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Abstract

Estimating models for both plant and disturbance dynamics is important in control design applications that focus on disturbance rejection.
Several methods for low-order approximate model estimation on the basis of closed-loop data exist in the literature, but fail to address the
simultaneous estimation of low-order approximate models of both plant and disturbance dynamics. In this paper a new extended two-stage
methodology is proposed that allows for low-order approximate disturbance model estimation. In the proposed extended two-stage method the
first stage is used to estimate high-order models for filtering purposes. In the second stage, filtered signals are used to provide the means for
low-order approximate model estimation of both plant and disturbance dynamics.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The need for control relevant modeling has resulted in sev-
eral methodologies that aim at iteratively improving closed-
loop plant behavior on the basis of closed-loop experiments
(Abe & Ichihara, 2000; Ichichara & Abe, 2002; Lee, Anderson,
Mareels, & Kosut, 1995; Ochs & Engell, 2000). In most of the
existing methods, the emphasis is placed on the control relevant
approximation of plant dynamics only and ignore the approxi-
mate modeling of the disturbance dynamics that is relevant in
disturbance control. For minimum variance and LQG control,
successful modeling and control performance improvements
have been shown in Gevers and Ljung (1986) and Hjalmarsson,
Gevers, De Bruyne, and Leblond (1994), but these results as-
sume consistent estimation of plant and disturbance dynamics.

In control relevant modeling, closed-loop experiments are
inevitable to evaluate the closed-loop behavior of a plant. The
correlation of the disturbance with any of the signals in the
closed-loop is one of the problems in dealing with closed-loop
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data. Possible ways to overcome this problem is by assum-
ing low disturbance correlation condition (Åström, 1993; Zang,
Bitmead, & Gevers, 1995) or consistent estimation of the noise
filter (Forssell & Ljung, 1999) to reduce bias on the plant model
estimate. Alternatively, an external reference signal uncorre-
lated with the noise can be used to reparametrize the closed-
loop identification problem by a direct parametrization of the
closed-loop transfer function as done in van Donkelaar and Van
den Hof (1996) or in the recursive algorithms for closed-loop
identification of Landau and Karimi (1997, 1999). Although
powerful for estimating control relevant plant dynamics, bias
approximation results similar to a direct identification Ljung
(1999) are obtained in case an approximate disturbance model
is estimated (Karimi & Landau, 1998).

An alternative parametrization of the closed-loop identifica-
tion problem is built on the dual-Youla parametrization (Lee et
al., 1995), coprime factor identification (de Callafon, Van den
Hof, & de Vries, 1994) or a two-stage identification (Van den
Hof & Schrama, 1993). In these methods, an auxiliary or pre-
viously estimated model is used for filtering purposes to recast
the closed-loop identification problem in a standard open-loop
estimation problem (Van den Hof & Schrama, 1995). These
methods have shown promising results for approximate and
control relevant plant modeling, but do not address the approx-
imate model estimation of the disturbance dynamics.
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This paper proposes an estimation method that allows for a
control relevant estimation of both plant and disturbance dy-
namics on the basis of closed-loop data. The proposed method-
ology is an extension of the two-stage method (Van den Hof &
Schrama, 1993), where the first stage is used to estimate high-
order models for filtering purposes. In the second stage, filtered
signals are used for lower order approximate model estimation.
An analysis of the method is presented in the form of the bias
distribution of the approximate plant and disturbance model es-
timates. It is illustrated how control relevant models for both
the plant and the disturbance dynamics can be obtained using
the bias distribution expressions.

2. Problem formulation and case study

2.1. Problem formulation

Consider a stabilizing feedback connection of an unknown
(linear discrete time) plant P0(q) and feedback controller C(q).
For analysis purposes, both P0(q) and C(q) are assumed to be
stable and the output y(t) of the plant P0(q) is fed back to the
input u(t) using a negative feedback

u(t) = r(t) − C(q)y(t) (1)

and r(t) is an external reference signal for closed-loop exci-
tation purposes. Additionally, an additive disturbance v(t) acts
on the output of the plant

y(t) = P0(q)u(t) + v(t), v(t) = H0(q)e(t) (2)

which is modeled as a monic stable and stably invertible distur-
bance filter H0(q) having a white noise input e(t) with variance
�.

