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Abstract— This paper presents a method of finding a con-
trol relevant, low-order weighting filter that over bounds the
uncertainty variations in measured frequency domain data.
Frequency response measurements of hard disk drive actuate
are used to model manufacturing and mounting variation.
A polynomial positivity condition is use to guarantee that a
minimal phase representation of the uncertainty that is found
and linear constraints in the frequency domain are used to
bound the magnitude of uncertainty model. The positivity
condition can be formulated as a linear matrix inequality ard
linear constraints are used to shape the filter. Manufactumg
and mounting variations in hard disk drives are modeled as a
multiplicative uncertainty and a low-order over bound is found
from data on a finite grid. This application compares a linear
programming based methods for finding uncertainty models
with the purpose of designing a robust controller.

I. INTRODUCTION
Models suitable for robust control [1] typically consistaf

condition into a linear programming (LP) problem. One
drawback of this method is the inconsistency of the gridded
constraints with the positivity of the spectrum. That is,
solutions to the gridded frequency domain problem may
result in a spectrum that cannot be factored into a real
finite-dimensional system. Changing the positivity coiodit
can eliminate this problem, which is done in this paper.
Additionally, the intended use of the filter is emphasized
by the appropriate choice of frequency dependent weighting
functions during the optimization.

The upshot is a convex optimization problem that seeks a
fixed-order, control-relevant weighting filter that can tsed
in the design of robust controllers. Previous applicatiohs
the type of positivity condition used here have been focused
on filter design [6], [7], [8] and system identification [8] in
the frequency domain. These positivity conditions have not
been applied to estimate control relevant uncertainty risode

nominal model and a model in the form of a weighting filtek,, ohust control. A linear programming based method

that describes the associated uncertainty. Several met

exist to this end including prediction error methods [2] a

f(gag

NYlexible structure based upon frequency domain information

s used in [5] to find an uncertainty model for a large

bounded error estimation or set membership identificatiofl, 5 finite grid. However, this method only constrains the

[3]. Due to the presence of modeling error, a model of thggitivity of the polynomials (and therefore the spectrum)
uncertainty weighting filter may be of high order to suf-a¢ the grid points only and did not seek a control relevant

ficiently describe the variations in dynamics. Typical rébu yq4e|. This is in contrast to the method used here. In this
control design methods (based uptin, control), will result 4561 \ve seek fixed-order, control-relevant weightingfilt
in an optimal controller with order that is dependent up@ thiat can be used in an uncertainty model. The technique

order of the nominal model and uncertainty weighting filtergeyeloped in this paper is applied to model manufacturing
Therefore, low order weighting filters are often desired foLq mounting variations in hard disk drives on the basis of

the controller synthesis. frequency domain data.
When dealing with frequency domain data on a finite

grid, the uncertainty model (that typically includes a noati 1. DESCRIPTION OFPZT-ACTUATED SUSPENSION

model and weighting filter) can be obtained directly from The experimental results presented in this paper are based
the available frequency domain data. The nominal model, 5 gual-stage servo system that utilizes PZT-actuated
can be found via a least squares curve fitting procedure [As]uspensions manufactured by Hutchinson as the second-
but the weighting filter must satisfy additional constraint stage actuator [9]. In the HTI Magnum 5E PZT-actuated
Minimal phase filters are typically used and this Conditio%uspension, two PZT bars are used to move the slider
can be enforced via a positivity condition. In addition testh ;, 5 direction perpendicular to the track by a push-pull
condition, the weighting filter must satisfy constraintstba configuration. In a hard disk with multiple disks, several

spectrum so that the robust performance condition can Rgspensions are mounted on a single E-block, each carrying

satisfied. . _ on its gimbal a slider with the read-write head. The E-block

~ The spectrum constraints can be written as an over bounghpnects the suspensions to a radial Voice Coil Motor (VCM)

ing optimization problem. In [5] a frequency grid is usedor the gross movements of all of the read/write heads. The

to transform a over-bounding constraint and the positivitpzT-actuated suspensions are used as a secondary actuator
for the fine movements of each of the read/write heads.

Aerospace Engineering, University of California, San Dieg500 Gilman Gener_a"y' the SerV(_) system performs track-followmg coint

Drive, La Jolla, CA 92093-0411, U.S.8eki nney@icsd. edu of a single read-write head at the time.

