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Introduction
The current state of the art for controlling lateral tape mo-
tion is a well tuned PID controller that is able to reject all
low frequent disturbances. In this paper, we seek to im-
prove this control design by modeling the source of the dis-
turbances in lateral tape motion LTM and designing a con-
troller to reject these specific disturbances instead of alllow
frequent disturbances. This will enable us, through the well
know Bode sensitivity integral [1], to design a controller
with better performance at high frequencies thus improv-
ing the position error signal PES. From measured date it is
shown that the disturbances are time-varying sinusoids and
filtered white noise. The time-varying nature is due to the
change in radius of the spools that occurs during shuttling
of the tape. In this paper, we develop an analytic model of
the time-varying sinusoids and compare the model to the
measured data. Based upon this improved model of the
disturbances a controller is design that targets these time-
varying sinusoids by using known LQG [2] theory for lin-
ear time-varying systems.

Model of Periodic Disturbances in LTM
The following are assumed:

(A1) The speed of the tape is constant.
(A2) The radius of the spool changes continuously as a func-

tion of time and evenly around the spool.
(A3) The thickness of the tape is much smaller then the

smallest radius of the spool.

∗Corresponding author: Charles E. Kinney

K?θ
-

6
Vr

Vt

�

Tape

I

Spool

Figure 1. Spool with constant tape speed.

The speed of the the tape is given by

s = |v| = |ṙê1 + rθ̇ê2|, (1)

where ˆe1 andê2 are unit vectors in the radial and tangential
directions respectively. By (A3) the thickness of the tape is
very small in comparison to the radius of the empty spool.
This implies that ˙r will be very small as compared torθ̇.
Thus we have,

v ≈ rθ̇, (2)

in thee2 direction.
By (A2), the radius of the spool as a function of time can
be written as

re(t) = r0 +
τ

2π
θe(t) (3)



for the empty spool and

r f (t) = R−
τ

2π
θ f (t) (4)

for the full spool.R is the size of the spool when completely
full, r0 is the size of the spool when empty,τ is the thickness
of the tape, andθ ∈ [0,∞) is the angle of the spool. The
angle of the spool can also be written asθ̄ + n whereθ̄ ∈
[0,2π] andn is the number of revolutions.
The velocity can be integrated to get

Z t

t0
vdt = (r0θe(t)+

τ
4π

θ2
e(t)) (5)

= p(t) (6)

wherep(t) is the position of the tape and it is assumed that
θ(t0) = 0. Rearranging and taking a derivative gives

θ̇e = f (θe,τ,r,v) (7)

=
v(t)

(
√

r2
0 + τ

π p(t)
) (8)

where we dropped the negative sign since we are rotating
in a positiveθ direction. By(A1) we havep(t) = Kt, which
gives

θ̇e =
K

(√

r2
0 + τ

π Kt
) , (9)

whereK is the speed of the tape. The full spool is obtained
similarly and the solution can be written as

θ̇ f =
K

(√

r2
0 −

τ
πKt

) , (10)

where the minus sign is due to the decreasing radius of the
spool. From this point one the subscripts will be dropped
andθ̇ will be used instead.
Any wobble due to imperfections in the manufacturing pro-
cess will manifest themselves in a periodic manner since
the same path will be traced each time the spool rotates
fully around. The traced path can be fit will a Fourier se-
ries, since it is periodic, and therefore there will be a fun-
damental frequency given bẏθ and higher harmonics that
must be rejected.

If the angle of the drive is known then we can solve directly
for θ̇ as a function ofθ, we can solve forθ as a function of
time, and an equivalent discrete time version can be solved.

Current Control Design
The baseline control design is a PID controller with a fixed
notch that is able to reject low frequent disturbances. How-
ever, due to the fundamental limitations in feedback con-
trol, like the Bode’s Integral, the removal of the low fre-
quent disturbances causes the sensitivity function to exceed
unity in magnitude at higher frequencies. This amplifies
disturbances in this higher frequency band and degrades the
performance of the system.
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Figure 2. Baseline sensitivity function.

Figure 2 shows the magnitude of the baseline sensitivity
function. Notice that this controller is able to reject the low
frequency disturbances but amplifies some of the higher
frequency disturbances as a result.

Controller for Improved Performance
In this section, we describe a discrete time control scheme
based upon the internal model principle [3] and LQG the-
ory. The internal model principle is used to cancel the time-
varying periodic disturbances. LQG theory is used to de-
sign the state feedback and observer gains to minimize the
affect of random noise upon the system. Finally, LPV the-
ory can be used to create a sub-optimal controller that is
efficiently implemented online by making use of quadratic
stability but is beyond the scope of this paper.
It was shown in [4] that the LTI controller given by

C(q) =





Ap −LpCp −BuK 0 Lp

LmCp Am(k) −Lm

−K Cm 0





, (11)

is an internal model-based controller and has an interpreta-
tion of a learning controller when the appropriate internal



model is chosen.Am(k) andCm are given (time-varying)
matrices, called the internal model, and are used to model
the time-varying periodic disturbance with frequency given
by θ̇.
The job of the control engineer is to find the gainsK, Lp,
andLm so that the closed loop system is stable and performs
well. This can be accomplished in two steps: 1. Find the
state feedback gain for the plant. 2. Find the time-varying
observer gainsLp andLm for the series connection of the
internal model and plant.
Step 1. From standard LQR results, the state feedback gain
is given by

K∗ = (B T
u PcBu +D T

zuD zu)
−1
B

T
u PcA (12)

wherePc satisfies

Pc = AT
p PcAP −AT

pPcBu(B
T
u PcBu + DT

zuDzu)
−1BT

u PcAp + Q

and Q is chosen by the designer to push the states of the
closed loop to the origin andR is chosen to minimize con-
trol effort.
Step 2. The Kalman predictor for this system is

x̂(k +1) = (A (k)−L (k)C p) x̂(k)+Lmum(k)+L (k)yp(k)
(13)

and the error system is

x̃(k +1) = (A (k)−L (k)C p) x̃(k)+ w(k)−L (k)v(k).
(14)

We arrive at the following Ricatti difference equation for
the Kalman predictor gain

Pk+1 = A (k)PkA (k)T

−A (k)PkC
T
p (C pPkC

T
p +V )−1

C pPkA (k)T

+W

P0 = A (0)X(0)A (0)T +W

(15)

and the predictor gain is

L (k) = A (k)PkC
T
p (C pPkC

T
p +V )−1

. (16)

where

L :=

[

Lp

Lm

]

A :=

[

Ap BuCm

0 Am

]

C p :=
[

Cp 0
]

Cm :=
[

Cm 0
]

.

(17)

V andW are chosen by the engineer to obtain an observer
with good properties in a similar manner toR andQ.
To visualize what this controller is accomplishing, let the
frequency of the disturbance be constant. The resulting
sensitivity function is shown in Fig. 3. Notice that only
specific low frequency disturbances are rejected and there-
fore there is no amplification at higher frequencies. Com-
pare this figure to Fig. 2. From this figure it is clear that
this controller is essentially placing time-varying notches
where needed to cancel the disturbances.
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Figure 3. Improved sensitivity function.

Conclusions
This paper presented a new method of designing a con-
troller for rejecting time-varying periodic disturbancesthat
appear in lateral tape motion. A model for the frequency
of the disturbance was derived and used to design a time-
varying controller that, unlike the current PID based con-
troller, is able to target specific disturbances. Targetingspe-
cific disturbances results in no over-amplification at higher
frequencies, which is a problem with PID based controllers.
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