Since v(t) acts on the closed-loop system, both the input u(t)

and the output y(t) are correlated with the disturbance, which
makes the closed-loop identification problem challenging. The
input/output data of the plant P0(q) subjected to the external
reference signal r(t) and an additive disturbance v(t) can be
described by

y(t) = P0(q)S0(q)r(t) + S0(q)H0(q)e(t), (3)

u(t) = S0(q)r(t) − C(q)S0H0(q)e(t), (4)

where S0(q) is the sensitivity function defined by S0(q) =

(1 + C(q)P0(q))−1. Given input/output data measurements
{u(t), y(t)}, t = 1, . . . , N obtained under closed-loop condi-
tions, the identification problem posed in this paper is to esti-
mate approximate models P�(q) and H�(q) of both the plant
P0(q) and disturbance H0(q) dynamics.

The approximation of plant P0 and disturbance dynamics H0
is made control relevant by estimating models P� and H� that
minimize

‖(P0(q) − P�(q))S0(q)‖2 + �‖(H0(q) − H�(q))S0(q)‖2, (5)

where the additive differences P0(q) − P�(q) and H0 − H�(q)

are weighted by the closed-loop sensitivity function S0(q) and
measured by a two-norm. In addition, the value of � can be

used to specify the relative weighting of the two terms in
(5). Instead of minimizing the additive open-loop differences
P0(q) − P�(q) and H0(q) − H�(q), in (5) we emphasize the
approximation of closed-loop behavior by weighting with the
(unknown) sensitivity function S0(q). Obviously, a consistent
estimate P�(q)=P0(q) and H�(q)=H0(q) will minimize both
terms in (5), however, we stress the low-order approximation of
P�(q) and H�(q) as low-order models are manageable and ap-
pealing in subsequent control design for disturbance rejection.

2.2. Case study

A case study will be used to illustrate the identification
concepts proposed and analyzed in this paper. The case study
consists of a discrete-time sixth-order plant P0(q) and monic
stable and stably invertible disturbance filter H0(q). The dy-
namics of the plant and disturbance filter are given by a
[6,6,6,1]-ARMAX structure (Ljung, 1999). An amplitude Bode
plot of the sixth-order plant P0 and disturbance H0 is given in
Fig. 1 on the left, where it can be observed that the plant P0
exhibits a large resonance frequency at approximately 1 rad/s
and small resonance modes on either side. The common dy-
namics of P0 and H0 is characteristic for a flexible mechanical
system subjected to external disturbances that excite the same
resonance modes of the system.

A simple second-order discrete-time feedback controller
C(q) is used for the reduction of the main resonance mode in
the open-loop disturbance dynamics H0(q) in (2) and a com-
parison of the open-loop H0(q) and closed-loop S0(q)H0(q)

disturbance filter is given in Fig. 1 on the right. For identifica-
tion purposes, closed-loop input u(t) and output y(t) signals
in (3) and (4) consist of N = 4096 points, where the refer-
ence signal r(t) and the noise e(t) are chosen as independent
Gaussian distributed white noise signals. The reference signal
r(t) has a unit variance, whereas the noise e(t) is set to have
a variance of E{e(t)2} = � = 0.04.

With the knowledge of the common dynamics in P0 and
H0, the low-order plant model P� and noise model H� could
be parametrized using an ARMAX model structure (Ljung,
1999). However, to eliminate the effects of bias due to a joint
parametrization of plant and noise dynamics, an independent
parametrization is used. An approximate (low order) plant
model P� and noise model H� are parametrized using a BJ
model structure:

P(q, �) =
b2q

−2 + b1q
−1 + b0

q−2 + a1q−1 + a0
,

H(q, �) =
q−2 + c1q

−1 + c0

q−2 + d1q−1 + d0
,

� = [a1 a0 b2 b1 b0 c1 c0 d1 d0 ] ∈ R
1×9, (6)

where the second-order models are required to capture the main
resonance mode of P0 and H0. The estimated low-order models
P� and H� can then be used to design a low-order controller
for disturbance suppression of the main resonance mode.
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Fig. 1. Left: amplitude Bode plot of plant dynamics P0 (solid) and disturbance dynamics H0 (dashed). Right: amplitude Bode plot of open-loop H0 (dashed)
and closed-loop S0H0 disturbance filter (solid).

3. Two-stage identification

3.1. Method description

In the two-stage method, identification of the plant model
and disturbance model in closed loop is performed in two sep-
arate steps. The two steps are used to eliminate the correlation
between the input u(t) and the noise e(t) in case of closed-loop
data. The two-stage method does not require the knowledge of
the controller C(q). If we assume the knowledge of controller
C(q) is unknown, then the knowledge of the reference signal
r(t), the input signal u(t) and the output signal y(t) are needed.
The two-stage method can be summarized as follows (Van den
Hof & Schrama, 1993).