RA. de Callafon is an Associate Professor in the Department To perform the uncertainty modeling of the dual-stage
of Mechanical and Aerospace Engineering, University of ifGatia, servo system, experiments were conducted to observe vari-
San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, U.S.A>% .y h » EXp h '
cal | af on@icsd. edu ations in its dynamic behavior, when several PZT-actuated

Mauricio Carvalho de Oliveira is a Post Doctoral Fellow Be De-  syspensions were installed on the E-block. The variations
partment of Mechanical and Aerospace Engineering, Urityef Cali- are primarily caused by manufacturing and E-block mounting

fornia, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-D4U.S.A sl ; ! n
mauri ci o@icsd. edu variations of the different suspensions. Both conditicasilt

C.E. Kinney is a graduate student in the Department of Machhand

2902



in (uncertain) variations in the dynamic response of thd-duacreate a low order approximation that is relevant for robust
stage actuators, even when the PZT-suspensions are mourgedormance, one might think of replacing the conditigj (
on the same E-block. As multiple suspension are controllday
by a single servo controller, these uncertainties have lo i i S i
be taken into account when designing a high-performan Wa(e™)[[S(e”)[+ Wi ()T ()] <1, Vw € [-m, ],
robust dual-stage servo controller for track following. o , (4)

The variations in the dynamical behavior of the dual-stag/n€re: is a low-order transfer function that over bounds
actuator were examined by measuring the frequency resporidg Spectrum o#Vy, that is,
of several units. To generate experimental data, several E- jw 7 dw _
blocks with 4 suspension connection points and 9 different W) < [Wie™)], - Vo € [=m, . ®)
suspensions mounted at a fixed distance from the hard diskBis allows for the design of a low order controller and
were used to measure 36 frequency responses. The sliggovides a sufficient condition for robust performance.
position was measured by the Laser Doppler Vibrometer The methods developed in this paper can deal with general
(LDV) and fed back to a Digital Signal Processor (DSP)pptimization problems with constraints involving the sopia
on which a simple Proportional Derivative control algonith of spectrum of transfer functions. For instance, one such
was implemented to stabilize the VCM and slider positionproblem, of which the above problem is a particular case, is
for the LDV measurements. the one of finding lower and upper bounds on the spectrum

of a low order transfer functiol” such that
Ill. BACKGROUND FROMROBUST CONTROL

Results from robust control will be used to create a  Wi(w) < [W(e?)| < Wy(w), VYwe€ [-7, 7]. (6)

model of the manufacturi_ng and 'T‘OU”“f_‘g variations ir':or example, various choices for lower and upper bound
the PZT-actuated suspensions. A brief review of the robuginions can be used in robust control, such as the ones
performance problem for multiplicative uncertainty folls. listed below: '
Consider the Single Input, Single Output (SISO) system ' _

: L : 1) For W, = |Wy| andW,, = |T|~ (v — |W5]||S|) one
depicted in Fig.1 and the associatetbbust performance ) obtainls a |rOl;l|,ISt design tr|1a|t a%s t|o zs!\ti's)fy robust

performance.
ld 2) For W, = |W;| andW,, = ~|T'|~! robust stability is
emphasized with a robustness leyefor all frequen-
A ™ W Wa cies. Wheny < 1 robust stability is guaranteed.
—I 3) With W, = +/~|F]?>+|W;|?, the general over-
KL bounding problem suggested in [5] is achieved. Here
(‘ P F = F(w) is a weighting function that penalizes the

optimization.

. _
%T IV. WORKING WITH DATA

In the previous section, problems were posed where all
_ . . _ S _ constraints should be satisfied at all valuesuwofe R.
Fig. 1. Uncertain system described with multiplicative emtainty and It is our interest to pose and solve problems that can be
used in the design of a robust controller. . . .
formulated directly upon experimental data, from which
frequency information may only be available upon a discrete

control problem find a controllerK such that

_ _ _ _ gridw € {w1,...,wy}. From this point on we focus on the
[Wo (e?)||S(e?“)|+|Wi(e?“)||T(e’*)| <1, Vw € [—m, ©], problem of findingl¥ such that
(1) o
where Wl(tdk) < |W(6J k)' SWu(wk)’ k=1,...,N, (7)
KP 1 W, W € RHo. 8
=TT =——=, Wi, e RHw. (2) ©)
1+ KP 1+ KP Note that the constraint) is on the grid and thatgj is for

