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Abstract: In this paper, the feasibility of using active noise control inside personal computers
is demonstrated by applying an adaptive filter to Hewlett-Packard’s Blackbird 002 Gaming PC.
Conditions relating the control signals and the sound heard by an external listener are presented
as a means of evaluating the hardware design before applying the adaptive filter. A multichannel
stochastic adaptive filter is derived by vectorizing the equations and applying gradient descent
and Newton’s method. For implementation purposes, data-based approximations to the gradient
and hessian are provided. It is shown that a 6dB reduction in sound pressure level is obtainable
by adding reference microphones, error microphones, a speaker, and some acoustical foam into
the system even though the length of the noise cancelation system is small, approx. 6”, compared
to the fundamental wavelength of the noise, approx 23”.

Keywords: Noise Control; Feedforward Control; Multichannel; Adaptive Filters; Stochastic
Approximation.

1. INTRODUCTION

Active noise control is concerned with reducing annoying
or harmful noise to a safe and comfortable level. In
many of these applications, adaptive filtering (Haykin
[2002], Kay [1993]) is used to update filter coefficients
that use a measurement of the noise to produce anti-noise.
Most of these applications make use of first derivative
information and possibly second derivative information
about the cost function. For example, the Fx-LMS filter
uses the gradient and the RLS algorithm uses the hessian.
In multichannel applications (Chen and Gibson [2001],
Elliott et al. [1987], Esmailzadeh et al. [2004], Coradine
et al. [1997], Bouchard and Quednau [2000], Djigan [2006])
it is difficult to derive the hessian because of notational
reasons. Additionally, many of these applications consider
long ducts (Esmailzadeh et al. [2004]) that are smooth and
have relatively simple dynamics.

In addition to the lack of higher order information, most
application assume that the error signal, the signal that
measures the performance of the system, is located at the
listener and that the anti-noise speaker is near the noise
source. Locating the sensors and actuators in this manner
imply that the performance of the system can be evaluated
by monitoring the error signal. In some applications, such
as personal computers, the error signal cannot be located
in the same position as the listener. In this scenario, the

performance of the system is not always directly related to
the error signal and the relationship between the reference,
error, and listener signals should be studied for proper
system design.

In this paper, the conditions for cancelation at a location
other than the error location are studied and the results
are interpreted as design constraints for the noise control
system. After the system is properly designed, a suitable
algorithm must be derived and for improved performance
it is desirable to use information about the second deriva-
tive of the cost function. To accomplish this task, we use
a technique called vectorization and derive the first and
second derivatives of the cost function(s). We also consider
a wide class of cost functions so that the algorithm is as
general as possible. Finally, the algorithm is applied to
HP’s Blackbird 002 Gaming System to demonstrate the
feasibility of active noise control in a personal computer;
a system with small size, complicated geometry, and high
airflow.

2. PRELIMINARIES

In this paper we are considering a multichannel adaptive
algorithm and as a result it will be beneficial to use the
Kronecker product for notational purposes. The Kronecker
product is defined below.
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Definition The Kronecker product (a special case of a
tensor product) of two matricies A ∈ Rm×n and B ∈ Rp×q

is given by

BT ⊗ A =











b11A b21A . . . . . . bq1A

b12A
. . . . . .

...
...

. . .
. . .

...
b1pA b2pA . . . bqpA











where bij is the (ith, jth) element of B.
Proposition 1. Consider the matrices A, B, C and D with
the appropriate dimensions and the scalar c then the
following hold

(1) (A ⊗ B)T = (AT ⊗ BT )
(2) (A + B) ⊗ C = (A ⊗ C) + (B ⊗ C)
(3) A ⊗ (B + C) = A ⊗ B + A ⊗ C
(4) (cA) ⊗ B = c(A ⊗ B) = A ⊗ (cB)
(5) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)
(6) (A⊗B)(C ⊗D) = AC⊗BD and if in addition A and

B are invertible then
(7) (A ⊗ B)−1 = A−1 ⊗ B−1

Matrices can be vectorized, stacked column-wise into a
large vector, by using the vec(·) operator. This process is
very useful since the multichannel problem requires opti-
mization over a set of matrices. If one desires to calculate
the hessian to improve performance over standard gradient
methods then this operator is necessary.