In the first step, a model S� of the sensitivity function S0 is
estimated by considering the map from reference signal r(t) to
the plant input u(t) in (4). Estimation is done by minimizing
the two-norm of the prediction error

ε1(t, �) = u(t) − S�(q)r(t)

using a high-order model S� for the sensitivity function. The
model S� is used only for filtering purposes in the second step
of the method and no specific restrictions on the order of S�

are imposed.
In the second step of the two-stage method, the estimate S�

is used to simulate a disturbance free input signal ur(t) via

ur(t) = S�(q)r(t)

that will be uncorrelated with noise e(t) on the closed-loop
data. In case a consistent estimate S� = S0 is obtained in the
first step, (3) rewrites into

y(t) = P0ur(t) + S0H0e(t).

Subsequently, in the second step of this method a plant model
P� (and possibly a disturbance model H�) can be estimated by
minimizing the two-norm of the prediction error

�2(t, �) = H−1
�

[P0u(t) − P�ur(t)

+ (H0 − H�)e(t)] + e(t), (7)

where P� and H� are again the desirable low-order approxima-
tion of the plant P0 and disturbance filter H0. In general, the
two-stage method is used only to estimate (low order) approx-
imate model P� of P0 in the second step and the estimation of
disturbance filters is omitted.

3.2. Bias distribution for two-stage method

The minimization of the two-norm of the prediction error in
(7) during the second step of the two-stage method yields the
asymptotic expression

�̂ = arg min
�

1

2�

∫ �

−�
|H−1

�
|2[|(P0 − P�)S0

+ P�(S0 − S�)|2�r + |H0S0 − H�|
2�e] dw (8)

for N → ∞ (Van den Hof & Schrama, 1993). It can be ob-
served that the estimation of the plant model P� depends on
the estimate S� of the sensitivity function S0 in the first step. In
case S� �= S0 the term P�(S0 − S�) influences the estimation
of the model P�, but this term can be made small by estimating
an accurate model S� of the sensitivity in the first step of the
method (Van den Hof & Schrama, 1993).

An explicit tunable expression for the bias of the plant model
can be obtained by using an independent parametrization of the
plant model P� and the disturbance model H	. For example,
for an OE-model with a fixed disturbance model H	 = 1, the
asymptotic expression of (8) can be simplified to

�̂ = arg min
�

1

2�

∫ �

−�
|P0 − P�|

2|S0|
2�r dw

in case S�=S0 and clearly indicates the tunable bias expression
of the plant model estimate. Moreover, a consistent estimate
of the plant dynamics P0 can be obtained, even though H	 is
fixed. Such consistency results of the plant model estimate for
H	 �= H0 are, for example, not shared by a direct identification
method Ljung (1999).

Unfortunately, the favorable properties of consistency and
tunable bias expression for the plant model do not carry over to
the disturbance model estimate. It can be observed from (8) that
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Fig. 2. Application of two-stage method using Monte-Carlo simulations. Left: Bode plot of plant P0 (solid) and 10 estimated second-order models P� (dashed).
Right: Bode plot of H0 (solid) and 10 estimated second-order disturbance models H� (dashed).

the estimation of an independently parametrized disturbance
model H	 will always be biased, as it aims at the approxima-
tion of the closed-loop disturbance model H0S0. As a result,
the estimation of the disturbance models in the two-stage iden-
tification method does not share the consistency and tunable
bias expressions found for the plant model estimate.

3.3. Illustration of two-stage method

The approximation results of the plant model estimate and
the bias effects of the disturbance filter can be illustrated with
the case study. Second-order models P� and H� parametrized
according to (6) are used to estimate the main resonance mode
in P0 and H0 on the basis of closed-loop data.

Using a 20th-order ARX model to estimate a model S� of
the sensitivity function in the first step of the method, the mini-
mization of the two-norm of the prediction error (7) leads to the
second-order model estimates depicted in Fig. 2. It can be seen
that an accurate approximation of the main resonance mode
can be obtained with the second-order model P� due to the
use of a filtered and noise free input signal ur(t) in the second
step of the method. However, the estimation of H� is always
biased as H� approximates the closed-loop noise model H0S0
as depicted in Fig. 1. The knowledge of sensitivity function S0
available in the form of the model S� obtained in the first step
of the two-stage method can be used to compute an estimate
of the open-loop noise model via H�S

−1
�

. Unfortunately, this
increases the order of the disturbance model.