Condition (1) is a necessary and sufficient condition(see [1Jall w € R. Requiring thatiV € RH.. will ensure that the

for robust performance of the SISO uncertain pl@ate IT  bounds obtained in7) can be attained by a stable transfer

where function. The constraint7) imposes no conditions on the
o ) phase ofl///, and we should expect that a minimum phase

M= {1+ WA)P: A € RHx [|Alloc <1} (3) solution, i.e.W =1 € RH.., should exist.
In addition to these requirements it is often desirable

to haveW; ', W, ! € RHo. The order of the weighting V. CHARACTERIZATION OF MULTIPLICATIVE

filters W, and W, and the qrder of the plar® dictate the UNCERTAINTY

resulting order of the controller and the numerical ability Let Fj(w) € C (I = 1,...,p) represent thé*” frequency

to compute the actual controller. Thus, in order to obtain eesponse function (FRF) measured at a finite number of

low order controller, low order models d#; and W, are frequency pointsw € . Fig. 2 (Top) shows how the

desired. On the other handil’; will typically be of high 36 different FRF differ from one another. The resonance

order to sufficiently describe the uncertainty that is due tmodes shift in frequency which can make the control design

the dynamics of the system that are not modeled. In order fwoblematic.
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The worst case upper bound for a multiplicative modetely upon the Markov-Lukas theorem [7], [6] for positivity
error is given by of polynomial on a line segment, the positive real lemma
Fi(we) — Foom(wr) [10] from systems theory, or discrete transformations like

Nk nom \Wk ‘, vk (9) the discrete Fourier transform and cosine transform. The

From(wr) end result is a convex feasibility test over the cone of

whereF,,,., (w:) denotes the nominal FRF to be determinedutocorrelation coefficients (or equivalently the cone afin
In order to find a nominak,,,, (wx) € C with the smallest Negative trigonometric polynomials) or the cone of positiv
multiplicative errors(wy,), a convex optimization has to be definite matrices. In both cases the dual cone is used to
solved for eachk [9]. The nominal FRF is used to find a find computationally efficient routines to solve the convex
discrete time linear time invariant system that has a similPtimization problems. Furthermore, the use of the barrier
frequency response. function as applied to these problems has been extensively
studied in the literature. While these methods result in
necessary and sufficient conditions for the representation
16 ‘ they are not unique and each have their advantages and
drawbacks especially from a numerical point of view.

In [11] the necessary and sufficient condition for pseu-
dopolynomial matrix to be nonnegative on the unit circle,
real axis, and imaginary axis is obtained by using the well-

‘ known positive real lemma. Thus, the paper [11] treats
10’ 10" MIMO continuous-time and discrete-time formulations of
17 ‘ the representation presented in this paper and should be
consulted for further information regarding this area. The
computational aspects are also presented in full detail and
exploit the dual cone. Alkire and Vandenberghe [12], [13],
107 q [8] studied the discrete time formulation of this problendan

3 using convex duality were able to write efficient optiminati

10 Frequency (H2) 10 routines that reduce the floating-point operations fdtn)
quency to O(n?®). The connection between the LMI formulation

obtained from the positive real lemma and the represemntatio

Fig. 2. Top: Frequency response functions of hard disk srifgw)  given in [11] is proven in [13]. Mclean and Woerdeman use

that characterizes manufacturing variations. Bottomli¢sdlominal Model 5 yversion of the Markov-Lukas theorem to find an expres-

P,(w). (Dash-dotted) Approximation of multiplicative uncergi 6., (w). . . .

(Dashed) Characterization of uncertainty set describetl mominal model  SION for the sum-of-squares representation of matrixeglu

Po(w) and multiplcative uncertainty,, (w). trigonometric polynomials. An LMI formulation is obtained
and a cholesky factorization is used to find the spectrabfact

A nominal modelP, (e7«) that fits F, .., (wy ) is found with  Roh and Vandenberghe [7] presented a new formulation of
the method described in [9]. This model is used to approxhe sum-of-squares representation of nonnegative uabeari
imate the FRF of the multiplicative uncertainty weightingpolynomials, cosine polynomials, and trigonometric polyn
filter that is given by mials of a single variable by using discrete Fourier, cosine

jor and polynomial transformations. The resulting structige i
Fi(wi) — Po(e )H v k. (10) simple and numerically well-conditioned.
P, (e7¢x) All of the aforementioned works can be consulted to obtain

