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Abstract— This paper presents two distinct methods of de-
signing scheduled repetitive controllers for the case where the
frequency of the disturbance is slowly varying and when it is
rapidly varying. In both cases the plant is subjected to random
and periodic disturbances. The first method uses set points to
design a family of controllers and then interpolates between
them online. The conditions for designing sub-optimal gains
are given. The second method utilizes results from time-varying
Riccati equations to design a time-varying observer. It is shown
via simulation that the time-varying Riccati method is superior
but at a greater computational cost.

I. INTRODUCTION

Repetitive control [1], [2], [3], [4], [5] has been success-

fully applied to many systems where the frequency of the

disturbance is know and constant. These control system have

been shown to be a particular realization of the internal

model principle [6] and the connection between the internal

model principle and repetitive controllers is discussed in [7].

In many systems the frequency of the disturbance is time-

varying and measurable, for example the tachometer of a

cooling fan.

In practice, to deal with the time-varying frequency of

the disturbance it is often feasible to design a family of con-

trollers at different operating points and switch or interpolate

between them as the frequency of the disturbance varies.

However, there are circumstances where this methodology

does not work. The problem lies in the fact that the controller

is time-varying and a time-invariant design method was used.

This can lead to instabilities in the closed loop system.

Several adaptive techniques that have arisen from internal

model-based techniques require that the disturbance slowly

varying with time and in the analysis of the closed loop

stability the adaptation and control are coupled. For example,

Brown and Zhang [8] have implemented an adaptive internal-

model based controller that is able to track and reject a

periodic disturbance. Their analysis is based upon averaging

and singular perturbation and requires the assumption that

the disturbance is slowly time-varying.

The main point of this paper is to show that the results

from time-varying Riccati equations can be used to design

and analyze scheduled repetitive controllers. Further, the

design of the interpolated controller is described in detail for

C.E. Kinney is a graduate student in the Department of Mechanical and
Aerospace Engineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, CA 92093-0411, U.S.A cekinney@ucsd.edu

R.A. de Callafon is an Associate Professor in the Department
of Mechanical and Aerospace Engineering, University of California,
San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, U.S.A
callafon@ucsd.edu

the case when random disturbances are present in addition to

the periodic disturbance. This issue has not be fully address

in past work since there are unobservable/uncontrollable

issues with the internal model. Most of the previous work

has concentrated upon designing stable controllers and do

not consider random disturbances.

II. PROBLEM DESCRIPTION

This section provides the mathematical description of the

system and internal model that will be used for the remainder

of the paper. Additionally, the controller and cost function

are introduced.

The dynamics of the system or plant will be modeled with

the state space model

xp(k + 1) = Apxp(k) + Buu(k) + Bww(k)
yp(k) = Cpxp(k) + Dyww(k) + d(k)
z(k) = Czxp(K) + Dzuu(k)

, (1)

where xp(k) ∈ Rnp are the plant states, u(k) ∈ Rnu is

the control signal, w(k) ∈ Rnw is white noise, d(k) ∈ Rny

is the time-varying periodic disturbance, yp(k) ∈ Rny is

the measurable output of the plant, and z(k) ∈ Rnz is the

performance channel. It will also be assumed throughout the

paper that DywDT
yw > 0.

For the purposes of the control design, a model of the

disturbance or internal model will be used and is given by

xm(k + 1) = Am(ω(k))xm(k) + Bmum(k)
ym(k) = Cmxm(k)

,

where xm(k) ∈ Rnm are the internal model states, um(k) ∈
Rny is the input to the internal model, ym(k) ∈ Rnym is

the output of the internal model, and for each k, ω(k) is

measurable or known.

The purpose of the time-varying internal model is to create

a controller that will cancel the time-varying disturbance.

This methodology is based upon the internal model principle

[6] that states that the controller must contain the dynamics

of the disturbance to completely cancel it. Since the distur-

bance is time-varying it is natural to try an internal model

that is time-varying as well.