Definition For a matrix A ∈ Rm×n, given by
A = [a1 a2 . . . an],

where ai ∈ Rm is a column vector, the vec(·) is given by

vec(A) =









a1
a2
...

an









.

Proposition 2. Consider the matrices A, B, C with appro-
priate sizes then the following identities hold

(1) vec(ABC) = (CT ⊗ A)vec(B)
(2) trace(AT A) = vec(A)T vec(A)

In this paper we will consider the optimization of a cost
function that consists of a mixture of p-norms. The p-norm
of a vector is defined below.

Definition Consider the vector x ∈ Rn, the p-norm is
given by

‖x‖p
p =

n
∑

i=1

|xi|
p,

for all p ∈ [1,∞).
Lemma 3. For any p-norm, with p < ∞, the following
properties holds

d‖x‖p
p

dx
= px̃

d‖x‖p

dx
= ‖x‖1−p

p x̃

where x̃ is defined element wise by x̃i = |xi|
p−2xi.

It is also beneficial to introduce derivative operators for
notational reason. The following operators will be used
throughout the paper.

Definition The differential operator ∂
∂x

, where x is a
column vector of size n, is a column operator. That is

∂

∂x
=





















∂

∂x1
∂

∂x1
...
∂

∂xn





















Definition The differential operator ∂
∂xT , where x is a

column vector of size n, is a row operator. That is

∂

∂xT
=

[

∂

∂x1

∂

∂x1
. . .

∂

∂xn

]

3. ACTIVE NOISE CONTROL SYSTEM

3.1 Basic System Requirements

-

3
:

v(k)

x(k)

u(k)

? e(k)

l(k)

) q

j

Fig. 1. Depiction of the relationship between signals in the
noise cancelation system.

The problem that is presented in this paper is summarized
in Fig. 1. It is desired that by using the reference signal
x(t) and an error signal e(t), we can generate anti-noise
u(t) to cancel the noise v(k) at the listener l(k). In order
to accomplish this task, the reference signal x(k) must be
correlated with v(k) and the error signal e(k) needs to
reflect the sound measured by the listener l(k). In most
active noise cancelation systems the error signal is driven
to zero. However, this may not be the best choice if the
system is not one-dimensional and the noise v(k) and
control source u(k) are not point sources. The remainder
of this section explores this situation.

We will assume throughout the paper that the sys-
tem depicted in Fig. 1 has a linear discrete-time finite-
dimensional representation. In other words the finite-
dimensional model of the system is exact even though
the true system is infinite dimensional. In practice this
is a good assumption and most of the time the system is
approximated even further with a FIR model. With this
assumption, we can describe the relationship between the
signals of the system.

[

x(k)
e(k)
l(k)

]

=

[

Txv(q) Txu(q)
Tev(q) Teu(q)
Tlv(q) Tlu(q)

]

[

v(k)
u(k)

]

(1)

The signal x(k) can be written as

x(k) = Txv(q)v(k) + Txu(q)u(k) (2)

and u(k) is given by

u(k) = F (q)x(k) (3)

= F (q)Txv(q)v(k) + F (q)Txu(q)u(k) (4)

The block diagram of the system is shown in Fig. 2. Here,
it should be clear that knowledge about x(k) and u(k) can
replace v(k).
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Fig. 2. Block diagram of noise cancelation system.

If the feedback term F (q)Txu(q)u(k) is small enough then
we can neglect this term for the feedforward design. If
not, then a good model for Txu(q) is needed and design
techniques, such as (Zeng and de Callafon [2006]), are
available to deal with this situation. In either case the
resulting design can be accomplished with an adaptive
filter and therefore we will not consider this term in the
current work. For the remainder of the paper we will
assume for simplicity that Txu(q) = 0.