4. Extended two-stage method

4.1. Method description

For explanation of the proposed extended two-stage method,
define P̄ = P0S0 and H̄ = H0S0. With this definition, (3) can
be rewritten into

y(t) = P̄ r(t) + H̄ e(t), (9)

y(t) = P0(1 − CP̄ )r(t) + H0(1 − CP̄ )e(t), (10)

where the knowledge of the controller C is exploited. From
(10) it can be observed that with knowledge of P̄ , the controller
C and a time realization of e(t), the estimation of P0 and H0
on the basis of closed-loop data becomes a standard open-
loop identification problem. A time realization of e(t) can be
obtained via an accurate estimation of P̄ , H̄ on the basis of the
closed-loop data in (9).

Consistent estimation of the closed-loop disturbance filter H̄

is possible in the prediction error framework if H̄ is a stable and
stably invertible filter. If the controller C internally stabilizes the
plant P0, and the open-loop disturbance filter H0 is stable and
stably invertible, then it is straightforward to see that H̄ is stable
and stably invertible provided both C and P0 are stable. Under
these conditions, the consistent estimation of P̄ , H̄ on the basis
of the closed-loop data in (9) also becomes a standard open-loop
identification problem. From these observations, the extended
two-stage method can be summarized by the following two
steps:

(1) In the first step, a standard open-loop identification of
P̄ and H̄ is performed on the basis of the closed-loop
reference r(t) and output y(t) signal in (9). Using the
estimated models P̄∗ and H̄∗, the closed-loop prediction
error

εcl(t) = H̄−1
∗ (y(t) − P̄∗r(t)) (11)

is computed to obtain a realization of the (unfiltered white)
noise present on the closed-loop data.

(2) In the second step of the method, the estimated model P̄∗ is
used to create a filtered input uf(t) and a filtered prediction
error εf(t):

uf(t) := (1 − CP̄∗)r(t), (12)

εf(t) := (1 − CP̄∗)εcl(t) (13)

using the knowledge of the feedback controller C. Sub-
sequently, the signals uf(t) and εf(t) according to (10)
are used to estimate low-order models P� and H� by
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minimizing the two-norm of the output error

ε(t, �) = y(t) − [P�(q)H�(q)]

[

uf(t)

εf(t)

]

(14)

that allows for a low-order approximation of the open-loop
plant P0 and disturbance filter H0.

During the open-loop identification of P̄ and H̄ in the first
step of this method, a stable plant model P̄ and a stable and
stably invertible disturbance model H̄ are estimated. The reason
for the construction of the closed-loop residuals in (11) in the
first step of the method is to allow control over the order of
the estimated disturbance model in the second step. Similar
to the standard two-stage method (Van den Hof & Schrama,
1993), the models in the first step are only used for filtering
purposes and no restriction on the order of these models is
required.

4.2. Bias distribution for the extended two-stage method

The asymptotic frequency domain expression for the mini-
mization of the two-norm of the prediction error in (14) de-
pends on the estimation results of P̄∗ and H̄∗ in the first step of
the method. In case modeling errors are made in the first step,
i.e. P̄∗ �= P0S0, H̄∗ �= H0S0, then the following asymptotic
bias expression is obtained.

Theorem 1. Consider the first step in the extended two-stage

method where estimates P̄∗ and H̄∗ satisfy

P̄∗ �= P̄ = P0S0, H̄∗ �= H̄ = H0S0 (15)

then for N → ∞ the two-norm minimization of the output

error in (14) is equivalent to

min
�

∫ �

−�
[|(P0 − P�)S0

+ (P̄∗ − P̄ )(P�C + H�(1 − CP̄∗)H̄
−1
∗ )|2�r

+ |(H0 − H�)S0 + H�(S0 − (1 − CP̄∗)H̄ H̄−1
∗ )|2�e] dw,

(16)

where P� and H� denote the models estimated in the second

step of the extended two-stage method.

Proof. Using (12), (13) and the fact that εcl(t) can be written
as εcl(t) = H̄−1

∗ (P̄ − P̄∗)r(t) + H̄−1
∗ H̄ e(t) the output error in

(14) can be written as a filtered version of r(t) and e(t). Using
the fact that e(t) is uncorrelated with r(t), autocorrelation of
ε(t, �) and application of Parseval’s theorem leads to the bias
distribution given in (16). �

More simplified expressions of the bias distribution can be
obtained by assuming that consistent estimate of the closed-
loop transfer functions P0S0 and/or H0S0 are obtained in the
first step of the method. A bias distribution similar to the stan-
dard two-stage method is obtained by assuming the consistent

estimation P̄∗ = P0S0 and the result is summarized in the fol-
lowing.

