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An Iterative Learning Design for Repeatable Runout
Cancellation in Disk Drives

Matthew R. Graham and Raymond A. de Callafon

Abstract—In this paper, we consider the iterative learning con-
trol (ILC) framework to design a reference signal that directly can-
cels periodic disturbances in a feedback measurement. Cancella-
tion of periodic disturbances is useful in reducing undesirable re-
peatable tracking errors in applications such as the two-stage servo
track writing process for disk drives. A general problem descrip-
tion is given for a linear discrete-time periodic system and con-
vergence results for the learning system are derived. A learning
filter is designed with the use of a finite-impulse response model
approximation for the inverse of the closed-loop sensitivity such
that convergence is achieved in learning a reference signal that pro-
vides cancellation with periodic perturbations affecting the system
measurement. The ILC algorithm is applied to a disk drive system
where experimental results demonstrate the effectiveness of the
method in reducing periodic measurement disturbances.

Index T erms—Hard disk drive, iterative learning control (ILC),
periodic disturbance, plant uncertainty.

I. INTRODUCTION

T
HE challenges of compensating for periodic disturbances

appears in various applications dealing with rotating ma-

chinery. For example, in hard disk drive (HDD) servomecha-

nisms, disturbances consist of both a repeatable and nonrepeat-

able nature which appear in the position error signal (PES) of

the head following a data track. The repeatable run-out (RRO)

disturbance generally occurs at frequencies that are integer mul-

tiples of the frequency of rotation of the disk and is a con-

siderable source of PES with respect to the center of the data

track [1].

Numerous control design methods, categorized by either

a feedback or feedforward structure, have been developed

specifically for eliminating periodic disturbances. Generally

these algorithms consider generating a control input whereby

the system asymptotically tracks the periodic disturbance in

the output. In the feedback category, methods such as repetitive

control [2] and disturbance observer (DOB)-based control

[3] have demonstrated effective compensation for repeatable

disturbances. However, repetitive control tends to amplify

nonrepeatable disturbances between the frequencies of the

repeatable disturbances while DOB-based control can alter the

closed-loop properties of the system. The feedforward category,

including methods such as adaptive feedforward cancellation
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(AFC) [4], [2] and iterative learning control (ILC) [5], [6], have

also shown successful application in the reduction of periodic

disturbances. Unfortunately AFC methods require intensive

computation when rejecting multiple disturbances which can

be disadvantageous. Based on the internal model principle, ILC

schemes first developed by [7], have been shown as the dual of

repetitive control [8] and have demonstrated improved tracking

performance for disk drives [9]. W ith ILC methods, control

effort is focused at the frequencies of the periodic disturbances

to improve the tracking performance of the system.

Improved performance of the feedback system when the

output measurement is perturbed by periodic disturbances

however, leads to undesirable repeatable tracking errors. As

an example, progress in HDD servo track writers has led to

a two stage servo track writing process where a master servo

disk, created in stage one, is used as a reference from which the

servo tracks on the remaining disks in the stack are written in

stage two [10]. Repeatable run-out either written-in during the

servo track writing process or resulting from mechanical disk

assembly can be eliminated by considering them as sources of

periodic measurement noise and canceling them via a modified

reference signal. Thus, the objective of the servomechanism

is not to follow the RRO error, but to follow a virtual per-

fectly circular track thereby reducing ac-squeeze of data track

following. Learning algorithms designed for this purpose has

been successfully applied to disk drive systems by [11] where

knowledge of a nominal plant model and access to the control

signal were required [12], where a conservative approximate

model was developed from the closed-loop frequency response

and [13], where an approximation of the closed-loop system

was obtained from averaged signals. In these, the result was

a reference signal called the zero acceleration path (ZAP)

that cancelled the RRO allowing the read/write head of the

disk drive to follow a virtual circular track with zero actuator

acceleration.