With this assumption in hand and enforcing a mapping
between x(k) and u(k) the system that we will consider is
given by

[

e(k)
l(k)

]

=

[

Tev(q) Teu(q)
Tlv(q) Tlu(q)

] [

v(k)
F (q)x(k)

]

(5)

Theorem 4. Suppose that Tev(q) is stably invertible then
e(k) = 0 implies l(k) = 0 iff

(Tlu(q) − Tlv(q)Tev(q)−1Teu(q))u(k) = 0 (6)

Proof
[

Tev(q)−1 0
−Tlv(q)Tev(q)−1 I

] [

e(k)
l(k)

]

(7)

=

[

Tev(q)−1 0
−Tlv(q)Tev(q)−1 I

] [

Tev(q) Teu(q)
Tlv(q) Tlu(q)

] [

v(k)
F (q)x(k)

]

(8)

=

[

I Tev(q)
−1Teu(q)

0 Tlu(q) − Tlv(q)Tev(q)−1Teu(q)

] [

v(k)
u(k)

]

(9)

This implies that l(k) − Tlv(q)Tev(q)−1e(k) = (Tlu(q) −
Tlv(q)Tev(q)−1Teu(q))u(k).

2

Corollary 5. Suppose that either (Tlu(q) = Tlv(q) and
Teu(q) = Tev(q)) or that (Tev(q) = Tlv(q) and Teu(q) =
Tlu(q)) then

(Tlu(q) − Tlv(q)Tev(q)−1Teu(q)) = 0

Proof Straightforward.

2

This corollary implies that perfect cancellation will occur
if the cancellation speaker is in exactly the same position
as the noise source or the error microphone is where the
listener is located. In reality, this will not occur. Therefore,
if one seeks to optimize the speaker and microphone
locations a good performance measure is given by J

J = ‖Tlu(q) − Tlv(q)Tev(q)−1Teu(q)‖ (10)

where ‖·‖ is a system norm like the H2 or H∞ norm. If the
frequency range of operation is known a priori then this

measure can be used to apply this criteria in the frequency
domain.

After selecting the best location for speakers and micro-
phones then the signal that should be minimized is l(k),
not e(k). This gives the following error signal ε(k) for
control design

ε(k) = l(k) = Tlv(q)Tev(q)−1e(k)

+ (Tlu(q) − Tlv(q)Tev(q)−1Teu(q))u(k) (11)

= Tlv(q)Txv(q)
−1x(t) + Tlu(q)u(k) (12)

= H(q)x(t) + S(q)F (q, Θ)x(t) (13)

Corollary 6. Suppose that J = 0, defined in Eq. 10, then
ε(k) = 0 whenever e(k) = 0.

Proof If J = 0 then

ε(k) = Tlv(q)Tev(q)−1e(k)

2

This theorem shows that when J = 0, minimizing e(k)
is the same as minimizing ε(k). This indicates that the
standard criteria is valid when J is small compared to
‖Tlv(q)Tev(q)−1‖. For this comparison a better choice for
the cost would be given by

J∗(ω) =
σ̄(Tlu(ejω) − Tlv(e

jω)Tev(ejω)−1Teu(ejω))

σ(Tlv(ejω)Tev(ejω)−1)

where σ̄(·) is the maximal singular value and σ(·) is the
minimal. In that case it is still important to weight the
optimization by Tlv(q)Tev(q)−1.

Also, if J is large then a model of H(q) and S(q) is needed
to generate ε(k). In this case, the benefit of adaptation
is removed and an off-line control problem can be solved
in lieu of adaptation. Here it would be necessary for
very accurate modeling for good performance. From this
point on we will assume that the J is small, and without
loss of generality, we can focus our attention on deriving
algorithms for ε(k). We note that it is very important
that J be small for the adaptation to work correctly and
be beneficial to the listener. This point demonstrates the
importance of hardware design for control systems and
provides a methodology of evaluating hardware before the
control design.