The overall goal is to eliminate unwanted disturbances that

appears as a time-varying periodic signal and random noise

due to measurement and state errors.

Using this reasoning, the objective of the control design

becomes rejecting the time-varying disturbance d(k) in the
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presence of random noise while minimizing (or over bound-

ing) the cost function

J = lim
N→∞

E

{

1

N

N
∑

k=0

z(k)T z(k)

}

. (2)

III. INTERNAL MODEL

In order for the frequency cancelation to work properly

it is important to construct an internal model that captures

the relevant properties of the unknown signal. In our case, a

model of a periodic signal with a time-varying frequency is

needed.

It was shown in [9] that a continuous time model that

represents the periodic signal y(t) = cos(ωt + φ) with a

time-varying frequency is given by
[

ẋ1(t)
ẋ2(t)

]

=

[

0 1
−ωd(t)

2 ω̇d(t)
1

ωd(t)

] [

x1(t)
x2(t)

]

y(k) =
[

0 1
]

[

x1(t)
x2(t)

]

,

where ωd(t) = d
dt

(ωt + φ) and another realization is
[

ẋ1(t)
ẋ2(t)

]

=

[

0 ωd(t)
−ωd(t) 0

] [

x1(t)
x2(t)

]

y(k) =
[

0 1
]

[

x1(t)
x2(t)

]

.

(3)

Notice that one must be carefull when choosing the realiza-

tion, since the normal LTI realizations are not always the

same as the time-varying realizations.

Applying a zero-order hold, with sample time ∆t, to (3)

gives
[

x1(k + 1)
x2(k + 1)

]

=

[

cos(ω∆t) sin(ω∆t)
− sin(ω∆t) cos(ω∆t)

] [

x1(k)
x2(k)

]

y(k) =
[

0 1
]

[

x1(k)
x2(k)

] (4)

where ω := ωd(t)|t=k is held constant over the samping

interval. This model will be used as the building blocks of an

internal model. The part that remains is chose how the input

should affect the states of the internal model. This choice is

important since the internal model will be inside the feedback

loop and thus will change the dynamics of the closed loop

system.

Since the realization (4) does not have any zeros (it doesn’t

have an input), we will choose an internal model that has an

input but does not have any zeros. One such realization is

given by
[

x1(k + 1)
x2(k + 1)

]

=

[

cos(ω∆t) sin(ω∆t)
− sin(ω∆t) cos(ω∆t)

] [

x1(k)
x2(k)

]

+

[

1
0

]

u(k)

y(k) =
[

0 1
]

[

x1(k)
x2(k)

]

and this realization will be used for the remainder of the

paper as a subsystem for the internal model. The subsystems

need to be connected to accommodate disturbances that may

contain more than one sinusoid.

IV. SCHEDULED INTERNAL MODEL CONTROL

ALGORITMS

A. Internal Model-Based Control

Since the goal of the internal model principle is to place

closed loop transmission zeros at the location of the poles

of the periodic disturbance, the following definition of IMB

is presented.

Definition 1 (IMB Controller): A strictly proper con-

troller with a minimal state space realization (Ac, Bc, Cc, 0)
is IMB if the eigenvalues of Ac contain the eigenvalues of

the internal model.

Here we consider only strictly proper controllers since we

are in discrete time and require at least one step time delay

between the input and output for calculations. This definition

guarantees that the sensitivity function will have transmission

zeros [10] at the proper location. The following proposition

clarifies this point.

Proposition 1: Consider the state space system given by

(A, B, C, D) and a controller with a state space realization

(Ac, Bc, Cc, 0). If the controller is IMB then the output

sensitivity function S(q) will have transmission zeros located

at the eigenvalues of the internal model.

Proof: The output sensitivity function is defined as

S(q) := (I − P (q)C(q))−1,

where P (q) :=

[

A B

C D

]

is the plant and C(q) :=
[

Ac Bc

Cc 0

]

is the controller. The state space realization

of (I-P(q)C(q)) is given by

(I − P (q)C(q)) =





Ac BcC BcD

0 A B

−Cc 0 I



 .

