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Abstract— This paper presents a method of finding a con-
trol relevant, low-order weighting filter that over bounds the
uncertainty variations in measured frequency domain data.
Frequency response measurements of hard disk drive actuators
are used to model manufacturing and mounting variation.
A polynomial positivity condition is use to guarantee that a
minimal phase representation of the uncertainty that is found
and linear constraints in the frequency domain are used to
bound the magnitude of uncertainty model. The positivity
condition can be formulated as a linear matrix inequality and
linear constraints are used to shape the filter. Manufacturing
and mounting variations in hard disk drives are modeled as a
multiplicative uncertainty and a low-order over bound is found
from data on a finite grid. This application compares a linear
programming based methods for finding uncertainty models
with the purpose of designing a robust controller.

I. I NTRODUCTION

Models suitable for robust control [1] typically consist ofa
nominal model and a model in the form of a weighting filter
that describes the associated uncertainty. Several method
exist to this end including prediction error methods [2] and
bounded error estimation or set membership identification
[3]. Due to the presence of modeling error, a model of the
uncertainty weighting filter may be of high order to suf-
ficiently describe the variations in dynamics. Typical robust
control design methods (based uponH∞ control), will result
in an optimal controller with order that is dependent upon the
order of the nominal model and uncertainty weighting filter.
Therefore, low order weighting filters are often desired for
the controller synthesis.

When dealing with frequency domain data on a finite
grid, the uncertainty model (that typically includes a nominal
model and weighting filter) can be obtained directly from
the available frequency domain data. The nominal model
can be found via a least squares curve fitting procedure [4],
but the weighting filter must satisfy additional constraints.
Minimal phase filters are typically used and this condition
can be enforced via a positivity condition. In addition to this
condition, the weighting filter must satisfy constraints onthe
spectrum so that the robust performance condition can be
satisfied.

The spectrum constraints can be written as an over bound-
ing optimization problem. In [5] a frequency grid is used
to transform a over-bounding constraint and the positivity
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condition into a linear programming (LP) problem. One
drawback of this method is the inconsistency of the gridded
constraints with the positivity of the spectrum. That is,
solutions to the gridded frequency domain problem may
result in a spectrum that cannot be factored into a real
finite-dimensional system. Changing the positivity condition
can eliminate this problem, which is done in this paper.
Additionally, the intended use of the filter is emphasized
by the appropriate choice of frequency dependent weighting
functions during the optimization.

The upshot is a convex optimization problem that seeks a
fixed-order, control-relevant weighting filter that can be used
in the design of robust controllers. Previous applicationsof
the type of positivity condition used here have been focused
on filter design [6], [7], [8] and system identification [8] in
the frequency domain. These positivity conditions have not
been applied to estimate control relevant uncertainty models
for robust control. A linear programming based method
was used in [5] to find an uncertainty model for a large
flexible structure based upon frequency domain information
on a finite grid. However, this method only constrains the
positivity of the polynomials (and therefore the spectrum)
at the grid points only and did not seek a control relevant
model. This is in contrast to the method used here. In this
paper, we seek fixed-order, control-relevant weighting filter
that can be used in an uncertainty model. The technique
developed in this paper is applied to model manufacturing
and mounting variations in hard disk drives on the basis of
frequency domain data.

II. D ESCRIPTION OFPZT-ACTUATED SUSPENSION

The experimental results presented in this paper are based
on a dual-stage servo system that utilizes PZT-actuated
suspensions manufactured by Hutchinson as the second-
stage actuator [9]. In the HTI Magnum 5E PZT-actuated
suspension, two PZT bars are used to move the slider
in a direction perpendicular to the track by a push-pull
configuration. In a hard disk with multiple disks, several
suspensions are mounted on a single E-block, each carrying
on its gimbal a slider with the read-write head. The E-block
connects the suspensions to a radial Voice Coil Motor (VCM)
for the gross movements of all of the read/write heads. The
PZT-actuated suspensions are used as a secondary actuator
for the fine movements of each of the read/write heads.
Generally, the servo system performs track-following control
of a single read-write head at the time.

To perform the uncertainty modeling of the dual-stage
servo system, experiments were conducted to observe vari-
ations in its dynamic behavior, when several PZT-actuated
suspensions were installed on the E-block. The variations
are primarily caused by manufacturing and E-block mounting
variations of the different suspensions. Both conditions result



in (uncertain) variations in the dynamic response of the dual-
stage actuators, even when the PZT-suspensions are mounted
on the same E-block. As multiple suspension are controlled
by a single servo controller, these uncertainties have to
be taken into account when designing a high-performance
robust dual-stage servo controller for track following.