3.2 Stochastic Optimization Problem

The problem under consideration is depicted in Fig. 3. In

S(q) - ? -

? ?

u(k)

x(k)

F (q, Θ)

-
ε(k)

H(q)

Fig. 3. Block diagram of the optimization problem used to
design the feedforward controller for ANC.

this figure, the signal ε(k) is defined by ε(k) = H(q)x(t)+
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S(q)F (q, Θ)x(t), where x(k) ∈ Rnx for each k. The
multichannel FIR filter of interest F (q, Θ) is given by

F (q, Θ) = θ0 + q−1θ1 + q−2θ2 + . . . + q−L+1θL−1 (14)

= ΘT [I Iq−1 . . . Iq−L+1]T (15)

= ΘTD, (16)

where each θi ∈ Rnu×nx . The discrete-time linear dynamic
system S(q) is a (ne × nu) transfer matrix in the delay
operator q. H(q) is a (ne × nx) transfer matrix.

Throughout the paper the following sizes will be used:

• L = number of taps.
• nx = number of reference signals.
• ne = number of error sensors.
• nu = number of actuators.

We are interested in minimizing ε(k) and therefore will
attempt to minimize ‖ε(k)‖. For practical purposes and to
ensure that the problem will be regular (Haykin [2002]),
we will also try to simultaneously minimize ‖vec(Θ)‖. This
gives the following two cost functions Vi(N, Θ), i=1,2.

V1(k, Θ) = E{‖ε(k)‖p + α‖vec(Θ)‖q}, (17)

V2(k, Θ) = E{‖ε(k)‖p
p + α‖vec(Θ)‖q

q}, (18)

where p < ∞ and p < ∞.

As we will see in the following section, the two cost func-
tions V1(k, Θ) and V2(k, Θ) will result in similar expres-
sions for the gradient and hessian. The difference will be
in how the gradient and hessian are scaled. Just like the
difference in V1(k, Θ) and V2(k, Θ) is seen for small and
large signals. For large signals V2(k, Θ) will be greater than
V1(k, Θ) and for small signals will be much smaller. This
will be reflected in the gradient and hessian. We could also
introduce some weighting for the norms we are considering,
but will not consider this case for notational purposes.

4. GRADIENT DESCENT AND NEWTON’S
METHOD

In this section we seek to minimize the cost function(s)
Vi(N, Θ) by applying the following algorithm

vec(Θ)(k + 1) = vec(Θ)(k) − µ(k)Hi(k)−1∇Vi(k) (19)

where

∇Vi(k) =
∂Vi(k, Θ)

∂vec(Θ)
(20)

Hi(k) =
∂

∂vec(Θ)

∂Vi(k, Θ)

∂vec(Θ)T
(21)

If we approximate H with I, let µ(k) be a small constant,
set α = 0, set p = 2, and consider V2(k, Θ) then we get a
gradient descent method

vec(Θ)(k + 1) = vec(Θ)(k) − µ∇V2(k) (22)

commonly known as LMS or Fx-LMS depending upon the
implementation. If, in addition, we set α to equal a small
constant and q = 2 then we get the Leaky LMS algorithm.
Thus, it should be clear that the work we considering here
is more general.

In general the gradient will have the form of

∇Vi(k) = E
{

(S(q)T ⊗ X(k))ε̄(k) + αvec(Θ)
}

(23)

with ε̄(k) = ‖ε(k)‖1−p
p ε̃(k) for V1(k, Θ) and

ε̄(k) = pε̃(k) for V2(k, Θ); vec(Θ) = ‖vec(Θ)‖1−q
q ṽec(Θ)

for V1(k, Θ) and vec(Θ) = qṽec(Θ) for V2(k, Θ). Each term
with a tilde is defined similarly to lemma 3.