The inverse of the above is

(I − P (q)C(q))−1 =





Ac + BcDCc BcC BcD

BCc A B

Cc 0 I





and the transmission zeros are determined by the rank(R(λ)),
where

R(λ) =





Ac + BcDCc − λI BcC BcD

BCc A − λI B

Cc 0 I





and λ ∈ C. Multiplying on the right with a full rank matrix
gives
[

Ac + BcDCc − λI BcC BcD

BCc A − λI B

Cc 0 I

] [

I 0 0
0 I 0

−Cc 0 I

]

=

[

Ac − λI BcC BcD

0 A − λI B

0 0 I

]

.

Therefore the normal rank of R(λ) drops when λ is an

eigenvalue of Ac, and since Ac is IMB there are transmission

zeros at the location of the eigenvalues of the internal model.
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The output sensitivity function is investigated since, for

our problem, it represents the path from periodic disturbances

to the output of the system and placing transmission zeros

will asymptotically reject these disturbances.

B. Interpolation of LTI Controllers

The idea of this approach is to interpolate between LTI

controllers designed at different operating conditions. For

instance, one controller might be tuned to reject disturbances

at 100 Hz and another 105 Hz and if the disturbance is

at 102 Hz then interpolate. The idea behind this method

is to create a family of controllers and interpolate between

them as the disturbance varies (hoping that the interpolation

error is small). This method is justified by a well known

continuous time result (see [11] and others) about slowly

varying LPV systems. The result implies that stability, in the

slowly varying case, can be determined by the collection of

eigenvalues of the entire family of closed loop systems. From

this perspective, the family or collection of LTI controllers

will be designed as a function of the frequency of the

disturbance. Also, a pair of Riccati equations can be solved

each time step to eliminate the interpolation error, but this

is much more computationally expensive.

It was shown in [12] that the LTI controller given by

C(q) =





Ap − LpCp − BuK 0 Lp

LmCp Am −Lm

−K Cm 0



 , (5)

is an internal model-based controller and has an interpreta-

tion of a learning controller when the appropriate internal

model is chosen. This controllers is able to cancel periodic

disturbances that have a fixed, known frequency.

In this paper, we use this LTI controller as a starting

point to design an adaptive internal model-based controller

that can track and cancel time-varying periodic disturbances

and simultaneously cope with the random disturbances in

the system. To accomplish this task, the internal model is

parameterized as a function of ω. This implies that the

observer gains in (5) necessarily will change as a function

of ω to preserve stability of the fixed point designs.

Following the same methodology as [13] the controller is

parameterized with respect to ω this gives

C(q, ω) =




Ap − Lp(ω)Cp − BuK(ω) 0 Lp(ω)
Lm(ω)Cp Am(ω) −Lm(ω)
−K(ω) Cm 0



 ,

(6)

where the controller gains must be designed so that the closed

loop system is stable and has desirable properties.

With the controller given by (6) and the system given by

(1) the closed loop system can be written as (after a similarity

transformation)





x̄p(k + 1)

x̄
(2)
c (k + 1)

x̄
(1)
c (k + 1)



 =





Ap − Lp(ω)Cp BuCm 0
−Lm(ω)Cp Am(ω) 0
Lp(ω)Cm 0 Ap − BuK(ω)









x̄p(k)

x̄
(2)
c (k)

x̄
(1)
c (k)





+





Bw − Lp(ω)Dyw

−Lm(ω)Dyw

Lp(ω)Dyw



w(k) +





−Lp(ω)
−Lm(ω)
Lp(ω)



 d(k)

z(k) =
[

Cz DzuCm Cz − DzuK(ω)
]





x̄p(k)

x̄
(2)
c (k)

x̄
(1)
c (k)





where the controller states have been partitioned accordingly.

Notice that this is an LTI system for each fixed ω. Creating a

grid over ω (not necessarily evenly spaced) with Nω points

creates Nω LTI control problems that each can be solved

with standard results from LQG control theory.