The variations in the dynamical behavior of the dual-stage
actuator were examined by measuring the frequency response
of several units. To generate experimental data, several E-
blocks with 4 suspension connection points and 9 different
suspensions mounted at a fixed distance from the hard disks
were used to measure 36 frequency responses. The slider
position was measured by the Laser Doppler Vibrometer
(LDV) and fed back to a Digital Signal Processor (DSP)
on which a simple Proportional Derivative control algorithm
was implemented to stabilize the VCM and slider position
for the LDV measurements.

III. B ACKGROUND FROMROBUST CONTROL

Results from robust control will be used to create a
model of the manufacturing and mounting variations in
the PZT-actuated suspensions. A brief review of the robust
performance problem for multiplicative uncertainty follows.
Consider the Single Input, Single Output (SISO) system
depicted in Fig.1 and the associatedrobust performance
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Fig. 1. Uncertain system described with multiplicative uncertainty and
used in the design of a robust controller.

control problem: find a controllerK such that

|W2(e
jω

)||S(ejω
)|+|W1(e

jω
)||T (ejω

)| ≤ 1, ∀ω ∈ [−π, π],
(1)

where

T =
KP

1 + KP
, S =

1

1 + KP
, W1, W2 ∈ RH∞. (2)

Condition (1) is a necessary and sufficient condition(see [1])
for robust performance of the SISO uncertain plantP∆ ∈ Π

where

Π := {(1 + W1∆)P : ∆ ∈ RH∞ ‖∆‖∞ < 1}. (3)

In addition to these requirements it is often desirable
to haveW−1

1 , W−1
2 ∈ RH∞. The order of the weighting

filters W1 andW2 and the order of the plantP dictate the
resulting order of the controller and the numerical ability
to compute the actual controller. Thus, in order to obtain a
low order controller, low order models ofW1 and W2 are
desired. On the other hand,W1 will typically be of high
order to sufficiently describe the uncertainty that is due to
the dynamics of the system that are not modeled. In order to

create a low order approximation that is relevant for robust
performance, one might think of replacing the condition (1)
by

|W2(e
jω

)||S(ejω
)|+|Ŵ1(e

jω
)||T (ejω

)| ≤ 1, ∀ω ∈ [−π, π],
(4)

whereŴ1 is a low-order transfer function that over bounds
the spectrum ofW1, that is,

|W1(e
jω

)| ≤ |Ŵ1(e
jω

)|, ∀ω ∈ [−π, π]. (5)

This allows for the design of a low order controller and
provides a sufficient condition for robust performance.

The methods developed in this paper can deal with general
optimization problems with constraints involving the square
of spectrum of transfer functions. For instance, one such
problem, of which the above problem is a particular case, is
the one of finding lower and upper bounds on the spectrum
of a low order transfer function̂W such that

Wl(ω) ≤ |Ŵ (ejω
)| ≤ Wu(ω), ∀ω ∈ [−π, π]. (6)

For example, various choices for lower and upper bound
functions can be used in robust control, such as the ones
listed below:

1) For Wl = |W1| and Wu = |T |−1
(γ − |W2||S|) one

obtains a robust design that aims to satisfy robust
performance.

2) For Wl = |W1| and Wu = γ|T |−1 robust stability is
emphasized with a robustness levelγ for all frequen-
cies. Whenγ ≤ 1 robust stability is guaranteed.

3) With Wu =
√

γ|F |2 + |Wl|2, the general over-
bounding problem suggested in [5] is achieved. Here
F = F (ω) is a weighting function that penalizes the
optimization.

IV. WORKING WITH DATA

In the previous section, problems were posed where all
constraints should be satisfied at all values ofω ∈ R.
It is our interest to pose and solve problems that can be
formulated directly upon experimental data, from which
frequency information may only be available upon a discrete
grid ω ∈ {ω1, . . . , ωN}. From this point on we focus on the
problem of findingŴ such that

Wl(ωk) ≤ |Ŵ (ejωk)| ≤ Wu(ωk), k = 1, . . . , N, (7)

Ŵ , Ŵ−1 ∈ RH∞. (8)

Note that the constraint (7) is on the grid and that (8) is for
all ω ∈ R. Requiring thatŴ ∈ RH∞ will ensure that the
bounds obtained in (7) can be attained by a stable transfer
function. The constraint (7) imposes no conditions on the
phase ofŴ , and we should expect that a minimum phase
solution, i.e.Ŵ−1 ∈ RH∞, should exist.