Compared to [11]–[13], the motivation for this study is to

generalize periodic disturbance cancellation results for systems

without knowledge of a nominal plant model with access to the

control signal or requiring special frequency–domain model ap-

proximation tools. This paper considers ILC methods for com-

puting disturbance canceling reference signals (DCRS) that pro-

vide reduction of periodic measurement disturbances based on

closed-loop frequency-response measurements. Section II out-

lines the general problem formulation for this study, provides a

brief review of some of the extensively studied theory on ILC,

and discusses a learning filter design methodology for satisfying

convergence criteria. Section III describes the HDD applica-

tion, the development of the learning filter for the experimental
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Fig. 1. Block diagram of feedback control system with periodic measurement
disturbance

�������
.

disk drive drive servomechanism and presents the results for the

DCRS experiment.

II. GENERAL PROBLEM FORMULATION

AND ILC CONFIGURATION

A. System Description

A general block diagram description for a single-

input–single-output (SISO) linear time invariant (LTI) dis-

crete-time system in which periodic disturbances occur is

presented in Fig. 1. Let be the plant and be the

feedback compensator operating over a finite time interval

where and is the shift operator. The reference

, the disturbance and the error signal are periodic

with period . Due to the periodic nature of the signals, the

assumption is made that at the end of each finite time interval

the initial conditions of the system are resent.

Cancellation of the periodic measurement disturbance is

achieved by subtracting at the reference. The disturbance

must be learned from available measurements of the error signal

, where the effect of the disturbance on the feedback error

is given by

where denotes the sensitivity function. Intuitively, the

that directly cancels the periodic disturbance would a filtered

version of the error where an appropriate filter is given

by the inverse of the sensitivity function .

In practice, however, perfect models for the closed-loop sen-

sitivity function are not available and the effectiveness of

for canceling periodic disturbances depends upon the accuracy

of the model . Furthermore, in servomechanisms where

the closed-loop system contains at least an integrator for steady

state tracking, a stable model for the sensitivity function gen-

erally lends to an unstable inverse making the signal un-

bounded. Fortunately, ILC methods have been shown to implic-

itly find through iteration the stable approximation to the inverse

of the system [14] which would result in a modified reference

signal that cancels with the periodic disturbance.

B. Iterative Learning of the Reference Signal

Iterative learning control methods applied to systems have

primarily focused on compensating for periodic disturbances

via a modified control signal. Thus, the control system is re-

designed with a feedforward component added to the system

input [2], [15]. Although this ILC structure is most commonly

studied in the literature, modification of the reference signal

can achieve improved control performance for systems, where

it is undesirable to reconfigure the control signal. The iterative

learning of reference signals has been referred to as cascaded

ILC [5]. The problem formulation from Section II-A motivates

the use of this structure for determining the adjunct reference

signal that cancels with the periodic disturbance . A

block diagram representation for the ILC system with cascaded

structure is shown in Fig. 2. Here , , , and de-

note the DCRS, modified reference signal, system output mea-

surement, and error signal, respectively, where the subscript

indicates the th iteration. The blocks labeled MEM denote

memory arrays that store signals of the current iteration for use

in the next learning iteration.

Notice from Fig. 2 that the ILC scheme is added outside

the existing control loop through a modified reference signal,

. Here the ILC update law is classi-

fied under previous cycle learning (PCL) whereby the current

iteration of the adjunct reference signal is some form of

signals from previous iterations, in particular

(1)

where the initial DCRS , and is the

learning filter of the ILC update. The learning filter is

used to filter the previous iteration error signal and will

play a crucial role in the convergence of the ILC system. The

learning convergence condition is derived by observing the

feedback error evolution from one iteration to the next. The

current iteration feedback error is given by

(2)

The transfer function represents the map from

the error at iteration to the error at iteration . The frequency

content of the error from (2) is given by the Fourier

transform

(3)

The discrete frequency components in are composed

of the corresponding frequency components of multiplied

in the magnitude and shifted in phase by the magnitude and

phase of , respectively. Thus imposing the

magnitude condition

(4)

for all frequencies up to the Nyquist frequency assures that

the amplitudes of the frequency components decay monoton-

ically with every iteration. This suggests convergence to zero

error, however, as shown in [16], this reasoning is not rigorous

providing only a sufficient condition for convergence which ap-

plies to the parts of the trajectory where steady-state response

has been achieved.

