,q) is a such that Q(θ,q) =
θ0 + θ1z−1 + ... + θ2Ndz−2Nd+1 then given a set of distinct fre-
quencies0< ωi < π, i = 1,2, ...,Nd and a set of complex numbers
Qi ∈ C there existsθi , i = 1,2, ...,2Nd such that

Q(θ,ejωi ) = Qi , i = 1,2, ...,Nd

Proof. Define

X :=











1 e− jω1 . . . e−(2Nd−1) jω1

1 e− jω2 . . . e−(2Nd−1) jω2

...
1 e− jωNd . . . e−(2Nd−1) jωNd











Y :=











Q1

Q2
...

QNd











θ :=







θ0
...

θ2Nd−1







then form

[

Re(X)
Im(X)

]

θ =

[

Re(Y)
Im(Y)

]

X is full rank and invertible and theta is given byθ = X−1Y.

The fact thatX is full rank comes from

[

Re(X)
Im(X)

]

=

[ 1
2I 1

2I
1
2 j I −

1
2 j I

][

X
X∗

]

[

X
X∗

]

is a vandermonde matrix and since 0< ωi < π are distinct

it is full rank.

[ 1
2I 1

2I
1
2 j I −

1
2 j I

]

is full rank, therefore

[

Re(X)
Im(X)

]

is full

rank by sylvesters inequality.

�

This proposition implies that an fir parameterization forQ
with Nθ ≥ 2 is sufficient for regulation of a sinusoid.

Using the batch method of updating the controller, we arrive
at the following theorem.

Theorem 4 (Batch Update). Suppose that̄θ is fixed with

C(q) =
Q(θ̄,q)

1−Gx(q)Q(θ̄,q)

Q(θ,q) = ∑Nθ
i=1 θiq−i with Nθ ≥ 2, d(t) = sin(ωot), y(t) =

Go(q)u(t)+ d(t), u(t) = −C(q)y(t), and the feedback system is
stable.

Chooseθ∗ by

θ∗ = argmin
|Q(θ,ejω)|<1/|Ro(ejω)|

lim
N→∞

1
2N

N

∑
t=1

ε(θ,t)2 (33)

with ε(θ,t) = (1−Gx(q)Q(θ,q))d̂(t) andd̂(t) = y(t)−Gxu(t).

Then C∆(q) = Q(θ∗,q)
1−Gx(q)Q(θ∗,q)

stabilizes Go(q) and if

θ∗ = argmin lim
N→∞

1
2N

N

∑
t=1

ε(θ,t)2

then

lim
t→∞

∣

∣

∣

∣

1−Gx(q)Q(θ∗,q)

1+Ro(q)Q(θ∗,q)
d(t)

∣

∣

∣

∣

= 0

Proof. Suppose thatd(t) = sin(ωot) and that

θ∗ = argmin lim
N→∞

1
2N

N

∑
t=1

ε(θ,t)2
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happens to stabilize the system. Then sinceNθ ≥ 2 andd̂(t) is a
sine wave,(1−Gx(q)Q(θ,q))d̂(t) → 0 asN → ∞. This implies
that 1−G(ejωo)Q(ejωo) = 0 which means thatC∆ = Q(θ∗,q)(1−
GxQ(θ∗,q))−1 satisfies the internal model principle. This implies
thatC∆ has poles on the unit circle located atωo or equivalently
1−GxQ(θ∗,q) has zeros on the unit circle at the same frequency.

When we apply this controller to the true systemy(t) → 0
since the internal model principle is robust against all non-
destabilizing uncertainty. To see this fact recall from Eq.(15)
that

y(t) =
1−GxQ(θ∗,q)

1+RoQ(θ∗,q)
d(t)

which implies that the sensitivity function of the true system has
zeros at the frequency of the disturbance and hence blocks the
disturbance. This proves the second assertion.

The first assertion is proved by applying the small gain prin-
ciple to the output equation. The sufficient condition for stability
is ‖RoQ(θ∗,q)‖∞ < 1, which is the condition used in the theo-
rem. Therefore regulation of the nominal system is the same as
regulation for the true system when robustness is satisfied.

�

The batch update theorem says that regulation is guaran-
teed if the batch size is large enough and the uncertainty is small
enough. When there is no uncertainty, a large batch size is still
needed. Therefore, batch updates are similar with or without un-
certainty. The case where the controller is updated every time
step is strikingly different and will be considered next.

Consider the situation where a new controller is updated ev-
ery time step. In this case,C∆t = Q(θt ,q)

1−Gx(q)Q(θt ,q) andQ(θt+1,q) is
found by minimizing the variance of

ε(t,φ) = (1−Gx(q)Q(φ,q))d̂(t) (34)

d̂(t) =
1

1+Ro(q)Q(θt ,q)
d(t) (35)

= y(t)−Gxu(t) (36)

In this case, the calculation ofQ and implementation of the new
controller every time step results in a bootstrap algorithm. Sup-
pose, for a moment, thatRo(q) = 0 then the resulting algorithm
is a RLS algorithm and convergence is guaranteed [10]. The case
that we are consideringRo(q) 6= 0 results in a algorithm that is
very similar to a recursive pseudo linear regression (RPLR)[15].