For each fixed ω, as long as the closed loop system is

stable, the effect that d(k) has upon the output (in the limit)

is zero since the controller is IMB by definition 1 and by

proposition 1 there are zeros at in the closed loop system

from d(k) → y(k) located at the poles of the disturbance.

For this reason, the affect of d(k) can be neglected in the

design of the gains.

The optimal IMB control problem is to find the optimal

gains K∗, L∗

p, and L∗

m for the controller given by (6) such

that the cost (2) is reduced. For exponentially stable systems

it is known that this cost is equivalent to

J = lim
k→∞

E
{

z(k)T z(k)
}

. (7)

For notational purposes it is convenient to define the follow-

ing

L :=

[

Lp

Lm

]

A :=

[

Ap BuCm

0 Am

]

Bw :=

[

Bw

0

]

Cp :=
[

Cp 0
]

Cm :=
[

Cm 0
]

(8)

The optimal IMB controller is obtained by direct mini-

mization of the cost function. The following theorem clarifies

the design of the optimal gains for the internal model-based

problem.

Theorem 1 (Sub-optimal IMB Controller): Consider the

plant given in (1) and the controller defined in (5) where the

matrices Am and Cm are a given. If (Ap, Bu) is controllable,

(Ap, Cz) is observable, and ∃ matrices P1 ∈ (S)np+nm ,

M ∈ R(np+nm)×ny , and W ∈ R(np+nm)×nw such that
[

P1 AT P1 − CT
p MT

(·)T P1

]

+





[

CT
z

(DzuCm)T

]

[

Cz DzuCm

]

0

0 0



 ≥ 0

(9)

and
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[

W (P1Bw − MDyw)T

P1Bw − MDyw P1

]

≥ 0

tr{W} ≤ γ

hold.

Then the control gains given by

K∗ = (BT
u PcBu + DT

zuDzu)−1BT
u PcA (10)

where Pc satisfies

Pc = AT
p PcAp

− AT
p PcBu(BT

u PcBu + DT
zuDzu)−1BT

u PcAp + CT
z Cz

and

L∗ = P−1
1 M, (11)

over-bound the cost function defined in (7). Moreover, the

over-bound can be written as

J ≤ tr{(Bw − LDyw)T P1(Bw − LDyw)}

+ tr{P̄2Lp(CmP1C
T
m + DywDT

yw)LT
p }

≤ γ + tr{P̄2Lp(CmP1C
T
m + DywDT

yw)LT
p }.

Proof: Omitted for space.

This theorem is very similar to the separation principle

for standard LQG controllers. The difference here is due

to the internal model that creates an uncontrollable pair

(A,Bw) and therefore an upperbound must be found. In

the dual problem, there is an observability problem that can

be handled similarly or by changing the cost function. In

the current problem, we can modify Bw so that (A,Bw) is

controllable and the solution will approximate the solution

that we are looking for. Either way, we have a method for

designing the controller gains to reduce the criteria that is

relevant for our problem.

Corollary 1: Let A be defined the same as in (IV-B),

B̄w = Bw +

[

0
∆

]

with ∆ a matrix with the appropriate

dimensions, (A, Cp) be observable, and DywDT
yw > 0. If

(A, B̄w) is controllable and B̄wDT
yw = 0 then

P = APAT −APCT
p (CpPCT

p + DywDT
yw)−1CpPAT +

B̄wB̄
T
w (12)

will have a unique positive definite solution P that satisfies

(9).

Proof: The existence and uniques of the solution is ob-

tained since the systems completely controllable, completely

observable, and DywDT
yw > 0.

Define L := APCT
p (CpPCT

p +DywDT
yw)−1, then (12) can

be written as

P = APAT + L(CpPCp + DywDT
yw)LT

+ B̄wB̄
T
w − LCpPAT −APCT

p LT

= (A− LCp)P (A− LCp)
T + (Bw − LDyw)(Bw − LDyw)T

+

[

0 0
0 ∆∆T

]

that is bounded by

P ≥ (A− LCp)P (A− LCp)
T + (Bw − LDyw)(Bw − LDyw)T

which can be shown via duality, the change of variables

M = P1L, and Schur complement to satisfy (9).

