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Introduction
We introduce an numerical algorithm for calculating the
time-optimal input sequence for a discrete-time Linear
Time Invariant (LTI) plant with constraints. The algorithm
takes into account constraints on the states and the input.
Motivated by Receeding Horizon Control (RHC) [6] we
formulate the problem as a set of linear inequalities and
iteratively check feasibility of the constraints using a bi-
nary search to find the optimal number of samples. Simi-
lar results applied to a Hard Disk Drive (HDD) system can
be found in [9] where a least-squares approach has been
used. In [9] only constraints on the input where considered.
A more general approach can be found in [3] where con-
straints on input and states are considered. Extension using
a binary search algorithm to speed up the algorithm can
be found in [7]. It has been proved that the time-optimal
input for a LTI discrete-time system is not bang-bang, [4]
and references therein. Our algorithm verifies these results.
Non-uniqueness of the time-optimal input sequence is also
explored through further optimization.
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1 Dynamics and Signal Constraints
To define the problem of optimal-input shaping, we first de-
fine the dynamics of the LTI system, along with constraints
that need to be satisfied during the computation of time-
optimal input profiles. For that purpose, consider the con-
trollable state space representation of a discrete-time plant

x(k+1) = Ax(k)+Bu(k) (1)

where the state vector x(k) ∈ R
n, the input u(k) ∈ R

m and
the matrices A and B are of appropriate dimensions. In ad-
dition, k ∈ {0 1 . . . N} where N denotes the control hori-
zon. Furthermore let the system (1) be subject to the fol-
lowing time-domain constraints:

u ≤ u(k) ≤ u 0 ≤ k ≤ N−1 (2)

xd ≤ x(k) ≤ xd 0 ≤ k < k̂∗ (3)

x f ≤ x(k) ≤ x f k̂∗ ≤ k ≤ N (4)

For simplicity, we only consider constant constraints here
but results can be generalized to time varying constraints.
We consider constraints typically associated to actuator
limitation on the input u(k) in (2). Performance constraints
are defined by (3) as a restriction on the states during a tran-
sition while (4) defines the constraints on the states at the
end of the input shaping. Figure 1 illustrates the natire of
the different constraints. In addition, constraints on the rate
of change of the input or constraints on any linear combi-
nation of the states can be included, but been left out for the
sake of simplicity in this extended abstract.



Let k∗ denote the smallest k̂∗ such that all constraints are
feasible. Our goal is to find this k∗ and the accompanying
input profile u(k), k = 0, . . . ,N − 1. Given an initial con-
dition x(0) and an initial estimate of k̂∗, we pose the fol-
lowing question: Does there exist an input sequence u(0),
u(1), ... u(N − 1) so that (1)-(4) are satisfied? Motivated
by RHC [6], we can rewrite the dynamic system and its
imposed constraints into a set of linear inequalities of the
form

Lu ≤W (5)

where u = [u(0)T u(1)T . . . u(N−1)T ]T , and the matrices
L and W are defined as:

L =

⎡
⎢⎢⎣

INm

−INm

Ψ
−Ψ

⎤
⎥⎥⎦ , W =

⎡
⎢⎢⎣

umax
umin
xmax
xmin

⎤
⎥⎥⎦ . (6)

In (6), the matrix INm is an Nm×Nm identity matrix and
corresponds to the inequality (2). Furthermore, Ψ is an
Nn×Nm matrix corresponding to inequalities (3) and (4).
Ψ is defined as:

Ψ =

⎡
⎢⎢⎢⎣

B 0 · · · 0
AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎦

For completeness, the corresponding vectors of W in (6)
are defined as

umax =
[
u · · · u

]T

umin =
[
u · · · u

]T

xmax =
[
xd · · · xd x f · · · x f

]T −Ωx(0)
xmin =

[−xd · · · −xd −x f · · · −x f
]T

+Ωx(0)
Ω =

[
AT (A2)T · · · (AN)T

]T

(7)

where the input at k = −1, u(−1), will be assumed to be
zero in our case.
The question we posed earlier can now be formulated as
Does there exist a vector u such that (5) is satisfied? One
way to solve this problem is to compute a vector u. This
is related to finding an initial feasible point for a linear or
quadratic program and [8, p. 462] suggests the following
feasibility linear program:

minu,z eT z
s.t. Lu− z ≤W

and z ≥ 0

where e = [1 . . . 1]T . The initial feasible point for this pro-
gram is z0 = max(Lu0 −W,0) for any u0. If the optimal
solution is z = 0, then there exists a feasible solution to in-
equality (5). If the optimal solution z �= 0 then inequality
(5) is infeasible. The linear program can be solved with
GLPK solver [5] in polynomial time, allowing fast compu-
tation of a feasible solution.