First, rewriteε in a familiar prediction-error form as

ε(t,φ) = ỹ(t)−Q(φ,q)ũ(t) (37)

with ỹ = d̂ and ũ = Gxd̂. Since ˜y andũ are measurable signals
(after filtering with known filters) we can pose a standard RLS
algorithm onε(t,φ). However, this algorithm does not take into
account the robustness requirement‖QR‖∞ < 1 and therefore a
modification is needed. The modification that will be used is pre-
sented in theOnline Enhancement Algorithm section. Before
we proceed with the algorithm a nominal model is needed.

System Identification
Let Go(q), a linear discrete-time transfer function, denote

the true model for regulation. The model of the system is found
wia standard system identification techniques [15]. To generate
data that can be used for the identification, a white noise signal
was sent into the speakers and the resulting signal was recorded
with the feedback microphones. The input and output data is
shown in Fig. 5 (recall that the microphone signals are averaged
and the speakers are sent the same signal so that a SISO system
results). The microphone signal has some periodic components
indicating that the acoustic system has some resonance modes.
Note that, the acoustic system is composed of the speaker ampli-
fier, the speakers, that acoustic between the speaker and micro-
phone, the microphone, and the microphone filter.
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Figure 5. Input and output data from the acoustic system.

The frequency responseGo(ejωk), k = 1,2, ...,N, between
the feedback microphones and the speakers is shown in Fig. 6.In
this figure it can be seen that the acoustic system has many reso-
nance modes and even some non-minimum phase zeros that will
limit performance. This frequency response function, obtained
with standard non-parametric methods, will be considered to be
the frequency response of the true system.

From the analysis of theQ filter given in the previous sec-
tions, it can be seen that we desireQ to satisfy two conditions
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Figure 6. Frequency response between the feedback microphone and

speaker.

1. |Q(ejω)| < 1/|Ro(ejω)| for all ω.
2. Q(ejωo) = 1/Gx(ejωo) whereωo is the frequency of the dis-

turbance.

If these two conditions are satisfied then the feedback system
is stable in the presence of the modeling error and regulation is
achieved.

This criteria also provides a method for determining which
nominal controller and system should be used if regulation is
wanted. The design methodology is outlined below:

1. Fit a model upon the input/output data.
2. Design a nominal controller.
3. If 1/Gx(ejω) < 1/Ro(ejω) for the frequency range of interest

then quit. If not then goto 1.

After several iterations a suitable model was chosen by the
above design method. Using an ARX model structure [15] and
a Steiglitz-Mcbride iteration a 10th order model of the acoustic
system was found. The frequency response of the modelGx and
the true systemGo is shown in Fig. 7. It can be seen that the
model captures the general trend but does not capture every sin-
gle feature of the true system, this would take a very high order
system.

Step 3) of this design method is shown in Fig. 8. In this
figure, it can be seen that regulation is possible from 400 to 4000
Hz. Notice that with this model regulation at high frequencies is
not possible.

To validate the model a chirp signal was sent into the
speaker. The simulation error is shown in Fig. 9. Again, here
it can be seen that the model captures the general trend of the
data but does not capture every single detail.
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Figure 7. Frequency response of model Gx and the true system Go.
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Online Enhancement Algorithm
In this section, a simplified algorithm is developed to reduce

the online computational burden. The optimization that we de-
sire to solve is

θ∗ = argmin
|Q(θ,ejω)|<1/|Ro(ejω)|

1
2N

N

∑
k=1

[(1−Gx(q)Q(θ,q))d̂(t)]2

however the constraint|Q(θ,ejω)| < 1/|Ro(ejω)| increases the
computational complexity greatly. Instead of solving thisprob-
lem, we will approximate this optimization by applying the con-
straint onNf different grid points in the frequency domain and
by augmenting the cost function. Finally, the gridded constraint
will be checked before updating the filter.
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Figure 9. Simulation of model and ouput of true system.

The modified optimization problem is given by

θ∗ = argmin
Q(θ,q)∈RH∞

1
2N

N

∑
k=1

[(1−Gx(q)Q(q))d̂(t)]2+

λ
2Nf

Nf

∑
i=1

|Ro(e
jωi )Q(ejωi )|2

and if we chooseQ to be an FIR filter as given below

Q =
Nθ

∑
i=1

θiq
−i

then the optimization becomes

θ∗ = argmin
1

2N

N

∑
k=1

[(1−Gx(q)Q(q))d̂(t)]2+

λ
2Nf

Nf

∑
i=1

|Ro(e
jωi )|2θT [

real( fi) imag( fi)
]

[

real( fi)
imag( fi)

]

θ

whereθ = [θ1 θ2 , ..., θNθ ]
T and fi =

[

ejωi e2 jωi . . . eNθ jωi
]T

.
If d(t) = sin(ωot), whereω = 592 Hz then the resulting

Q(θ∗,q) for Nθ = 20 is shown in Fig. 10. It is easily verified that
Q(θ∗,q) satisfies all of the conditions for stability and regulation.
The fact that|Q(θ∗,q)(ejω)| < 1/|Ro(ejω)| implies stability and
the fact thatQ(θ∗,q)(ejω0) = 1/Gx(ejωo) implies regulation. It
is also important to point out thatNθ = 2 will achieve regulation
will not achieve stability. Therefore, for robustness, an increase
order forQ is needed.
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Figure 10. Controller enhancement filter Q for a frequency of 592Hz.

