
LINEAR REGRESSION METHOD FOR

ESTIMATING APPROXIMATE NORMALIZED

COPRIME PLANT FACTORS

M.R. Graham
∗

R.A. de Callafon
∗,1

∗ University of California, San Diego, Dept. of Mechanical
and Aerospace Engineering, 9500 Gilman Drive, La Jolla,

CA 92093-0411, U.S.A

Abstract: Studies on iterative identification and model based control design have
shown the necessity for identifying models on the basis of closed-loop data.
Estimating models on the basis of closed-loop data requires special attention
due to cross correlation of noise and input signals and the possibility to estimate
unstable systems operating under a stabilizing closed-loop controller. This paper
provides a method to perform an approximate identification of normalized coprime
factorization from closed-loop data. During the identification, a constrained linear
regression parametrization is used to estimate the normalized coprime factors. A
servomechanism case study illustrates the effectiveness of the proposed algorithm.
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1. INTRODUCTION

The interconnection between system identifica-
tion and model-based control design has moti-
vated contributions in the area of ”identification
for control,” whereby identification algorithms are
tuned toward the intended purpose of the result-
ing model i.e. control design. Typically models
useful for control design are of low-order, cap-
turing essential closed-loop dynamic behavior. In
addition to safety and production requirements
common in industrial applications, closed-loop
experimental data supports the identification of
models accurate in the frequency region relevant
for control design (Hjalmarsson et al. 1996).

Difficulties in closed-loop identification, mainly
due to the correlation between disturbances and
control signals in the feedback loop, have inspired
numerous methods which can be classified into
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direct, indirect and joint input-output approaches
(Ljung 1999). Particular to control relevant iden-
tification are two-stage, dual-Youla and coprime
factor methods where model quality depends upon
the compensator used during the experiment.
This suggests that control design on the basis
of identified models requires an iterative proce-
dure (Skelton 1989, Schrama 1992a), for which
several schemes have been studied, see (de Calla-
fon and Van Den Hof 1997, Kosut 2001, Date
and Lanzon 2004) and (Hjalmarsson 2005) for an
overview.

The concentration of this paper is on the identi-
fication step in such iterative schemes which uti-
lize the coprime factor representation for systems
modeling and control design. Additionally under
certain circumstances, for example in highly com-
plex systems, employing simple linear (regression)
identification algorithms may be computationally
attractive. This paper presents a control relevant
coprime factor identification algorithm that relies
on a linear regression form, whereby the result-
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ing coprime factors are restricted to be normal-
ized. The algorithm used for estimating approxi-
mately normalized coprime factors was introduced
in (Van Den Hof et al. 1995). Here the proposed
linear (regression) identification algorithm is an
extension of that work.

Preliminaries and a general framework for com-
prime factor identification are discussed in Sec-
tion 2 and Section 3. Presentation of an algo-
rithm for the estimation of approximately nor-
malized coprime factors is in Section 4 along
with the proposed linear regression identification
method in Section 4.1. A servomechanism case
study presents the effectiveness the proposed iden-
tification method in Section 5.

2. PRELIMINARIES

The closed-loop system considered in this study is
shown in Figure 1 where C is a feedback controller
that stabilizes the (possibly unstable) LTI plant
P0, u is the plant input, y is the plant output, v is
the disturbance, r1 and r2 are the possible refer-
ence signals available. For convenience define the
general reference signal r(t) := r1(t) + C(q)r2(t)
as the overall reference to the system. Note that
r1 and r2 may be considered as unmeasurable
disturbances assuming measurability of u and y

and knowledge of the controller C since r(t) =
u(t) + C(q)y(t). Then the system equations can
be written as

y(t) = P0(q)S0(q)r(t) + W0(q)H0(q)e0(t) (1)

u(t) = S0(q)r(t) − C(q)W0(q)H0(q)e0(t) (2)

where S0 = [1 + CP0]
−1

and W0 = [1 + P0C]
−1

.
For brevity the dependency on the delay operator
q will be dropped whenever it is clear.
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Fig. 1. Feedback configuration