This approximation of the multiplicative uncertainty wetg @ necessary and sufficient condition for a trigonometric
ing filter is shown in Fig.2 along with the nominal model Polynomial to be nonnegative on the unit circle. For the
Py(e7*) and is used in the following section as a lower boundurposes of this paper the representation obtained from the

for the modelli”. From this figure it should be clear that all POSitive real lemma will be used although this is not the most
of the FRF’s (Top) are contained in the set efficient choice. The following theorem characterizes thie s

of nonnegative trigopnometric polynomials on the unit a@rcl

0r(wk) = max

10° |

Gain

-2

107

A AR AL A A

Phase (deg.)

O (wg) = max

IT = {(1 + 6 (wi) A(e7F ) Py (&) : and will be used in the following sections.
A€ RH Al <1} VE Theorem 1:Consider the polynomial
which validates the use o0f,,(w;) as the multiplicative p(2) =yo+y12 + ... +ynz".

uncertainty weighting.

Let the modulus squared pfz) evaluated on the unit circle
VI. CONTROL RELEVANT APPROXIMATION be given by

A. Minimal Phase Constraint . ‘ ‘

Three conditions must be satisfied to find a suitabl®»(¢"”) :p(,e )p(e”) , , ;
uncertainty model. The first condition that we will impose = (1 + y1e™7“ + ... + yne 7")(1 + y1€’“ + ... + y,e*")
is @ minimal phase constraint. To impose this constraint. . emdon 4 gdw(=ntl) Lo
a representation for the spectrum must be used. Several ™" el , o
different representations of discrete-time spectra haenb +21e?” + 2 e (11)
considered in the literature. Most of these representatios 2z, cos(nw) + 2x,—1 cos((n — 1)w) + ... + x¢ (12)

2904



where the coefficients;, are given by

n—=k
Ty = E YiYi+k-
=0

Then®,(e’“) > 0 Vw € [—m, 7] if and only if there exists
a matrix P € S™ such that

P 2] [o o
L%T xo]_[o P}ZO

wherei = [z, z,_1...71]7.

(13)

Proof: The proof is obtained directly from the results
in [13] and others, and it based upon the KYP lemma from

systems theory. [ |
Now consider a discrete time system

W(Z) . bo +b1z+ ...+ b,z"
T 14 aiz4 ... Fapz®

Let the spectrum ofV/(z) be given by
By, () = W(e )W (/)
. b() —+ bleijw + ...+ bneijwn b() —+ bleJ“ + ...+ bne]wn
T 14 are i+ .. 4 ane 9" 14 a1l + ... + a,eien
B9 4 B,_1e¥m D 4 4 By + ..+ Belen
C Apeivon £ A, qeiw(=ntl) 44 Ag 4.+ Ageden

(14)
2B, cos(nw) + 2By, 1 cos((n — 1)w) + ... + By (15)
24, cos(nw) + 24,1 cos((n — 1)w) + ... + Ag
_ Bw) (16)

a(w)

where the coefficient®;, are given by

n—k
By, = Z bibiyr,
i=0

and the coefficients4, are obtained similarly. Then

Py (e7Y) > 0 Yw € [—m,7] if and only if there exists
matricesP4, Pg € S™ such that

Py A 0 0

- — >
[AT Ao} [0 P A} =0
Pz B 0 0

- — >
[BT Bo} [0 P B} =0

whered = [A4,, A,_1 ... AT andB = [B,, B,,_, ... B]".

(17)

(18)

B. Frequency Dependent Bounds

The remaining constraints that are imposed upon the
uncertainty model are an upper and lower bound that are
frequency dependent. In this section we incorporate these
bounds into the design and show that the general frequency
gridded spectral problem7)-(8) is a convex problem, for
which a feasible solution can be computed. More specifically
we show that it can be posed and solved in polynomial
time as a semidefinite program. We start by squaring the
constraints {)
k=1 N.

Wi (wi) < @ (wi) < Wi (wr), (20)

Now, according to the discussion in the previous section, if
W, W1 € RH. then there is a LMI formulation for the
numerator and denominator coefficients ®f;, (w) that is
valid for w € [—m, «r]. Therefore, by using the notation from
(16) we get

a(wp) Wi (wr) < Blwr) < alwp)W2(wy), k=1,...,N.
Note that the above constraints are clearly linear on the
coefficients ofx(w) andj(w). In fact, these linear constraints
are related to the ones used in [5] to produce a linear
program which attempts to solve the constraims(8) by
approximating §) only at the grid points. Ignoringgj one
risks to produce a spectrumy;, that is nonnegativenly at
the grid points In order to avoid such pitfall, one has to
largely increase the number of grid points and/or the order
of the polynomials (see [5] and the numerical example in
SectionVI-C).