2 Binary Search
Given the possibility of checking if there exist a feasi-
ble input sequence for a given set of constraints, a time-
optimal solution one can found by performing a binary
search through the sample space. We use an approach to
a bisection algorithm found in [1] to compute the smallest
value of k∗. The algorithm is summarized below:

Binary Search Algorithm

input : kl < k∗ ≤ ku

output: Optimal time k∗

repeat

k̂∗ =
⌈

ku + kl

2

⌉

solve feasibility problem, Lu ≤W

if feasible then ku = k̂∗ else kl = k̂∗

until ku − kl < 2

k∗ = ku

The algorithm presented above finds the minimum num-
ber of samples, k∗, needed for the constraints (2)-(4) to be
feasible. Since there might be more than one time-optimal
trajectory one can further optimize the solution. One ex-
ample would be to use quadratic programming to minimize
the control energy used, as will be illustrated in the compu-
tational results presented in this paper.

3 Computational Results
For a discrete-time double integrator with velocity con-
straints, the well-known optimal time-solution is bang-
bang input profile with a coasting interval, typically seen
in Hard Disk Drive applications. To verify and compare
our computational results with these known results, we first
consider such a discretized zero-order-hold [2] double in-
tegrator system:

x(k+1) =
[

1 T
0 1

]
x(k)+

[
T 2

2
T

]
u(k) (8)

where x1 denotes position, x2 is velocity and T is the sam-
pling time. The initial condition for this simulation is



x0 = 0, the constraints are:

−1 ≤ u(k) ≤ 1 0 ≤ k ≤ N−1 (9)

−2 ≤ x1(k) ≤ 2 0 ≤ k < k̂∗ (10)

−0.75 ≤ x2(k) ≤ 0.75 0 ≤ k < k̂∗ (11)

1− ε≤ x1(k) ≤ 1+ ε k̂∗ ≤ k ≤ N (12)

−ε≤ x2(k) ≤ ε k̂∗ ≤ k ≤ N (13)

with N = 300. These constraints states that the input is
bounded by ±1, the position during the move is bounded
by ±2, the velocity during the move is bounded by ±0.75,
the position at the end of the move is bounded by 1±ε and
the velocity at the end of the move is bounded by ±ε, with
ε= 10−3. With these numbers, the binary search algorithm
computes the minimum number of samples to be k∗ = 207.
Figure 2 shows the corresponding minimum-time solution
that also minimizes the control energy. The input pro-
file for u(k) was found as the solution to minuTu over
the minimum-time solution space using quadratic program-
ming. It can be verified that the solutions indeed resembles
the well-known bang-bang input profile with a coasting in-
terval.
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Figure 2. Simulation results for the discrete-time double integrator (8)

The algorithm can also handle systems with additional res-
onance modes. In this paper we also consider a system with
one resonance mode for illustration purposes. The trans-
fer function for the system is the ZOH equivalent of the
continuous-time transfer function

G(s) =
ω2

0

s2(s2 +2ζω0s+ω2
0)

(14)

where ζ = 0.01 and ω0 = 20π. For comparison purposes
with the double-integrator system, the same constraints (9)-
(13) are imposed. With these numbers, the binary search

algorithm computes the minimum number of samples to
be k∗ = 206 which is even one sample faster than for the
double-integrator system. Figure 3 shows the computed in-
put profile as the solution to minuTu over the minimum-
time solution space using quadratic programming. It can
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Figure 3. Minimum-time, minimum-control solution for the discrete-time

ZOH equivalent of a double integrator with flexible mode defined in (14)

be seen that the profile again resembles the conventional
bang-bang with a coasting interval, but in addition small
fluctuations in the input signal during transitions to mini-
mize the settling time k∗ can be observed.
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