The approximate convergence condition (4) indicates mono-

tonic decay for steady-state error trajectories and is related to

an exact Euclidian norm monotonic convergence condition for
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Fig. 2. Illustration of cascade ILC system.

nonsteady-state trajectories. Consider the size of the error signal

measured by

(5)

where denotes the Euclidian norm of signal . Then

from Parseval’s theorem ([17]), we have that

(6)

where denotes the norm. This guarantees the mono-

tonic convergence of the entire error trajectory. Various itera-

tive learning control algorithms have been developed to satisfy

this rigorous condition, see [16] for an overview and where it is

shown that (4) is sufficient for (6) at the equally spaced discrete

frequencies.

C. Learning F ilter Design

Although little information about the closed-loop system is

required to satisfy learning convergence conditions, it is intu-

itive that knowledge of the sensitivity function is beneficial

when designing the learning filter in order to satisfy (6).

Observe the error propagation given by (2) written as a function

of the error prior to the first iteration of the learning algorithm

(7)

Equation (7) indicates that convergence in the iteration domain

is expedited for all frequencies up to the Nyquist frequency

when the upper bound from (6) is close to zero. This poses

the desired design problem for the learning filter, summarized

in the following.

Problem 1: Let the size of the error signal at iteration

be given by (5). Let the learning filter be parametrized by

. To compute the optimal learning filter, consider the

optimization

subject to: (8)

which will provide monotonic convergence of provided

that (6) holds.

In Problem 1, the learning filter is parametrized by

a fixed parameter . Stability of the learning filter is required

to insure that the signals within the learning system remain

bounded. The above problem intuitively suggests that, over

the entire frequency range, expedited convergence of the error

is achieved with a learning filter designed as the inverse

sensitivity function. From this intuition rewrite (8) into standard

model-matching form as

(9)

Assuming no restrictions on the structure of , an equiv-

alent problem formulation is given by the Hankel approximation

problem also known as the Nehari extension problem for which

there are well-known algorithms for determining a solution [18].

These algorithms, however, are computationally expensive and

require accurate knowledge of the inverse sensitivity function

for all frequencies up to the Nyquist frequency.

Avoiding computationally expensive methods, in [11] a de-

sign was presented that assumed knowledge of an open-loop

nominal plant model as well as access to the control signal

in order to construct an approximate model . This

method also requires additional filtering in order to maintain sta-

bility of the learning system. Typically for servomechanisms, a

stable model that accurately describes the sensitivity function is

not guaranteed to be stably invertible. However, there are several

approaches for directly identifying a stable approximation to the

system inverse, one of which uses standard identification algo-

rithms to fit a model to the inverse of the measured frequency

response [19], [12].

To address the direct modeling of recognize that the

learning system only deals with the periodic disturbance ,

which acts only at frequencies [rad/s] where

for even

or for odd (10)
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with sampling frequency [Hz]. That is, the disturbance acts

at integer multiples of the first harmonic frequency up to the

Nyquist frequency of the discrete-time system . Suppose the fre-

quency content of the error (3) is decomposed into its discrete

frequency components . Since there is no periodic distur-

bance effect between the frequencies , the convergence con-

dition (6) can be relaxed to the approximate convergence con-

dition (4) and rewritten as

(11)

to indicate the discrete frequencies of interest, . Fur-

thermore, (3) implies that the rate at which each individual fre-

quency component of the error converges in the iteration

domain depends upon the magnitude

evaluated at the frequencies [16]. This motivates the fol-

lowing proposition.

Proposition 1: Let the disturbance be periodic with pe-

riod and given by the discrete Fourier transform

(12)

which only has frequency content at defined in (10).

Consider the ILC system described by Fig. 2; then the mini-

mization in Problem 1 can be solved via

subject to: (13)

which is sufficient for monotonic convergence of provided

that (11) holds.