This corollary shows that it is possible to solve for a

stabilizing controller that will over bound the desired cost

with standard Riccati equation solvers. The reason that the

exact optimal solution cannot be found is due to a control-

lability issue with the internal model which is unstable. In

the following section, we will use this sub-optimal problem

to solve for the observer gains online using a recursive

Riccati equation. The result is a controller with a time-

varying observer and a time-invariant state feedback gain.

The time-varying nature of the observer mimics the time-

varying nature of the disturbance so that the controller is

able to track and reject the periodic disturbances.

C. Time-varying Observer

In this section we use some results on the time-varying

Riccati filter to solve for a time-varying controller that

rejects periodic disturbances in the presence of random noise.

Recall, that the control design is composed of two sub-

problems: an observer design and a state feedback design.

To embed the internal model into the controller the observer

design is done for the series connection of the internal model

and plant. For stability of the closed loop system, the state

feedback gain is determined for the plant.

To change from a family of LTI controllers to a time-

varying controller only the observer subproblem needs to be

considered. As it turns out, the solution of the time-varying

Kalman filter is a causal function of time. This is in contrast

to the solution of the time-varying state feedback gain and

is the crucial element that allows for this method to work

while the dual problem will not. Here, the dual problem

is finding a time-varying state feedback gain and a time-

invariant observer.

The series connection of the time-varying internal model

and the time invariant plant is given by
[

xp(k + 1)
xm(k + 1)

]

=

[

Ap BuCm

0 Am(k)

] [

xp(k)
xm(k)

]

+

[

0
Bm

]

um(k) +

[

Bw

0

]

w(k)

yp(k) =
[

Cp 0
]

[

xp(k)
xm(k)

]

+ Dyww(k)

z(k) =
[

Cz 0
]

[

xp(k)
xm(k)

]

+ Dzuu(k)

(13)

which can be expressed as

x(k + 1) = A(k)x(k) + Bww(k) + Bmum(k)

yp(k) = Cpx(k) + Dyww(k)

z(k) = Czx(k) + Dzuu(k).

(14)

Since we are considering a time-varying system, the cost

function that is minimized is slightly different because the

time-varying system may not converge. Given all of the
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inputs and outputs up to time k, denoted by the set Yk−1 =
{um(0), yp(0), um(1), yp(1), . . . , um(k− 1), yp(k− 1)}, the

objective is to find the best predictor of the states x̂k in the

L2 sense and it is assumed that the initial condition x(0)
is a gaussian random variable with known mean x̄(0) and

covariance X(0). The cost Je therefore can be written as

Je = E{‖x(k) − x̂(k)‖2|Yk−1}.

The Kalman predictor for this system is

x̂(k + 1) = (A(k) − L(k)Cp) x̂(k) + Lmum(k) + L(k)yp(k)
(15)

and the error system is

x̃(k + 1) = (A(k) − L(k)Cp) x̃(k) + (Bw − L(k)Dyw)w.

(16)

Recall that (A,Bw) is not controllable and therefore Bw

needs to be augmented with ∆ in agreement with corollary

1 for each time step k. When this is done, we arrive at

the following Ricatti difference equation for the Kalman

predictor gain

Pk+1 = A(k)PkA(k)T

−A(k)PkC
T
p (CpPkC

T
p + DywDT

yw)−1CpPkA(k)T

+ B̄wB̄
T
w

P0 = A(0)X(0)A(0)T + B̄wB̄
T
w

(17)

and the predictor gain is

L(k) = A(k)PkC
T
p (CpPkC

T
p + DywDT

yw)−1. (18)

Theorem 2 (Stability of time-varying IMC): Consider the

plant given in (1) and the controller defined in (5) where the

matrices Am(k) and Cm are given for each k. Suppose that

the Kalman predictor in (17) and Ap − BuK are uniformly

exponentially stable then the closed loop system is uniformly

exponentially stable.