Any system P has a right coprime factoriza-
tion (r.c.f) (N, D) over RH∞ if there exist
X, Y, N, D ∈ RH∞ such that (Vidyasagar 1985)

P (z) = N(z)D−1(z); XN + Y D = I (3)

Dual definitions exist for left coprime factoriza-
tions and are denoted by (Ñ , D̃). Normalized co-
prime factors are defined such that

NT (z−1)N(z) + DT (z−1)D(z) = I. (4)

Numerically efficient algorithms for computing
continuous-time and discrete-time normalized co-
prime plant factors can be found in (Varga 1998),
but the problem basically involves solving an ap-
propriate Riccati equation.

3. ACCESS TO COPRIME FACTORS

The general framework for identification of co-
prime factors from closed-loop data is well es-
tablished and allows the flexibility of consistently
estimating models from possibly unstable and/or
non-minimum phase plants. Consider a stable fil-
ter F that generates an auxiliary signal

x(t) = F (q)r(t) = F (q)[u(t) + C(q)y(t)] (5)

According to Figure 2 then (1),(2) can be written
as

y(t) = N0(q)x(t) + W0(q)H0(q)e0(t) (6)

u(t) = D0(q)x(t) − C(q)W0(q)H0(q)e0(t) (7)

where N0 = P0S0F
−1 and D0 = S0F

−1.
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Fig. 2. Construction of auxiliary signal x from
closed-loop data for coprime factor identifi-
cation

The signal x is uncorrelated with the noise e0

provided that r1, r2 are uncorrelated with e0 thus
the identification from x to (y, u)T is an open-loop
identification of the factors (N0, D0) where the
plant is constructed as P0 = N0D

−1

0 . For stable
(N0, D0) and bounded x, the limited freedom
in choosing F is summarized by the following
proposition.

Proposition 1. (Van Den Hof et al. 1995). Con-
sider the filter

F = (Dx + CNx)
−1

(8)

where (Nx, Dx) are r.c.f. of an auxiliary system
Px, then F provides a stable mapping (y, u)T → x

and x → (y, u)T if and only if the auxiliary system
Px is stabilized by C. For all such F the plant
factors induced from closed-loop data satisfy

[

N0

D0

]

=

[

P0 (I + CP0)
−1

(I + CPx)Dx

(I + CP0)
−1

(I + CPx)Dx

]

(9)
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where P0 = N0D
−1

0 is also a right coprime factor-
ization.

The above proposition shows an obvious con-
nection to the well-known dual-Youla paramet-
rization. Since the feedback connection of the
auxiliary model Px with r.c.f. (Nx, Dx) and a
controller C with r.c.f. (Nc, Dc) is stable then
a system P0 with r.c.f. (N0, D0) that is stabi-
lized in feedback with C can be described by
(Schrama 1992b)

[

N0

D0

]

=

[

Nx + DcR0

Dx − NcR0

]

(10)

if and only if there exists a stable transfer matrix
R0. Additionally the R0 that satisfies (10) is
uniquely determined by

R0 = D−1
c (I + CP0)

−1(P0 − Px)Dx. (11)

In fact the dual-Youla parametrization provides
all auxiliary models Px stabilized by C. The free-
dom in choosing the filter F outlined in Proposi-
tion 1 suggests that access to the dual-Youla pa-
rameter may also be viewed as a natural method
for tuning the auxiliary model Px such that de-
sired coprime factor representations in (9) are
attained. Before further discussing how this may
be used to tune the estimation of coprime factors
through exploiting the freedom in choosing F , a
brief overview of dual-Youla parameter identifica-
tion is provided.

Proposition 2. (Van Den Hof and Schrama 1995).
Consider the data generating plant P0 with r.c.f.

(N0, D0) and an auxiliary model Px with r.c.f.