Proof: The -norm of the transfer function (6) is

simply the peak value of eval-

uated as a function of frequency, that is

. Since the signal

is a sampled periodic signal with period , the properties of

the discrete-time Fourier transform are such that ,

. Result (13) immediately follows from (8), where the

supremum over is replaced by the maximum over the finite

frequency range .

The min–max problem (13) needs only be solved over a finite

set of frequency points, which if parametrized linearly in the pa-

rameter , can be solved via linear programming. By imposing

a finite-impulse response (FIR) model structure on the learning

filter , a solution to (13) can be provided by imposing

and is summarized in the following proposition.

Proposition 2: Let be parametrized by the FIR filter

such that (14)

where . Then the minimizing parameter vector of (13)

is given by

where (15)

where are the frequency response measurements of

the closed-loop sensitivity function at the frequencies , and

denotes the inverse discrete Fourier transform (IDFT).

Proof: Let then using the prop-

erties of IDFT it immediately follows that

, where removes the mean

of the parameter vector to satisfy . Obviously,

and will be a

minimizing solution to (13).

Although a learning filter that satisfies (11) is not

unique, the FIR parametrization imposed on in (14)

allows for straight-forward implementation of the update law

(1) in a DSP environment. The added condition on the sum of

the parameters in (14) equating to zero guarantees that the filter

has a discrete-time dc gain of zero, since no com-

pensation for dc components is required. In [12], the simple

DFT/IDFT method is mentioned as the best choice for designing

the learning filter, however, was not investigated for perceived

reasons of computational complexity in performing and storing

complex valued operations in the IDFT operations. Instead, a

low order and conservative design for the learning algorithm

is suggested, which increases the iterations required for con-

verging to a satisfactory performance level. In [13], an alter-

native to the DFT/IDFT method was proposed; however, it re-

quires more signal averaging and thus more computation time.

In Section II-D, the IDFT computations are shown to require

only real valued computations, significantly reducing the com-

putational complexity in determining the parameters (15) of the

nonconservative FIR filter design.

D. Implementation

The FIR learning filter proposed in (14) provides an

additional implementation advantage since the ILC update law

(1) becomes a linear regression in the parameters and the error

signal of the previous iteration

(16)

At each iteration, the linear regression update law (16) requires

multiplication and addition computations of the shifted

error signal which can be implemented efficiently in a digital

signal processor (DSP) environment. Additionally, parameters

need only be computed once for a given time-invariant closed-

loop system. The two steps for designing the learning filter ac-

cording to Proposition 1 are as follows:

1) estimate the frequency response of the closed-loop sensi-

tivity function ;

2) compute the parameters of according to (15).

Using frequency response magnitude and phase measure-

ments of the sensitivity function at frequencies , the

IDFT (15) in the second step can be calculated without per-

forming complex valued operations typically required with

Fourier transform computations.

Proposition 3: Given closed-loop sensitivity func-

tion frequency response measurements of magnitude

and phase at

frequencies defined by (10). The IDFT of (15) is
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computed without complex valued operations, as shown by

(17)–(18) at the bottom of the page, where

for both cases.

Proof: Let be even and let the sensitivity function

frequency response measurements evaluated at

have magnitude and phase, and , respectively.

The IDFT is defined by

where

(19)

Setting the dc gain , then some simple algebra leads

to

(20)

In (20), replace with and with

for and

for , where the second

equality is the complex conjugate of the first equality in reverse

order. From the properties of complex numbers the imaginary

parts cancel out in the summation to get (17). The proof for

odd is analogous.

E. Robustness and an Iteration Update Parameter

The learning filter designed from either a nominal model

or frequency response measurements needs to

be robust against modeling or measurement errors. A robust

convergence criteria can be used to guarantee convergence of

the ILC algorithm in the presence of such uncertainties. Dif-

ferent approaches have been considered for adding robustness

to ILC update algorithms, see e.g., [20]–[22]. Similar to [20],

the learning filter can be designed such that the convergence

condition (11) is robustly satisfied and the result is summarized

in the following.

