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Abstract— In this study we consider the iterative learning
control (ILC) framework to design a reference signal that
reduces the periodic component of disturbances in a feedback
measurement containing both repeatable and non-repeatable
components. Reduction of periodic disturbances is useful in al-
leviating undesirable repeatable tracking errors in applications
such as the two-stage servo track writing process for disk drives.
A general problem description is given for a linear discrete
time system and convergence robustness results for the learning
system are derived. A learning filter is designed with the use
of an FIR model approximation for the inverse of the closed-
loop sensitivity for fast nominal convergence while robustness
to modeling errors and non-repeatable disturbances is achieved
through additional filtering. T he ILC algorithm is applied to
a disk drive system where experimental results demonstrate
the effectiveness of the design method in reducing periodic
measurement disturbances.

I. IN TRODUCTION

In hard disk drive (HDD) servomechanisms disturbances

that consist of both repeatable and non-repeatable nature ap-

pear in the position error signal (PES) of the head following

a data track. The repeatable run-out (RRO) disturbance gen-

erally occurs at freq uencies that are integer multiples of the

freq uency of rotation of the disk and is a considerable source

position error with respect to the center of the data track [1].

Typically, control effort is focused at the freq uencies of the

periodic disturbances to improve the tracking performance

of the system.

However, improved performance by the feedback system

when the output measurement is perturbed by periodic dis-

turbances leads to undesirable repeatable tracking errors. As

an example, progress in HDD servo track writers has led

to a two stage servo track writing process where a master

servo disk, created in stage one, is used as a reference from

which the servo tracks on the remaining disks in the stack are

written in stage two [2]. Repeatable run-out either written-

in during the servo track writing process or resulting from

mechanical disk assembly can be eliminated by considering

them as sources of periodic measurement noise and canceling

them via a modified reference signal. Thus the objective of

the servomechanism is not to follow the RRO error, but to

follow a virtual perfectly circular track thereby reducing AC-

sq ueeze of data track following.

This paper considers the framework of iterative learning

control (ILC) algorithms to develop a method for repeatable
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disturbance rejection. Based on the internal model principle,

ILC schemes have been shown as the dual of repetitive

control [3] and have demonstrated application in the reduc-

tion of periodic disturbances [4], [5]. A learning algorithm

designed for periodic disturbance rejection has been outlined

for disk drive systems by [6 ], however accurate knowledge of

a nominal plant model and access to the control signal were

req uired. The result was a reference signal designated the

zero acceleration path (ZAP) that canceled the RRO allowing

the read/write head of the disk drive to follow a virtual

circular track with zero actuator acceleration. This paper

considers the learning filter design and robust convergence

condition of [7], whereby a set of models which is known

to contain the real system is evaluated such that convergence

in the presence of model uncertainty is guaranteed. An

extension is developed such that the learning system is robust

against non-repeatable disturbances.

The effects of non-repeatable noise, which exists in most

practical applications, often leads to lower performance

or even divergence of the learning system [8 ]. Additional

filtering in the learning algorithm extends the region of

stability for learning system at the expense of convergence

rate and total error elimination [9]. The motivation for this

study is to extend periodic disturbance reduction results of

[7] for systems subject to disturbances with mixed periodic

and non-periodic components. Based on uncertain closed-

loop models, disturbance canceling reference signals (DCRS)

are developed which provide cancellation with the periodic

component of the measurement disturbance based.

Section II outlines the general problem formulation for

this study, provides a brief review of some of the extensively

studied theory on ILC and discusses a learning filter design

methodology for satisfying convergence. Section IV de-

scribes the HDD application, the development of the learning

filter and presents the results for the DCRS experiment

applied to a disk drive servomechanism.

II. GEN ERAL PROBLEM FORMULATION AN D ILC

CON FIGURATION

A. S ystem Descrip tio n

A general block diagram description for a linear time

invariant (LTI) discrete time system in which periodic dis-

turbances occur is presented in Figure 1. Let Gp(q) be the

plant and Gc(q) be the feedback compensator operating over

a finite time interval t where t = 1 , ...,N and q is the shift

operator. The reference r(t) is periodic with period N . The

disturbance di(t) consist of both repeatable component d(t)
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and non-repeatable component d̃i(t)

di(t) = d(t) + d̃i(t), (1)

where the subscript i indicates the ith period. Due to the

periodic nature of the signals, the assumption is made that

at the end of each finite time interval the initial conditions

of the system are resent.
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Fig. 1. Block diagram of the feedback control system with periodic
components in the measurement disturbance di(t).