In general the Hessian will have the form

Hi(k) = E
{

(S(q)T ⊗ X(k))Wi(k)(S(q)T ⊗ X(k))T

+ α
∂vec(Θ)

∂vec(Θ)T

}

(24)

where

W1(k) =
[

diag(|ε(k)|p−2) − ‖ε(k)‖−pε̃(k)ε̃(k)T
]

(p − 1)‖ε(k)‖1−p
p

∂vec(Θ)

∂vec(Θ)T
= (q − 1)‖vec(Θ)‖1−q

q (diag(|vec(Θ)|q−2)

− ‖vec(Θ)‖−q
q ṽec(Θ)ṽec(Θ)

T

)

for V1(k, Θ) and

W2(k) = p((p − 1)diag(|ε(k)|p−2))

∂vec(Θ)

∂vec(Θ)T
= q(q − 1)diag(|vec(Θ)|q−2)

for V2(k, Θ). Again, each term with a tilde is defined
similarly to lemma 3.

The expressions for the gradient and hessian contain the
expectation operator and since the distribution of the
arguments in not known a priori we need a method of
estimating them online. If we knew the gradient and
hessian explicitly then we could calculate the optimal
solution without the need of adaptation and therefore we
will approximate them based upon data.

5. DATA-BASED APPROXIMATIONS

In this section we seek data based approximations to the
gradient and hessian calculated in the previous section.
This will enable us to implement the algorithm online and
the choice of the approximation will play a central role in
the convergence, robustness, and computational complex-
ity of the resulting algorithm. The following approxima-
tion(s) are similar the the familiar RLS (Haykin [2002])
and in more general terms the Recursive Prediction-Error
Methods (Ljung [1999]).

To approximate the gradient

∇Vi(k) = E
{

(S(q)T ⊗ X(k))ε̄(k) + αvec(Θ)
}

≈
1

k

k
∑

n=m(k)

{

(S(q)T ⊗ X(n))ε̄(n) + αvec(Θ)
}

(25)

where k−m(k) is the window size. If, in addition, we want
to discount previous information we can include the term
λk−i, 0 ≤ λ ≤ 1 is the discount factor, in the estimate
which is typically in the RLS cost function. However, in
this case, it would be beneficial to change 1

k
to λ

k+(λ−1) to

be consistent with the recursive prediction error methods
in (Ljung [1999]) and thus properly scale our estimate.
This gives

∇Vi(k) ≈
λ

k + (λ − 1)

k
∑

n=m(k)

λk−n
{

(S(q)T ⊗ X(n))ε̄(n)

+αvec(Θ)
}

(26)
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If we set m = k and λ = 1 then we get the standard
instantaneous gradient approximation that is used in the
LMS filter (Haykin [2002]).

To approximate the hessian

Hi(k) = E

{

(S(q)T ⊗ X(n))Wi(n)(S(q)T ⊗ X(n))T + α
∂vec(Θ)

∂vec(Θ)T

}

≈
λ

k + (λ − 1)

k
∑

n=m(k)

λk−n
{

(S(q)T ⊗ X(n))Wi(n)(S(q)T ⊗ X(n))T

+ α
∂vec(Θ)

∂vec(Θ)T

}

(27)

where we will use a different m(k) and λ for the hessian
and gradient. Notice that if λ ≈ 1 then 1

k
is a close

approximation to λ
k+(λ−1) . If m = k and λ = 1 then we

get the standard Hessian approximation that, in certain
situations, can be used in a recursive manner similar to
RLS.

In addition to the aforementioned data-based approxima-
tions to the gradient and hessian, it is also beneficial (com-
putationally) to implement the filter in block form. In this
scenario, the update equations are the same. The difference
is that the parameters are not updated every time sample,
instead they are updated every N time samples.

6. APPLICATION

In this section we will apply a single channel version of the
aforementioned algorithm to Hewlett-Packard’s Blackbird
002 gaming PC. The gaming PC is shown in Fig. 4 and
it should be noted that this application of ANC is in a
small enclosure with a irregular geometry and high airflow.
The distance between the reference and error microphones
about 6” whereas the wavelength of sound that we are
trying to cancel is around 23”.