As Theoreml in the previous section shows, using the
constraints in 19) we completely eliminate this difficulty.
In fact, this is equivalent to using a sum-of-squares rep-
resentation [14], [7] for the spectrum, using the Nesterov
parameterization for scalar polynomials [11] or consirain
the numerator and denominator coefficients to be in the cone
of finite autocorrelation coefficients [13].

Finally, note thatb » (/%) is not uniquely defined in terms
of a(w) andB(w). In fact one can scale(w) and 3(w) by
an arbitrary positive scalar without changidg;,. For this
reason, we add to the above constraints ribemalization
constraint

Ap = 1. (21)

To constrain the numerator and denominator polynomialghis congition is similar to constraining the denominator

to be strictly positive on the unit circle one can set

Bpe 7" + B, 17"t 4 By + ...+ Bl > ¢
Ape 99" 4 A, 139D LA+ 4 ApedeT > e,

wheree is a small positive constant. Simple algebra chang

(17) into

Py A 0 0
~ — >
AT Ao—e] [0 PA}—O’
Pg B 0 0
- — > 0.
R

of W to be monic so that an over parameterization of the
transfer function is avoided and a unique minimum is found.

Once the optimization problem has stopped, one is left
with a representation for spectrufhy;, (¢/~). To find the

inimal phase modelV(z) the spectrum®,;, (e/*) must

e factored into stable and unstable parts. Factoring a
squared polynomial (hence a spectrum) is called spectral
factorization and many methods exist to this end. Spectral
factorization methods include the Bauer method [15], Schur
Algorithm, Levinson-Durbin Algorithm, CKMS filter [10],
Wilson Method, and Riccati method [10]. Most of these
methods are reviewed and compared in [16].
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C. Minimizing the Relative Error points only and therefore it is possible to violate the baund

An important particular case of the general spectral bound? between them.
ing problem presented7)-(8) is the case wherV? =

W7 4+ vF(w) and we want to find the smallestfor which 1R L
this holds such that the solution can be factored. The us
specified nonnegative weighting functidn(w) is used to 10t |

weight the optimization problem. A typical choice féi{w) 0
is W7 (w), and with this choice of weighting function one £ 10 ¢
minimizes the relative error. Under this formulation the{Dts a1
optimization problem can be written as 10

-2 ©

min | max | (W ()| = Wilw)?) Plwn) ™) ol

st. [W(we)| > Wi(wr), k=1,...,N,
W, W™ € RHo.

In [5] a similar problem posed in discrete-time was solved. 5 oL bound s, (w) that imates th iolicati

H : .o O, ower bound oy, (w al approximates € muluplicative
using a_LP approach. However, as We _mem'oned before_’ tﬁ}"?certainty weighting filter.__) Linear programming based over bound
LP version does not enforce the positivity of the polynoshialthat minimizes the relative error_(_) Semidefinite programming based
over all frequencies but only at the grid points. As a resultgver bound that minimizes the relative error. There arersélzeaks in the

: : - - raph. These points indicate that the linear programmirggdapproach

solutions to the LP version may fall to_produce a ratlon%ecame negative in between grid points.
transfer function solution associated with the spectrum at
thek=1,..., N points.

Using the ideas discussed in the previous section it is nat
difficult to reformulate the above min-max problem into th

10"
Frequency (Hz)

. Control Relevant Approximation

form In order for a control-relevant over bound of the uncer-
min tainty to be found it is important to recall the discussion of

v AwBriPaPs Sectionlll. That is, different choices foW; and W, will
st alw) [le (W) + 7F(wk)] > Blwr) result in optimization problems that emphasis the frequenc