V. CHARACTERIZATION OF MULTIPLICATIVE

UNCERTAINTY

Let Fl(ω) ∈ C (l = 1, . . . , p) represent thelth frequency
response function (FRF) measured at a finite number of
frequency pointsω ∈ Ω. Fig. 2 (Top) shows how the
36 different FRF differ from one another. The resonance
modes shift in frequency which can make the control design
problematic.



The worst case upper bound for a multiplicative model
error is given by

δf (ωk) = max
l=1,...,p

∥

∥

∥

∥

Fl(ωk) − Fnom(ωk)

Fnom(ωk)

∥

∥

∥

∥

, ∀ k (9)

whereFnom(ωk) denotes the nominal FRF to be determined.
In order to find a nominalFnom(ωk) ∈ C with the smallest
multiplicative errorδf (ωk), a convex optimization has to be
solved for eachk [9]. The nominal FRF is used to find a
discrete time linear time invariant system that has a similar
frequency response.
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Fig. 2. Top: Frequency response functions of hard disk drives Fl(ω)
that characterizes manufacturing variations. Bottom: (Solid) Nominal Model
Po(ω). (Dash-dotted) Approximation of multiplicative uncertainty δm(ω).
(Dashed) Characterization of uncertainty set described with nominal model
Po(ω) and multiplcative uncertaintyδm(ω).

A nominal modelPo(e
jω

) that fitsFnom(ωk) is found with
the method described in [9]. This model is used to approx-
imate the FRF of the multiplicative uncertainty weighting
filter that is given by

δm(ωk) = max
l

∥

∥

∥

∥

Fl(ωk) − Po(e
jωk)

Po(ejωk)

∥

∥

∥

∥

∀ k. (10)

This approximation of the multiplicative uncertainty weight-
ing filter is shown in Fig.2 along with the nominal model
P0(e

jω
) and is used in the following section as a lower bound

for the modelŴ . From this figure it should be clear that all
of the FRF’s (Top) are contained in the set

Π̂ = {(1 + δm(ωk)∆(ejωk )Po(e
jωk) :

∆ ∈ RH∞ ‖∆‖∞ < 1} ∀k

which validates the use ofδm(ωk) as the multiplicative
uncertainty weighting.

VI. CONTROL RELEVANT APPROXIMATION

A. Minimal Phase Constraint

Three conditions must be satisfied to find a suitable
uncertainty model. The first condition that we will impose
is a minimal phase constraint. To impose this constraint
a representation for the spectrum must be used. Several
different representations of discrete-time spectra have been
considered in the literature. Most of these representation

rely upon the Markov-Lukás theorem [7], [6] for positivity
of polynomial on a line segment, the positive real lemma
[10] from systems theory, or discrete transformations like
the discrete Fourier transform and cosine transform. The
end result is a convex feasibility test over the cone of
autocorrelation coefficients (or equivalently the cone of non-
negative trigonometric polynomials) or the cone of positive
definite matrices. In both cases the dual cone is used to
find computationally efficient routines to solve the convex
optimization problems. Furthermore, the use of the barrier
function as applied to these problems has been extensively
studied in the literature. While these methods result in
necessary and sufficient conditions for the representation,
they are not unique and each have their advantages and
drawbacks especially from a numerical point of view.

In [11] the necessary and sufficient condition for pseu-
dopolynomial matrix to be nonnegative on the unit circle,
real axis, and imaginary axis is obtained by using the well-
known positive real lemma. Thus, the paper [11] treats
MIMO continuous-time and discrete-time formulations of
the representation presented in this paper and should be
consulted for further information regarding this area. The
computational aspects are also presented in full detail and
exploit the dual cone. Alkire and Vandenberghe [12], [13],
[8] studied the discrete time formulation of this problem and
using convex duality were able to write efficient optimization
routines that reduce the floating-point operations fromO(n6

)

to O(n3
). The connection between the LMI formulation

obtained from the positive real lemma and the representation
given in [11] is proven in [13]. Mclean and Woerdeman use
a version of the Markov-Lukás theorem to find an expres-
sion for the sum-of-squares representation of matrix-valued
trigonometric polynomials. An LMI formulation is obtained
and a cholesky factorization is used to find the spectral factor.
Roh and Vandenberghe [7] presented a new formulation of
the sum-of-squares representation of nonnegative univariate
polynomials, cosine polynomials, and trigonometric polyno-
mials of a single variable by using discrete Fourier, cosine,
and polynomial transformations. The resulting structure is
simple and numerically well-conditioned.