Proof: Follows from definition of exponential stability

and the properties of norms.

This theorem shows that this adaptive algorithm is stable

and standard results about recursive Riccati equations can be

used to determine when both systems will be exponentially

stable. For example, results from Floquet’s Theory [14] or

periodic Riccati equations [15] can be used to determine the

stability of periodic systems, i.e., systems such that

A(k) = A(k + T ).

More generally, from Theorem 5.3 in [16], if the conditions

of the following theorem are met then the system will be

exponentially stable.

Theorem 3: Let (A(k), Cp) be uniformly detectable and

(A(k), B̄w) be uniformly stabilizable, as defined in [16], then

(A(k) − L(k)Cp) is exponentially stable with L(k) defined

in (18).

This theorem concludes that the stability of the system

reduces to determining the uniform detectability and stabi-

lizability of the system.

Notice that if ω(k) is constant for all k then as k → ∞
the two observers (above and in Section IV-B will produce

the same results provided that the interpolation error is

negligible. The main purpose in this paper is to compare

these two methods when the disturbance is time-varying, and

it is expected that the time-varying observer will outperform

the interpolation method at a greater computational cost.

V. SIMULATION RESULTS

In this section the two internal model based algorithms

discussed in this paper are compared. The first algorithm is

based upon a fixed point design and interpolates between a

family of LTI controllers, it will be denoted the interpolation

method. The second algorithm is based upon the time-

varying Kalman filter and updates the filter gains at each

time step, it will be denoted the time-varying method. The

first algorithm is simple and easy to implement, but not

guaranteed to be stable during the interpolation. The second

algorithm is guaranteed to be exponentially stable under mild

conditions, but the computational cost is greater than the first.

This is the tradeoff for improved performance.

The frequency response of the plant we are simulating is

shown in Figure 1. Notice that the plant has a couple of

lightly damped resonance modes, is open-loop stable, and

has a couple of lightly damped zeros.
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Fig. 1. Frequency response of the plant.

Consider the case where the interpolation error is zero,

the Riccati equations are solved at each time k, and the

disturbance is a single sinusoid and is given by

d(k) = sin(α(k))

where ω(k) := (α(k) − α(k − 1)) and ∆t is the sampling

time. Notice that this definition is necessary since we are

dealing with a time-varying sinusoid and it agrees with the

time-invariant case since if α(k) = ω∆tk+φ then ω(k) = ω.

For the first simulation, the frequency will be slowly

modulated. Setting ω(k) = 100 + 50 sin(0.5∆tk), α(k) =
∆t

∑k

i=0 ω(k), results in Figure 2. Here, both the time-

varying method and the interpolation method perform almost

identically since the frequency is varying slowly in compar-

ison to the closed loop dynamics.
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Fig. 2. Comparison of controllers with slowly varying frequency.

Next, consider the situation where ω(k) = 100 +
50 sin(100∆tk). As it can be seen in Figure 3, the inter-

polation method results in an unstable closed loop system

while the time-varying method does not.
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Fig. 3. Comparison of controllers when the frequency of the disturbance
is rapidly varying.

Finally, if the extreme case where ω(k) alternates between

50 and 150 at each time step is shown in Figure 4. Again,

the time-varying method is able to stabilize the closed loop

system while the interpolation method does not.

VI. CONCLUSIONS

In this paper, we discuss the design of scheduled repetitive

controllers. The design of sub-optimal gains were presented

for the case where random disturbances are present in

addition to periodic disturbances. This method uses set points

to design a family of controllers. This design method is

limited to the case where the frequency of the disturbance

is slowly-varying. For the case where the frequency may be

varying quickly, an alternative design method was presented

that relies upon known results from time-varying Riccati

equations. Both methods were simulated and the simulation

shows that the time-varying Riccati equations outperform the

set point designs when the frequency varies rapidly.
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Fig. 4. Comparison of controllers when the frequency of the disturbance
is switching.
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