The periodic component of the measurement disturbance

d(t) is canceled by subtracting its value as the adjunct

reference signal z(t). The effect of the periodic disturbance

on the feedback error is given by

e(t) = S(q)d(t) , S(q) =
1

1 + Gp(q)Gc(q)

where S(q) denotes the discrete time sensitivity function.

Intuitively, with r(t) = 0 , the z(t) that directly cancels the

periodic disturbance would be given by the error signal e(t)
filtered by the inverse of the sensitivity function S−1(q).
In practice however, perfect models for the closed-loop

sensitivity function are not available and the effectiveness of

z(t) for canceling periodic disturbances depends upon the

accuracy of the model Ŝ−1(q). Furthermore, in servomech-

anisms where the plant contains an integrator for steady

state tracking, a stable model for the sensitivity function

generally lends to an unstable inverse making the signal

z(t) unbounded. Fortunately, ILC methods have been shown

to implicitly find through iteration the stable approximation

to the inverse of the system [10] which would result in

a modified reference signal that cancels with the periodic

disturbance.

B. Itera tive L ea rning for P eriod ic Distu rb a nce R ed u ction

Iterative learning control methods applied to systems have

primarily focused on compensating for periodic disturbances,

thus first consider the case where d̃i(t) = 0 for all i. This

restricts attention to purely periodic disturbances and relax-

ation of this assumption is handled with additional filtering

for robust convergence in Section III. The ILC structure most

commonly studied in the literature considers feedforward

redesign of the control signal added to the system input [11],

[12], however modification of the reference signal can also

achieve improved control performance for systems where it

is undesirable to reconfigure the control signal. The iterative

modification of reference signals has been referred to as

c a s c a ded ILC [13]. A block diagram representation for ILC

with the cascaded structure is shown in Figure 2. Here zi(t),
r̂i(t), ŷi(t) and ei(t) denote the adjunct reference signal,

modified reference signal, system output measurement, and

error signal respectively and let the subscript i indicate the

ith iteration. The disturbance is assumed periodic such that

di(t) = d(t) for all i. The blocks labeled M E M denote

memory arrays [13] that store signals of the current iteration

for use in the next learning iteration.
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Fig. 2. Illustration of Cascade ILC System

Notice from Figure 2 that the ILC scheme is added outside

the ex isting control loop through a modified reference signal,

r̂i(t) = r(t)− zi(t). T he ILC update law is classified under

previous cycle learning (PCL) whereby the current iteration

of the adjunct reference signal zi+1(t) is some form of

signals from previous iterations:

zi+1(t) = zi(t) + Gf (q)ei(t) (2)

z0(t) = 0 , t ∈ [1, N ]

T he learning convergence condition is derived by observ-

ing the feedback error evolution from one iteration to the

nex t. T he current iteration feedback error is given by:

ei+1(t) = r̂i+1(t) − ŷi+1(t)

ei+1(t) = [1 − S(q)Gf (q)]ei(t) (3)

T he desired convergence limk→∞ ek(t) = 0 is obtained by

designing the operator Gf (q) such that

‖1 − S(ej ω )Gf (ej ω )‖∞ ≤ ρ < 1 (4)

where ‖G(·)‖∞ denotes the infinity norm of the discrete time

transfer function G. Designing Gf (q) such that condition (4)

is satisfied, is a sufficient condition for reducing the ampli-

tudes of all frequency components of the error monotonically

with each iteration [8 ] . Methods ex ist for designing Gf such

that (4) is minimized, however most are computationally

intensive algorithms. Simplification of the filter design can

be achieved by minimizing with respect to a nominal filter

at the frequencies of the periodic disturbance and including

robustness via additional filtering.