All of the aforementioned works can be consulted to obtain
a necessary and sufficient condition for a trigonometric
polynomial to be nonnegative on the unit circle. For the
purposes of this paper the representation obtained from the
positive real lemma will be used although this is not the most
efficient choice. The following theorem characterizes the set
of nonnegative trigonometric polynomials on the unit circle
and will be used in the following sections.

Theorem 1:Consider the polynomial

p(z) = y0 + y1z + ... + ynzn.

Let the modulus squared ofp(z) evaluated on the unit circle
be given by

Φp(e
jω

) = p(e−jω
)p(ejω

)

= (1 + y1e
−jω

+ ... + yne−jωn
)(1 + y1e

jω
+ ... + ynejωn

)

= xne−jωn
+ xn−1e

jω(−n+1)
+ ... + x0+

+ x1e
jω

+ ... + xnejωn (11)

= 2xn cos(nω) + 2xn−1 cos((n − 1)ω) + ... + x0 (12)



where the coefficientsxk are given by

xk =

n−k
∑

i=0

yiyi+k.

ThenΦp(e
jω

) ≥ 0 ∀ω ∈ [−π, π] if and only if there exists
a matrixP ∈ Sn such that

[

P x̃

x̃T x0

]

−

[

0 0

0 P

]

≥ 0 (13)

wherex̃ = [xn xn−1 . . . x1]
T .

Proof: The proof is obtained directly from the results
in [13] and others, and it based upon the KYP lemma from
systems theory.

Now consider a discrete time system

Ŵ (z) =
b0 + b1z + ... + bnzn

1 + a1z + ... + anzn
.

Let the spectrum of̂W (z) be given by

Φ
Ŵ

(ejω
) = Ŵ (e−jω

)Ŵ (ejω
)

=
b0 + b1e

−jω
+ ... + bne−jωn

1 + a1e−jω + ... + ane−jωn

b0 + b1e
jω

+ ... + bnejωn

1 + a1ejω + ... + anejωn

=
Bne−jωn

+ Bn−1e
jω(−n+1)

+ ... + B0 + ... + Bnejωn

Ane−jωn + An−1ejω(−n+1) + ... + A0 + ... + Anejωn

(14)

=
2Bn cos(nω) + 2Bn−1 cos((n − 1)ω) + ... + B0

2An cos(nω) + 2An−1 cos((n − 1)ω) + ... + A0
(15)

=
β(ω)

α(ω)
(16)

where the coefficientsBk are given by

Bk =

n−k
∑

i=0

bibi+k,

and the coefficientsAk are obtained similarly. Then
Φ

Ŵ
(ejω

) ≥ 0 ∀ω ∈ [−π, π] if and only if there exists
matricesPA, PB ∈ Sn such that

[

PA Ã

ÃT A0

]

−

[

0 0

0 PA

]

≥ 0 (17)

[

PB B̃

B̃T B0

]

−

[

0 0

0 PB

]

≥ 0, (18)

whereÃ = [An An−1 . . . A1]
T andB̃ = [Bn Bn−1 . . . B1]

T .
To constrain the numerator and denominator polynomials

to be strictly positive on the unit circle one can set

Bne−jωn
+ Bn−1e

jω(−n+1)
+ ...B0 + ... + Bnejωn ≥ ǫ

Ane−jωn
+ An−1e

jω(−n+1)
+ ...A0 + ... + Anejωn ≥ ǫ,

(19)
whereǫ is a small positive constant. Simple algebra changes
(17) into

[

PA Ã

ÃT A0 − ǫ

]

−

[

0 0

0 PA

]

≥ 0,

[

PB B̃

B̃T B0 − ǫ

]

−

[

0 0

0 PB

]

≥ 0.

B. Frequency Dependent Bounds

The remaining constraints that are imposed upon the
uncertainty model are an upper and lower bound that are
frequency dependent. In this section we incorporate these
bounds into the design and show that the general frequency
gridded spectral problem (7)-(8) is a convex problem, for
which a feasible solution can be computed. More specifically,
we show that it can be posed and solved in polynomial
time as a semidefinite program. We start by squaring the
constraints (7)

W 2
l (ωk) ≤ Φ

Ŵ
(ωk) ≤ W 2

u (ωk), k = 1, . . . , N. (20)

Now, according to the discussion in the previous section, if
Ŵ , Ŵ−1 ∈ RH∞ then there is a LMI formulation for the
numerator and denominator coefficients ofΦ

Ŵ
(ω) that is

valid for ω ∈ [−π, π]. Therefore, by using the notation from
(16) we get

α(ωk)W 2
l (ωk) ≤ β(ωk) ≤ α(ωk)W 2

u (ωk), k = 1, . . . , N.