(Nx, Dx) both internally stabilized by controller
C with r.c.f. (Nc, Dc). Define the intermediate
signal x as given by (5),(8) and the dual-Youla
signal ξ as

ξ(t) = (Dc(q) + Px(q)Nc(q))
−1[I − Px(q)]

[

y(t)
u(t)

]

(12)

then the identification of the dual-Youla parame-
ter R0 is given by

ξ(t) = R0(q)x(t) + H̄(q)e(t) (13)

where the signal x is uncorrelated with e since
r in (5) is assumed uncorrelated with e and the
transfer matrix R0 is given by (11).

Thus the estimation of the dual-Youla parameter
is an open-loop identification from the signals x

and ξ, which can be constructed from known data
filters and solved via standard identification tech-
niques. The disadvantage in applying the dual-
Youla parametrization, however, lies in the inabil-
ity to directly control the order of the resulting

model computed via (11) (Anderson 1998). A way
to circumvent this problem is a direct estimation
of the coprime factors.

4. IDENTIFICATION ALGORITHM

The estimation of approximately normalized co-
prime factors in (Van Den Hof et al. 1995) came
from the observation that the factors available
in (9) can be shaped according to the choice of
auxiliary model Px. Stability restrictions on the
auxiliary model Px suggest a dual-Youla paramet-
rization, however instead the estimate R0 can be
used as an initialization step in a direct coprime
factor estimation, providing control over the or-
der of the model being estimated. For example,
servomechanisms typically have double integrator
which would naturally be incorporated into an
initial auxiliary model. This leads to the following
algorithm similar to (Van Den Hof et al. 1995)
with the main difference of using a structured
linear regression model to allow for an affine op-
timization during the estimation of the coprime
factors.

(1) Initialization:
(a) Start with an auxiliary model Px sta-

bilized by C with (normalized) coprime
factors (Nx, Dx). Simulate auxiliary in-
put x (5) with data filter (8) and dual-
Youla signal ξ according to (12) then
accurately identify (possibly high order)

dual-Youla parameter R̂0 (13) using lin-
ear regression methods.

(b) Update estimated (high order) coprime

factors (N̂0, D̂0) (10) and let P̂ =

N̂0D̂
−1

0 . Then compute a normalized co-
prime factorization (Nx, Dx) such that

P̂ = NxD−1
x and re-simulate auxiliary

signal x (5) with updated filter (8).
(2) Identification:

(a) Use signals [y, u]T and x in least squares
multi-variable identification minimizing
the prediction error

ε(t, θ) = A(q, θ)

[

y(t)
u(t)

]

− B(q, θ)x(t)(14)

where

A(q, θ) = I + A1q
−1 + ... + Ana

q−na

B(q, θ) = B0 + B1q
−1 + ... + Bnb

q−nb
(15)

are matrix polynomials in q−1 and B(q, θ)

decomposes to B =
[

BT
N , BT

D

]T
.

(b) Compute the coprime factor estimate via
[

N(θ)
D(θ)

]

= A−1(q, θ)

[

BN (q, θ)
BD(q, θ)

]

. (16)

Obviously a general matrix polynomial A(q, θ)
in an ARX model structure does not provide
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a common left divisor in the coprime factoriza-
tion, thus the McMillan degree of the constructed
model P (θ) = N(θ)D−1(θ) is not the same as the
McMillan degree of BN (q, θ) or BD(q, θ). Addi-
tional structure on the matrix polynomial may be
imposed such that A(q, θ) is a common left divisor
preserving the McMillan degree of the individual
coprime factors in the constructed model.

4.1 Structured linear regression parametrization
for coprime factor identification

As a special case of prediction-error identification
methods (PEM), the well-known least squares
minimization criteria is a standard choice for its
convenience in both computation and analysis
(Ljung 1999). Consider the multi-variable ARX
model structure (14). Then the system description
is given by

[

y(t)
u(t)

]

= G(q, θ)x(t) + H(q, θ)e(t) (17)

with

G(q, θ) = A−1(q, θ)B(q, θ), H(q, θ) = A−1(q, θ).