Corollary 1. Let P̄∗ = P̄ , H̄∗ �= H̄ in the first step in the

extended two-stage method, then for N → ∞ the two-norm

minimization of the output error in (14) is equivalent to

min
�

∫ �

−�
[|P0 − P�|

2|S0|
2�r(w)

+ |(H0 − H�)S0 + H�(1 − H̄ H̄−1
∗ )S0|

2�e(w)] dw. (17)

Proof. Substitution of P̄∗ =P0S0, H̄∗ �= H̄ into (16) yields the
result of (17). �

The most simplified and intuitive result is obtained when
consistent estimates of both the closed-loop transfer func-
tion P0S0 and H0S0 are obtained in the first step of the
method. In that case, explicit tunable expressions for both
the plant model P� and the disturbance model H� can be
derived.

Corollary 2. Let P̄∗ = P̄ , H̄∗ = H̄ in the first step in the

extended two-stage method, then for N → ∞ the two-norm

minimization of the output error in (14) is equivalent to

min
�

∫ �

−�
[|P0 − P�|

2|S0|
2�r + |H0 − H�|

2|S0|
2�e] dw. (18)

Proof. Substitute P̄∗ = P0S0, H̄∗ = H̄ into (16), then (18) is
obtained. �

It is easily observed that in the case P̄∗=P0S0 and H̄∗=H0S0,
the difference |P0 −P�|

2 is weighted by the reference spectrum
�r and the difference |H0−H�|

2 is weighted by noise spectrum
�e, while both are weighted by the sensitivity function S0.
As a result, explicit tunable bias expressions are obtained for
both plant and noise model dynamics. It should be noted that
this refers to our desire of estimating control relevant models
as defined by the criterion in (5). With e(t) white noise with
variance �, we have �e(w) = �. By experiment design we can
choose r(t) white noise with variance 
, for which �r(w) = 
.
Then (18) can be reduced to

min
�

∫ �

−�
[|P0 − P�|

2|S0|
2
 + |H0 − H�|

2|S0|
2�] dw (19)

and from (19) it can be obtained that by the choice of the
variance 
 of the reference signal, we can influence the relative
contribution of both terms in the integral expression of (19),
similar as in (5). Additional tuning of the approximation of
plant and noise model dynamics can be obtained by filtering
of the output error ε(t) in (14). Furthermore, consistent models
for plant or disturbance dynamics can be obtained if the model
parametrization allows for the existence of a parameter � such
that P� = P0 and H� = H0.
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Fig. 3. Application of extended two-stage method using Monte-Carlo simulations. Left: Bode plot of plant P0 (solid) and 10 estimated second order models
P� (dashed). Right: Bode plot of H0 (solid) and 10 estimated second-order disturbance models H� (dashed).

4.3. Illustration of extended two-stage method

Similar to case study example discussed for the standard
two-stage method, a 20th-order ARX model is used to estimate
model for P̄ = P0S0 and H̄ = H0S0 in the first step of
the method. The models are used to construct a realization
of the closed-loop noise e(t) and subsequently the filtered
(noise free) input signal and filtered prediction error in (12)
and (13).

The minimization of the prediction error (14) leads to the
second-order model estimates depicted in Fig. 3. It can be
seen that a good approximation of the main resonance mode
is obtained in plant model P� and noise model H�. Further-
more, it can be observed that the extended two-stage method
gives a much better approximation of the closed-loop noise
model due to implicit weighting of the sensitivity function
S0 in the approximation of both the plant and disturbance
model.

5. Conclusions

An extension to an existing two-stage closed-loop identifi-
cation method has been proposed to deal with the problem of
simultaneous approximation of plant and noise dynamics. The
estimate of a disturbance filter in the first step of the method is
used to create filtered signals for the low-order model approx-
imation of both plant and disturbance dynamics in the second
step of the method. Bias distribution analysis of the proposed
extended two-stage method indicates explicit tunable expres-
sions for the bias distribution of plant model and disturbance
model estimation. When consistent estimates of closed-loop
transfer functions are obtained in the first step of the method,
plant model and disturbance model estimates are weighted,
respectively, by the reference spectrum and a constant white
noise spectrum, while both are weighted by the sensitivity func-
tion. Due to the implicit weighting with the sensitivity func-
tion, control relevant models for both plant and disturbance
models can be obtained via the proposed extended two-stage
method.
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