C. No min a l Lea rn in g F ilter Gf (q) Desig n

Little information about the closed-loop system is required

to satisfy learning convergence conditions, however, it is

intuitive that knowledge of the sensitivity function S(q) is
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beneficial when designing the learning filter Gf (q) in order

to satisfy (4). Observe the error propagation given by (3)

written as a function of the error prior to the first iteration

of the learning algorithm, e0(t).

ei+1(t) = [1 − S(q)Gf (q)]i+1e0(t) (5)

Equation (5) indicates that fast convergence in the iteration

domain is achieved for all frequencies up to the Nyquist

frequency ωN when the upper bound ρ from (4) is close

to zero. Individual frequency components of the error signal

can exhibit different convergence rates which depend upon

|1−S(ejω)Gf (ejω)| evaluated at those frequencies [8]. Over

the entire frequency range fast convergence is achieved with

a learning filter designed as an approximation to the inverse

sensitivity function, Gf (q) = Ŝ−1(q) = 1 + Ĝp(q)Ĝc(q).
In [6] a design was presented that assumed knowledge of

a nominal plant model Gn(q) as well as access to the

control signal u(t) in order to construct the approximation

Ŝ−1(q). However this method requires access to open-loop

nominal plant models Ĝn(q) as well as additional filtering

of signals to maintain stability of the learning system. For

servomechanisms in general, a stable model describing the

sensitivity function is not guaranteed to be stably invertible.

However, there are several methods for determining a stable

approximation to the system inverse, one of which uses stan-

dard identification methods to fit a model to the inverse of

the frequency response [14]. To address stability in modeling

the inverse of S(q) first recognize that the system only deals

with periodic disturbances.

The periodic disturbance d(t) acts only at frequencies

ωk ∈ Ω, where

Ω =

{

ωk | ωk =
k

N
2π fs, k = 1, ...,

N

2
(fo r N ev en )

o r k = 1, ...,
N − 1

2
(fo r N o dd)

}

(6)

are integer multiples of the first harmonic frequency up to

ωN of the discrete time system with sampling frequency fs.

The learning convergence condition (4) can be rewritten as

|1 − S(ejωk)Gf (ejωk)| < 1 (7)

since there is no disturbance effect between the frequencies

ωk. This provides the following conditions for the design of

the learning filter

(i) Gf (ejωk , θ) ≈ S−1(ejωk) s.t. (7) holds

(ii) Gf (q, θ) ∈ R H ∞

where θ describes the parameter vector of the learning filter.

The approximation in (i) must be done such that condition

(7) holds. Furthermore, the rate at which the individual

frequency components of the error converge in the iteration

domain depends upon |1−S(ejωk)Gf (ejωk)| evaluated at the

frequencies ωk. The smaller the value over all frequencies

the faster the convergence of the learning algorithm.

For the computation of Gf (ejωk , θ) consider the frequency

response Ŝ(ejω) of a model of the actual sensitivity function.

The model Ŝ(q) can be parameterized as an approximation of

the sensitivity function over the entire frequency range or just

at frequencies ωk such that Ŝ(ejωk) ≈ S(ejωk). Although a

model structure for Gf (q, θ) that satisfies conditions (i) and

(ii) is not unique, consider the ILC update algorithm (2) with

the following finite impulse response (FIR) filter design.

Gf (q, θ) =
N−1
∑

k= 0

θkq−k s.t.
N−1
∑

k= 0

θk = 0 (8)

The condition on the sum of the parameters equating to zero

guarantees that the filter Gf (q, θ) has a DC gain of zero,

since no compensation for DC components is required. In

order to make Gf (ejωk , θ) = Ŝ−1(ejωk) the parameters θk

in the FIR filter of Gf (q, θ) given by (8) can be computed

as follows

θk = F−1

{

Ŝ−1(ejωk)
}

, θk = θk −
1

N

N−1
∑

k= 0

θk (9)

where F−1{·} denotes the inverse discrete Fourier transform

(IDFT). The parameters θk are the N coefficients of a

FIR model that exactly matches the frequency response of

Ŝ−1(ejωk) at frequencies ωk ∈ Ω. FIR models are by defi-

nition stable therefore condition (ii) is satisfied trivially. The

FIR model structure provides an additional implementation

advantage since the ILC update law (2) is linear in the

parameters θ and the error signal e(t)

zi+1(t) = zi(t) + θ0ei(t) + ...

+ θN−1ei(t − N − 1) (10 )

where (10 ) only requires multiplication and addition compu-

tations of the shifted error signal that can be implemented

efficiently in a digital signal processor (DSP) environment.