Y

5 domain fit to suit different design needs. For this example
> a(wy)d, (W), problem, we seek to emphasis robust stability and therefore
k=1,...,N, setW; = |6,,(w)| and W, = |T|~'v. Thus, by minimizing
P A 0 0 ~ the fit of W onto 4,,, will emphasis robust stability and
L}T Ao _J - [O PA] >0, it is easy to see that foy < 1 the current controller
satisfies robust performance for the designed weightirey filt
~ W which over bounds the estimated multiplicative edgy.
[PB B ] B [0 0 } 0 The design of a subsequent robust performing controller is
BT By—¢ 0 Pp ’ guaranteed in this case.
_ _pT _pT T must be measured (implying a current controller exists)
Ao =1, Pa="Fa, Pp = FPp, for this method to work. However, for comparison purposes
where A and B are defined as in1?) anda(w) and B(w) 1" was generated by designing a robustly stabilizing con-
are defined in 16). troller for the uncertainty weighting filter found in the pre
This problem is convex for each fixed, hence quasi- OUS section. The magnitude of the complementary sengitivit
convex, and the global optimal solution can be found vidunctionT and weighted complementary sensitivity function
a line search method on such as bisection. The firgtc W17 are shown in Fig4. Here it can be seen that the current
constraints are in place so that the upper and lower bounggntroller satisfies robust stability.
are guaranteed. The remaining constraints are the negessarlt is not difficult to recast the general bounding problem
and sufficient conditions for the spectral factorizatioexst  of (7) and @) into the form
and the normalization constraint. )
Setting Wi(w) = dn(w) and F(w) = dp(w)* and W0
minimizing ~ will result in an over bound that minimizes g2 )
the relative error. That is, an over bound that minimizes the St a(wi) [[T(wi)|7'1]" = Blwr) = a(wr)dy, (W),

relative error between,, (w) and W (e7). Fig. 3 show the k=1,...,N,
result of this optimization along with a linear programming Pa i 0 0

based approach [5] that aims to minimize the same cost. One {AT A } — [O P ] >0,

should notice that there are several breaks in the grapls€The 0—¢ 4

points indicate that the linear programming based approach

became negative in between grid points. The semidefinite Pg B 0 0

based approach will never become negative since we are {BT By _6] - [0 pB} 20,
searching over the set of positive polynomials. Also notice T T
that both methods bound the weighting filter at the grid Ao =1, Py =Py, Pp = Pg,
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10" ‘ ‘ constraints to enforce lower and upper bounds that shape the
weighting filter. Two different choices for the upper bound
were compared. One upper bound resulted in a weighting
filter that minimizes the relative error and the other reslilt

in an emphasis in robust performance. This comparison
indicated that a better fit for the purposes of robust comtfol

the frequency domain data can be achieved as compared to
standard methods. Additionally, the linear matrix inedgyal
constraints guaranteed that a minimal phase represemtatio
can be found which is a improvement over other methods of
3 finding a weighting filters for robust control that rely upon

Gain

3

10
Frequency (Hz)
Fig. 4. ()The magnitude of the complementary sensitivity function

|T'|. (—)The magnitude of the weighted complementary sensitivitycfion
[WAT).

10

where A and B are defined as inl(?) and a(w) and 5(w)
are defined in 16).

This problem is convex for each fixeg, hence quasi- 1
convex, and again the global optimal solution can be foun& ]
via a line search method like bisection. The results of thigy
optimization are shown in Fig5. This figure depicts the
difference between the relative error over bound and thés]
control relevant over bound. The control relevant over ltbun
is very accurate at the higher frequencies and not ver){4]
accurate at low frequencies. Conversely, the relativererro
over bound is more accurate at low frequencies where it is
not needed to satisfy robust stability. This can be verifigd b
looking at Fig.4, where at high frequencieé®| is near unity
indicating the need for a better fit.

(5]

(6]

10° :
[7]
10' :
c
'g [8]
10°
[0l
10* :
[10]
104 11
Frequency (Hz) [t
Fig. 5. (©) Lower boundd,,(w) that approximates the multiplicative [12]

uncertainty weighting filter.(_) Semidefinite programming based over
bound that minimizes the relative errar() Control relevant over bound
based upon semidefinite programming.

[13]
VII. CONCLUSIONS

In this paper, it has been shown that manufacturing ar?!
mounting variations in hard disk drives can be represented
with a multiplicative uncertainty where a weighting filter 15]
is used to represent the frequency dependent size of t‘we
uncertainty. The weighting filter for the uncertainty and
nominal model can be found with via convex optimizations
In particular, the weighting filter design used a linear xatr
inequality to constrain the spectrum to be positive andaline

(16]
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linear programming.
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