If we further approximate the solution by using the instanta-
neous gradient, like the normalized LMS filter [16], then we get
the following update algorithm.

θk+1 = Gθk−µe(t)
X(t)

1+X(t)TX(t)
(38)

where e(t) = d̂(t) + θT
k X(t), X(t) = Gx(q)[d(t − 1) d(t −

2) , ..., d(t −Nθ)]
T ,

G = I −
µλ
Nf

Nf

∑
i=1

|Ro(e
jωi )|2

[

real( fi) imag( fi)
]

[

real( fi)
imag( fi)

]

andµ is the step size. This creates an algorithm with low compu-
tational complexity that aims to remove narrowband disturbances
in the presence of uncertainty. To gaurentee stability a check can
be added. If|Q(θk+1,ejωk)| < 1/|Ro(ejωk)|, k = 1,2, ...,Nf , then
implement the newQk+1 otherwise not. This gives the following
algorithm for periodic noise reduction.

Algorithm 1 (Robust Periodic Noise Cancellation).
Define

fi =
[

ejωi e2 jωi . . . eNθ jωi
]T

G = I −
µλ
Nf

Nf

∑
i=1

|Ro(e
jωi )|2

[

real( fi) imag( fi)
]

[

real( fi)
imag( fi)

]
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then for t=0,1,2,...

d̂(t) = y(t)−Gx(q)u(t)

X(t)T = Gx(q)[d̂(t −1), d̂(t −2), ..., d̂(t −Nθ)]

θ′t+1 = Gθk−µe(t)
X(t)

1+X(t)TX(t)

θt+1 =

{

θ′t+1 if |Q(θ′k+1,e
jωi )R(ejωi )| < 1 ∀i

θt if |Q(θ′k+1,e
jωi )R(ejωi )| 6< 1 ∀i

C∆t+1 =
Q(θt+1,q)

1−Gx(q)Q(θt+1,q)

where µ is the step size.

EXPERIMENTAL RESULTS
To analyze the control algorithm a separate, external micro-

phone was used to measure the performance. The microphone
was located approximatly 6” from the outlet and slightly to the
side to reduce windage.

The algorithm described in the previous section was applied
to the system acoustic system described in the beginning of the
paper. The acoustic system is shown in Fig. 3. The fan pro-
duces broadband and narrowband disturbances. The goal of the
feedback system is to maintain stability and reduce the narrow-
band disturbances in the presence of modeling error and without
knowledge of the disturbance frequency.

The microphone signals are summed together and sampled
with a MultiQ3 12 bit signed AD/DA card, a Pentium based P.C.
is used to calculate the control signal, and the control signal is
sent out of the AD/DA card to each of the speakers.

Since the speed of the fan in not known, the closed loop
signals are used to update the nominal controller. Even in the
presence of uncertainty, shown in Fig. 8, the controller is able to
maintain stability and reduce the narrowband disturbances. The
power spectral density (PSD) before and after control is applied
is shown in Fig. 11. It can be seen that the controller reduces
the fundamental frequency and third harmonic without excessive
amplification of the broadband noise. Note that this result is ob-
tained from an external microphone and therefore this perfor-
mance is a good indicator of the audible difference that a listener
would experience.

CONCLUSIONS
In this paper, we presented a method of reducing narrow-

band disturbance in the presence of plant and disturbance uncer-
tainty. The plant uncertainty was in the form of modeling error
and the disturbance uncertainty was the unknown frequency of
the disturbance. A constrained optimization resulted to update a
nominal controller based upon closed loop signals.
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Figure 11. Power spectral density of the acoustic noise generated by the

cooling fan before and after feedback control.

It was shown that the update (or enhancement) filter should
be of high order to satisfy the robustness and performance con-
straints simultaneously. It was also shown how robustness and
performance can be conflicting, and a design method for picking
a nominal system and controller was given so that robustnessand
performance is possible over a frequency range.

The design was applied to cancel narrowband disturbances
emitted from a cooling fan. Small microphones were embed-
ded into acoustical foam to measure the error signal and minia-
ture speakers were mounted near the cooling fan to produce anit-
noise for cancellation. Experimental results showed the ability of
the control algorithm to cancel noise in the presence of modeling
errors and without knowledge of the disturbance frequency.
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