D. Rob u stness to Model Uncertainties

A robust convergence criteria can be used to guarantee

convergence of the ILC algorithm in the presence of uncer-

tainties that arise from the learning filter designed from either

a nominal model Ŝ(ejω) or frequency response measure-

ments S(ejω). Different approaches have been considered

for adding robustness to ILC update algorithms with respect

to modeling uncertainties, see e.g. [15], [16]. Following [7]

the learning filter can be designed such that the convergence

condition (7) is robustly satisfied. Consider uncertainty on

the measurements S(ejωk) be characterized by S(ejωk),

S(ejωk) =
{

S(ejωk) | Ŝ(ejωk) − β
k

< |S(ejωk)| <

Ŝ(ejωk) + βk; � Ŝ(ejωk) − ϕ
k

< � S(ejωk) <

� Ŝ(ejωk) + ϕk; ∀ωk ∈ Ω
}

(11)

where β
k
, βk and ϕ

k
, ϕk are frequency dependent pa-

rameters that overbound the uncertainty in magnitude and

phase respectively. Then the ILC convergence criteria (7)

for periodic disturbances converges robustly provided

ma x
S ∈ S

|1 − S(ejωk)Gf (ejωk)| < 1, ∀ωk ∈ Ω. (12)

The uncertainty set (11) encompasses various uncertainty

descriptions, additive, multiplicative, etc., which can be rep-

resented as enclosed regions S(ejωk) centered around the
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nominal frequency response Ŝ(ejω) in the complex plain

[17]. The parameters β
k

= βk and ϕ
k

= ϕk are then

the magnitudes and phases of the uncertainty overbound

evaluated at the frequencies ωk ∈ Ω.

III. INCLUDING ROB USTNESS TO NON-REPEATAB LE

DISTURB ANCES

Consider the case where the disturbance di(t) contains

both periodic and non-periodic components di(t) = d(t) +
d̃i(t). W ithout adding much to the complexity of the learning

algorithm, robustness to non-periodic disturbances can be de-

signed into the learning system by introducing an additional

filter. The ILC update algorithm (2) becomes

zi+1(t) = Q(q) [zi(t) + Gf (q)ei(t)] (13)

where Q is a linear, possibly non-causal filter. The current

iteration feedback error is then derived as follows:

ei+1(t) = r̂i+1(t) − ŷi+1(t)

= S(q)[r(t) − di+1(t) − zi+1(t)]

= S(q)[r(t) − di+1(t) −

Q(q)(zi(t) + Gf (q)ei(t))]

add and subtract S(q)Q(q)[r(t) + di(t)] to obtain

ei+1(t) = Q(q)[1 − S(q)Gf (q)]ei(t) + [1 − Q(q)]S(q)r(t)
+ S(q)[Q(q)di(t) − di+1(t)].

(14)

The convergence condition is determined from the homo-

geneous part of the error propagation (14) where a sufficient

condition for convergence is given by [9]

|1 − S(ejω)Gf (ejω)| < |Q−1(ejω)| ∀ ω. (15)

A filter Q with gain less than one, in some frequency

range, increases the region of stability for the learning control

algorithm. However, the increased stability region comes

with a price in that the error can no longer be completely

eliminated. This can be seen directly from (14) or via

asymptotic analysis of the learning algorithm [9]. Design of

the learning filter according to (8) and (9), directly minimizes

the left hand side of the argument in (15) at frequencies

ωk ∈ Ω. However for frequencies ω ∈\ Ω the filter Q can be

designed to provide stability of the learning algorithm is the

presence of non-repeatable components in the disturbance.

IV . EX PERIMENTAL RESULTS

A. Ap p lication to HDD

The servomechanism of disk drives operates by the feed-

back of PES perturbed by disturbances that are a combination

of the repeatable and non-repeatable run-out. For certain

HDD applications, such as two-stage servo track writing

and read/write head testing, the objective is to follow a

virtual perfect circle track. This is equivalent to assuming

periodically perturbed measurements of the PES and provid-

ing reduction of the periodic disturbances via disturbance

canceling reference signals.

The experimental system consists of a 2.5” magnetic disk

drive with specifications presented in Table I. The disk drive

servo processor is replaced by a DSP and host computer

that allow access to the PES and have the capacity to input

modified reference signals to the system.

TAB LE I

EX PERIMENTAL DISK DRIV E SPECIFICATIONS

Spindle motor speed 4200rpm(7 0H z )
Number of data sectors, N 1 20

Servo sampling frequency, fs 8.4K H z
Track pitch 8µ in

The HDD system can be represented by the general LTI

discrete time system described in Section II-A, where the

finite time interval t = 0, ..., N corresponds to the number

of sectors on the disk. The learning system of Figure 2

generates the current iteration signal based on information

from previous iterations. Under the assumptions of ILC, at

the end of each finite time interval the initial conditions

of the system are reset, with the exception of the non-

repeatable disturbances. The periodic disturbance d(t) in-

cludes RRO effects such as the written in eccentricity of

the track that contribute to the PES, e(t), and appear at

integer multiples of the frequency of rotation of the disk.