Recall that (14) can be parametrized by a linear
regression with prediction error given by

ε(t, θ) =

[

y(t)
u(t)

]

− ϕT (t)θ (18)

where additional structure may be imposed on the
parametrization such that a d-dimensional column
vector θ and a corresponding ny + nu × d matrix
ϕT (t) containing past input, output and auxiliary
signals are used in the least squares minimization.
Employing the linear regression prediction error
(18), the least squares criterion is given by

VN (θ, ZN ) =
1

N

N
∑

t=1

εT
f (t, θ)εf (t, θ) (19)

where εf (t, θ) = L(q)ε(t, θ) with L = diag(Ly, Lu)
and L ∈ RH∞. Filtering the prediction error can
be made equivalent to filtering the identification
input-output data, however in the multivariable
case all signals must be subject to the same filter,
i.e. Ly and Lu must be multiples of the identity
matrix (Ljung 1999). Different prefilters Ly and
Lu account for the difference between the noise
models made available from data (6), (7) where
knowledge of the controller can be included into
Lu. Prefiltering the input-output data, (19) re-
mains quadratic in θ and can be minimized ana-
lytically giving

θ̂LS
N =

[

1

N

N
∑

t=1

ϕ(t)ϕT (t)

]−1

1

N

N
∑

t=1

ϕ(t)

[

y(t)
u(t)

]

.(20)

Additional structure imposed on the parametriza-
tion of the matrix polynomial A(q, θ) provides a
common left divisor and preserves the McMillan
degree of the constructed coprime factors in the
constructed model.

Proposition 3. Consider minimizing the least squares
identification criterion (19) with the prediction
error ε(t, θ) in (14). Let the matrix polynomial
A(q, θ) be parametrized by

Ai = aiIny+nu
(21)

for i = 1, ..., na. Then the prediction error can be
written into linear regression form (18) with

θT =
[

a1...ana
col(B1)

T ...col(Bnb
)T

]

(22)

ϕT (t) =

[

−y(t − 1)... − y(t − na)
−u(t − 1)... − u(t − na)

(23)

xT (t − 1) ⊗ Iny
...xT (t − nb) ⊗ Iny

]

where the col operator stacks the columns of a
matrix and ⊗ denotes the Kronecker product.

Increasing the order of A(q, θ) does not sacrifice
the order of the model being estimated. Thus
estimating a high order A(q, θ) which incorporates
the noise filter into the estimation and can im-
prove the fit of the coprime factors ((Ljung 1999)).
As a result the least squares solution (20) pro-
vides an estimate of the coprime factorization (16)
such that A(q, θ) preserves the McMillan degree
of the coprime factors in the constructed model
P (q, θ) = N(θ)D(θ)−1. For SISO systems the
above proposition results in a parametrization

N(θ) = a−1(q)bN (q)
D(θ) = a−1(q)bD(q)

(24)

where a, bN and bD are (matrix) polynomials of
specified degree with coefficients collected in the
parameter vector θ. For MIMO the diagonal form
of A(q, θ) is equivalent to a common denomina-
tor parametrization. By imposing the structure
(21), the factorization (N(θ), D(θ)) has a com-
mon denominator which guarantees the McMillan
degree of the coprime factorization is the same
for the constructed model. Similar results are ob-
tained when performing the least squares iden-
tification using an output error model structure
(Van Den Hof et al. 1995), however one looses
the computational benefits and unique analytic
solution (20) provided by the linear regression.

4.2 Description of the limit model

Observe the filtered prediction error under the
constrained ARX model structure

εf(t, θ) = L(q)A(q, θ)

[

y(t) − N(q, θ)x(t)
u(t) − D(q, θ)x(t)

]

. (25)
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With fixed noise model (4.1) the asymptotic pa-

rameter estimate θ∗ = limN→∞ θ̂LS
N is character-

ized by

θ∗ = argmin
θ

π
∫

−π

|L(ejω)|2|A(ejω)|2 × (26)

{

|N0(e
jω) − N(ejω, θ)|2

+|D0(e
jω) − D(ejω , θ)|2

}

Φx(ω)dω

where Φx(ω) is the frequency spectrum of the
auxiliary input signal (5). As a result of the ARX
model structure chosen the asymptotic parame-
ter estimate includes an implicit high-frequency
weighting by |A(ejω)|2. To enhance the model
fit in the desired frequency range the prediction
error is filtered through a low-pass filter L(q). If a
reasonable assumtion is that the measurement er-
rors are white this may also suggest the Steiglitz-
McBride method for improving the estimate with
a θ-dependent prefilter (Ljung 1999).