Note that the above constraints are clearly linear on the
coefficients ofα(ω) andβ(ω). In fact, these linear constraints
are related to the ones used in [5] to produce a linear
program which attempts to solve the constraints (7)-(8) by
approximating (8) only at the grid points. Ignoring (8) one
risks to produce a spectrumΦ

Ŵ
that is nonnegativeonly at

the grid points. In order to avoid such pitfall, one has to
largely increase the number of grid points and/or the order
of the polynomials (see [5] and the numerical example in
SectionVI-C).

As Theorem1 in the previous section shows, using the
constraints in (19) we completely eliminate this difficulty.
In fact, this is equivalent to using a sum-of-squares rep-
resentation [14], [7] for the spectrum, using the Nesterov
parameterization for scalar polynomials [11] or constraining
the numerator and denominator coefficients to be in the cone
of finite autocorrelation coefficients [13].

Finally, note thatΦP (ejω
) is not uniquely defined in terms

of α(ω) andβ(ω). In fact one can scaleα(ω) andβ(ω) by
an arbitrary positive scalar without changingΦ

Ŵ
. For this

reason, we add to the above constraints thenormalization
constraint

A0 = 1. (21)

This condition is similar to constraining the denominator
of Ŵ to be monic so that an over parameterization of the
transfer function is avoided and a unique minimum is found.

Once the optimization problem has stopped, one is left
with a representation for spectrumΦ

Ŵ
(ejω

). To find the
minimal phase modelŴ (z) the spectrumΦ

Ŵ
(ejω

) must
be factored into stable and unstable parts. Factoring a
squared polynomial (hence a spectrum) is called spectral
factorization and many methods exist to this end. Spectral
factorization methods include the Bauer method [15], Schur
Algorithm, Levinson-Durbin Algorithm, CKMS filter [10],
Wilson Method, and Riccati method [10]. Most of these
methods are reviewed and compared in [16].



C. Minimizing the Relative Error

An important particular case of the general spectral bound-
ing problem presented (7)-(8) is the case whenW 2

u =

W 2
l + γF (ω) and we want to find the smallestγ for which

this holds such that the solution can be factored. The user
specified nonnegative weighting functionF (ω) is used to
weight the optimization problem. A typical choice forF (ω)

is W 2
l (ω), and with this choice of weighting function one

minimizes the relative error. Under this formulation the
optimization problem can be written as

min
Ŵ

max
k=1,··· ,N

{(|Ŵ (ωk)|2 − Wl(ωk)
2
)F (ωk)

−1},

s.t. |Ŵ (ωk)| ≥ Wl(ωk), k = 1, . . . , N,

Ŵ , Ŵ−1 ∈ RH∞.

In [5] a similar problem posed in discrete-time was solved
using a LP approach. However, as we mentioned before, the
LP version does not enforce the positivity of the polynomials
over all frequencies but only at the grid points. As a results,
solutions to the LP version may fail to produce a rational
transfer function solution associated with the spectrum at
the k = 1, . . . , N points.

Using the ideas discussed in the previous section it is not
difficult to reformulate the above min-max problem into the
form

min
γ,Ak,Bk,PA,PB

γ

s.t. α(ωk)
[

W 2
l (ωk) + γ F (ωk)

]

≥ β(ωk)

≥ α(ωk)δ2
m(ωk),

k = 1, . . . , N,
[

PA Ã

ÃT A0 − ǫ

]

−

[

0 0

0 PA

]

≥ 0,

[

PB B̃

B̃T B0 − ǫ

]

−

[

0 0

0 PB

]

≥ 0,

A0 = 1, PA = PT
A , PB = PT

B ,

whereÃ and B̃ are defined as in (17) and α(ω) and β(ω)

are defined in (16).
This problem is convex for each fixedγ, hence quasi-

convex, and the global optimal solution can be found via
a line search method onγ such as bisection. The first2k
constraints are in place so that the upper and lower bounds
are guaranteed. The remaining constraints are the necessary
and sufficient conditions for the spectral factorization toexist
and the normalization constraint.