The non-periodic disturbance d̃i(t) includes effects such as

windage and measurement noise which are generally zero-

mean. B oth repeatable and non-repeatable components for

the disturbance can be seen in Figure 3 where 6 0 rotations

of the disk are shown as well as the average leaving on the

periodic disturbance effect on the PES.
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Fig. 3. Sector plot of the original PES (grey) and the averaged PES (dark).

Closed-loop disturbance rejection or amplification is de-

termined by the sensitivity function. Measured closed-loop

frequency response data along with a 5th order model for

the sensitivity function, Ŝ(q), are presented in Figure 4 for

the disk drive system.

For designing the nominal learning filter the disk drive

sensitivity function model Ŝ(q) is not stably invertible and

thus its inverse can not be used directly. Motivated by the

procedure in Section II-C, the sensitivity model is used
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Fig. 4. Measured closed-loop sensitivity frequency response (dotted line)

and 5th order model Ŝ(ejω) (solid line).

to generate closed-loop frequency response Ŝ(ejω) at the

frequencies of the periodic disturbance ωk, where ωk =
[7 0, 14 0, ..., 4 200]H z are the integer multiples of the fre-

quency of rotation up to the Nyquist frequency. FIR model

coefficients, θk, are generated from the inverse of the closed-

loop frequency response of Ŝ−1(ejωk). The FIR model

Gf (q, θ) describes a stable system that exactly intersects the

frequency response of Ŝ−1(ejωk) at the frequencies ωk, as

shown in Figure 5.
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Fig. 5. Frequency response of FIR model Gf (q , θ ) approximation (solid

line) to Ŝ−1(ejω) (dotted line) and the intersection of the FIR model with

Ŝ−1(ejω) at ωk (circles).

In [7] the effects of non-repeatable disturbances are

overcome by averaging over the sector interval the PES

measurement taken over many disk rotations. It was shown

that only a few iterations were required to reach sufficient

level of periodic disturbance rejection, but at the cost of many

overall rotations of the disk for averaging. Robustness to

non-periodic disturbances can be provided through additional

filtering of the ILC update algorithm (13). The Q-filter is

chosen such that stability of the learning system is provided

over all ω. The evaluation of Q is achieved as an over

bound of the convergence condition magnitude (12), as

shown in Figure 6, where the Q-filter is constructed from

notch filter with lead compensation in order to maintain low

computational complexity in the learning algorithm.
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Fig. 6. Iterative learning control convergence condition (solid-line) and the
inverse of filter Q (dashed-line) designed for robustness against non-periodic
disturbances.

B. Application of the ILC Algorithm

For one rotation of the disk drive, distinguishing repeatable

from non-repeatable disturbances is a difficult task. The

experiment conducted used four rotations of the disk for

every iteration of the ILC learning algorithm. Although with

every rotation more is learned about the realization of the

repeatable disturbance, with as few as four iterations there

remains significant non-repeatable disturbances to effect the

averaged PES measurement. Application of the robust learn-

ing algorithm given in (13) demonstrates that although more

iterations are required convergence is robustly satisfied, see

Figure 7.

Despite the larger number of iterations required by the

robust ILC algorithm, the amount of disk rotations and thus

the overall time required reach sufficient levels periodic

disturbance rejection is greatly reduced. Note however, that

using the robust ILC algorithm no longer allows arbitrary

reduction of the repeatable disturbance.

V. CONCLUSIONS

In this paper iterative learning control for the design of

reference signals has been developed for the reduction of

periodic measurement disturbances in the presence of non-

periodic measurement disturbances. The ILC method is illus-

trated with experimental results on a hard disk drive where

issues of computational complexity and robust implementa-

tion have been addressed. The contributions of this paper
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Fig. 7. Odd iterations 0 through 9 with DCRS zi(t) (top plot) and resulting PES ei(t) (bottom plot).

are to discuss the robustness of the nominal learning filter

design and demonstrate experimentally the effectiveness of

robust ILC reference design methods for improving control

performance in the presence of non-repeatable disturbances.

Convergence robustness provides the tradeoff between the

number of averages versus the number of iterations required

in effectively reducing repeatable disturbances.
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