5. RESULTS

5.1 Motivation

The development of high performance controllers
of industrial servomechanical systems with sig-
nificant product variations may require accurate
modeling of each product on the basis of its own
closed-loop experiment. Consider the frequency
responses of several of the same servomechanism
product presented in Figure 3.
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Fig. 3. Frequency response of 16 of the same
servomechanism product

The product variation between the servomecha-
nisms would require too conservative a controller
satisfying stability over all plants. The results
presented in this section illustrate the proposed
identification method applied to one test bench,
see Figure 4, with the intension of using the model
in future work to design a high performance model

based controller. Typically servomechanisms con-
tains a double integrator, which makes it open-
loop unstable. The current feedback loop is stabi-
lized via a proportional integral derivative (PID)
controller however the large resonance modes of
the plant limit the bandwidth of the closed-loop
system.
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Fig. 4. Frequency response of a 20th order case
study model (solid-line).

5.2 Case study

As a case study to illustrate the proposed identi-
fication method consider the frequency response
presented in Figure 4. Time series data u(t) and
y(t) were obtained via simulation of a 20th order
model fitted to the frequency response with input
signals r0 and r1 chosen as zero mean white noise
each with a variance of 1. The measurement noise
that enters the system v = H0e0 was modeled as
zero mean white noise with variance 0.1.

The identification algorithm outlined in Section 4
is used to estimate normalized coprime plant fac-
tors. Results from the last step are presented
in Figure 5, where approximately normalized co-
prime factor estimates (N(θ), D(θ)) are obtained
from a constrained ARX least squares linear re-
gression identification. Because of the implicit
high frequency weighting which results from using
an ARX model structure, the prediction error
prefilter L(q) is initially chosen as a 4th order low-
pass butterworth filter with a cut-off at around
half the sampling frequency. To improve the qual-
ity of the estimated factors the linear regression
identification is performed a second time with
prefilter chosen according to the Steiglitz-McBride
method, L(q) = A(q, θ), where the prefilter is ap-
plied to the original data set. The resulting model
constructed from the approximately normalized
coprime factors P (θ) = N(θ)D−1(θ) is presented
in Figure 6. The computational complexity in-
volved in linear filtering and computing the linear
regression identification is less than a non-linear
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optimization identification of the same order, yet
these results show that for this experimental set-
up and for sufficiently chosen order the resulting
model is comparable. Additional benefits of us-
ing the constrained linear regression identification
come from the vast body of research available,
i.e. so-called ”fast algorithms” and the ability to
compute estimates of multiple (high) orders.
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Fig. 5. Frequency response of coprime factors com-
puted from case-study model (dotted-line)
and from 7th order: constrained ARX (solid-
line), Prediction Error minimization with OE
structure (dashed-line).
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Fig. 6. Frequency response of case study model
(dotted-line) and 7th order constructed plant:
P (θ) = N(θ)D−1(θ) (solid-line) and Predic-
tion Error minimization with OE structure
(dashed-line).

6. CONCLUSION

This paper presented an extension of the work
done in (Van Den Hof et al. 1995) for esti-
mating approximately normalized coprime factors
using linear (regression) identification methods.
The proposed algorithm shows that a constrained
ARX model structure maintains a linear regres-
sion form and preserves the McMillan degree of a

constructed model from its coprime factors. The
results demonstrate that the proposed identifica-
tion algorithm effectively estimates coprime plant
factors from closed-loop data. Future work will be
to extend the proposed linear regression method
further to include multivariable system identifica-
tion.
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