Setting Wl(ω) = δm(ω) and F (ω) = δm(ω)
2 and

minimizing γ will result in an over bound that minimizes
the relative error. That is, an over bound that minimizes the
relative error betweenδm(ω) andŴ (ejω

). Fig. 3 show the
result of this optimization along with a linear programming
based approach [5] that aims to minimize the same cost. One
should notice that there are several breaks in the graph. These
points indicate that the linear programming based approach
became negative in between grid points. The semidefinite
based approach will never become negative since we are
searching over the set of positive polynomials. Also notice
that both methods bound the weighting filter at the grid

points only and therefore it is possible to violate the bounds
in between them.
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Fig. 3. (o) Lower boundδm(ω) that approximates the multiplicative
uncertainty weighting filter.( ) Linear programming based over bound
that minimizes the relative error. ( ) Semidefinite programming based
over bound that minimizes the relative error. There are several breaks in the
graph. These points indicate that the linear programming based approach
became negative in between grid points.

D. Control Relevant Approximation

In order for a control-relevant over bound of the uncer-
tainty to be found it is important to recall the discussion of
SectionIII . That is, different choices forWl and Wu will
result in optimization problems that emphasis the frequency
domain fit to suit different design needs. For this example
problem, we seek to emphasis robust stability and therefore
setWl = |δm(ω)| andWu = |T |−1γ. Thus, by minimizing
γ the fit of Ŵ onto δm will emphasis robust stability and
it is easy to see that forγ ≤ 1 the current controller
satisfies robust performance for the designed weighting filter
Ŵ which over bounds the estimated multiplicative errorδm.
The design of a subsequent robust performing controller is
guaranteed in this case.

T must be measured (implying a current controller exists)
for this method to work. However, for comparison purposes
T was generated by designing a robustly stabilizing con-
troller for the uncertainty weighting filter found in the previ-
ous section. The magnitude of the complementary sensitivity
functionT and weighted complementary sensitivity function
W1T are shown in Fig.4. Here it can be seen that the current
controller satisfies robust stability.

It is not difficult to recast the general bounding problem
of (7) and (8) into the form

min
γ,Ak,Bk,PA,PB

γ

s.t. α(ωk)
[

|T (ωk)|−1γ
]2

≥ β(ωk) ≥ α(ωk)δ2
m(ωk),

k = 1, . . . , N,
[

PA Ã

ÃT A0 − ǫ

]

−

[

0 0

0 PA

]

≥ 0,

[

PB B̃

B̃T B0 − ǫ

]

−

[

0 0

0 PB

]

≥ 0,

A0 = 1, PA = PT
A , PB = PT

B ,
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Fig. 4. ( )The magnitude of the complementary sensitivity function
|T |. ( )The magnitude of the weighted complementary sensitivity function
|W1T |.

whereÃ and B̃ are defined as in (17) and α(ω) and β(ω)

are defined in (16).
This problem is convex for each fixedγ, hence quasi-

convex, and again the global optimal solution can be found
via a line search method like bisection. The results of this
optimization are shown in Fig.5. This figure depicts the
difference between the relative error over bound and the
control relevant over bound. The control relevant over bound
is very accurate at the higher frequencies and not very
accurate at low frequencies. Conversely, the relative error
over bound is more accurate at low frequencies where it is
not needed to satisfy robust stability. This can be verified by
looking at Fig.4, where at high frequencies|T | is near unity
indicating the need for a better fit.
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Fig. 5. (o) Lower boundδm(ω) that approximates the multiplicative
uncertainty weighting filter.( ) Semidefinite programming based over
bound that minimizes the relative error.( ) Control relevant over bound
based upon semidefinite programming.

VII. C ONCLUSIONS

In this paper, it has been shown that manufacturing and
mounting variations in hard disk drives can be represented
with a multiplicative uncertainty where a weighting filter
is used to represent the frequency dependent size of the
uncertainty. The weighting filter for the uncertainty and
nominal model can be found with via convex optimizations.
In particular, the weighting filter design used a linear matrix
inequality to constrain the spectrum to be positive and linear

constraints to enforce lower and upper bounds that shape the
weighting filter. Two different choices for the upper bound
were compared. One upper bound resulted in a weighting
filter that minimizes the relative error and the other resulted
in an emphasis in robust performance. This comparison
indicated that a better fit for the purposes of robust controlof
the frequency domain data can be achieved as compared to
standard methods. Additionally, the linear matrix inequality
constraints guaranteed that a minimal phase representation
can be found which is a improvement over other methods of
finding a weighting filters for robust control that rely upon
linear programming.
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