Fig. 4. Hewlett-Packard’s Blackbird 002 gaming PC.

The noise that we are targeting is produced by the cooling
fans mounted in various places throughout the PC. The
over-clocked CPU is cooled via a liquid cooling system
that is attached to a heat exchanger with two 120mm
fans. The hard drive rack has a 120mm cooling fan, the
video card has a fan, and other components inside the
system have smaller fans or optional fan attachments. For
this application we will concentrate on removing the noise
from the hard drive fan since its location within the system
allows for the attachment of speakers and microphones in
the proper locations for noise control.

Additionally, for demonstration purposes, the stock 120mm
fan was swapped with a very high speed 80mm fan so that

Fig. 5. Modification to PC for the purposes of active noise
control.

this fan is by far the noisiest component. To allow for space
inside of the PC for the ANC system, several hard drives
were removed and the microphones and speaker shown
in Fig. 5 were added. The error microphones are located
directly outside the case and the reference microphones
are located near the fan, both mounted in foam to reduce
windage and vibrational noise. The error microphones
signals and reference signals are each summed together
(separately) to further reduce noise and focus on sound
propagating in the downstream direction. To improve the
acoustic properties of the system, acoustic foam was added
so that the propagating sound will be more uniform and
unidirectional.

The single channel Fx-LMS algorithm was applied to the
system and to evaluate the performance of the system an
external microphone, or listener microphone, was placed
approximately 6” from the case directly in front of the
PC. All of the reported experimental results were obtained
from this microphone.

31 32 33 34 35
−0.5

0

0.5

M
ic

. 
S

ig
n

a
l 
(V

o
lt
s
)

Time (sec)

Fig. 6. Signal from listener microphone.

Figure 6 shows the signal obtained from the listener micro-
phone before and after the control is applied. Between 32
and 33 seconds the control is switched on and the listener
signal is reduced. The sample variance before control is
0.0235 and after control is 0.0056 giving a 76% reduction in
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the sample variance. This reduction translates into slight
more than a 6dB reduction in the sound pressure level as
shown in Fig. 7. In this figure the sound pressure level is
calculated by sliding a window over the signal and comput-
ing the rms value in dB scale. A simple calculation verifies
that 10 log10(0.0235/0.0056) ≈ −6.2288, and timing in the
drop of SPL given in Fig. 7 corresponds to the drop in
signal size shown in Fig. 6.

0 20 40 60 80 100
−8

−6
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−2

0

2

S
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L
 (

d
B

)

Time (sec)

Fig. 7. Sound pressure level as a function of time.

In the frequency domain it can be seen that the tonal part
of the fan noise is reduced significantly as shown in Fig. 8.
Here, the power spectral density before and after control is
shown. The dashed line is without control and the solid line
is with control. Notice that the first and third harmonics
are rejected by the controller.

10
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/H
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Fig. 8. Power spectral density of listener microphone before
(dashed) and after (solid) control.

7. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we presented a multichannel adaptive filter
and applied the single channel version to HP’s Blackbird

002 gaming system. It was shown that a 6dB reduction in
sound pressure level of the PC cooling fan is possible with
minor modifications to the PC. It is important to note that
the results were obtained with an external microphone
to reflect the experience of the listener. Based upon this
application, we conclude that active noise control is a
viable solution to reduce the tonal noise of cooling fans
inside of PCs. With a re-design of hardware, it is expected
that much more reduction is possible and that broadband
noise can be reduced as well.

Future research topics that will be beneficial to this ap-
plication are related to hardware design that will improve
the control system. For example, the use of beamformers
to improve the signal to noise ratio of the reference and
error signals, additional reference and error signal for the
application of a multichannel filter, and the design of the
PC enclosure for beneficial acoustic properties.
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