Proposition 4: Let the uncertainty on the measurements

be characterized by

(21)

where , and , are frequency-dependent parameters

that overbound the uncertainty in magnitude and phase, respec-

tively. Then the ILC convergence criteria (11) for periodic dis-

turbances converges robustly provided

(22)

In Proposition 4, the uncertainty set (21) encompasses

various uncertainty descriptions, additive, multiplicative, etc.,

which can be represented as enclosed regions centered

around the nominal frequency response in the complex

plain [23]. The parameters and are then the

magnitudes and phases of the uncertainty overbound evaluated

at the frequencies .

Additional robustness can be incorporated into the learning

system by introducing an iteration update parameter . The ILC

update algorithm (1) becomes

(23)

where is a function of the iteration number and indicates how

much of an adjustment the learning update is allowed to make

at each iteration. The learning convergence condition (22) then

requires evaluation at each iteration of the algorithm.

(24)

In light of the learning filter design methodology presented

in Section II-C, any provides a conservative update,

thus providing additional robustness in the learning algorithm

against uncertainty in the sensitivity function nominal model

[22]. This, however, reduces the convergence rate of the algo-

rithm over all frequencies.

Additionally, the update parameter may also be im-

plemented to stop the ILC algorithm once a desired performance

criteria has been met at iteration . The robustness may be useful

For even

(17)

For odd

(18)
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TABLE I
EXPERIMENTAL DISK DRIVE SPECIFICATIONS

in maintaining the long-term stability of the learning algorithm

(as gets large) as wells as providing cautious updates when the

data of the closed-loop sensitivity function is not accu-

rate enough for fast convergence.

III. EXPERIMENTAL RESULTS

A. Application to HDD

The closed-loop servomechanism of disk drives operates by

the feedback of the position error signal (PES) , which is

perturbed by disturbances that are a combination of the repeat-

able and nonrepeatable run-out. Typically, one would like to de-

sign the control system such that the read/write head follows

the center of the data track. However, in certain HDD applica-

tions, such as two-stage servo track writing and read/write head

testing, the objective is to follow a virtual perfect circle track.

This is equivalent to assuming periodically perturbed measure-

ments of the PES and providing cancellation of the periodic dis-

turbances via the disturbance canceling reference signal DCRS.

The experimental system consists of a 2.5-in form-factor

magnetic disk drive with specifications presented in Table I.

The disk drive servo processor is replaced by a DSP and host

computer that allow access to the PES and have the capacity to

input modified reference signals to the system.

The HDD system can be represented by the general LTI dis-

crete time system described in Section II-A, where the finite

time interval corresponds to the number of sec-

tors on the disk. The PCL learning system of Fig. 2 generates the

current iteration signal based on information from previous it-

erations. Under the assumptions of ILC, at the end of each finite

time interval the initial conditions of the system are resent, thus

the information must be repeatable. However, residual random

noise always exists in practical systems, and it often leads to

lower performance or even divergence of the learning system

[16]. To overcome this, the PES is measured over sufficiently

many disk rotations, and an average is taken over the sector in-

terval. The repeatable component remains, whereas the random

noise of zero mean is reduced, leaving only the periodic distur-

bance effect on the PES, as shown in Fig. 3.

The periodic disturbance includes written-in RRO effects

such as the eccentricity of the track and AC-squeeze that

contribute to the PES. Measurement of the PES occurs once at

each data sector along the disk. As a result, the disturbance only

has an effect on the PES at integer multiples of the frequency

of rotation of the disk. Closed-loop disturbance rejection

or amplification is determined by the sensitivity function.

Measurements of the sensitivity function along with

possible perturbations in the amplitude and phase are compared

with the Bode plot or a fifth-order model in Fig. 4.

Fig. 3. Sector plot of the original PES (grey) and the averaged PES (dark).

Fig. 4. Measured closed-loop sensitivity frequency response (dotted line) with
perturbation (vertical lines) and fifth-order model ��
	�� 


(solid line).

The disk drive sensitivity function model is not

stably invertible, and thus its inverse cannot be used di-

rectly as a learning filter design. Motivated by the procedure

in Section II-C, the model is used to generate closed-loop

frequency response at the frequencies of the periodic

disturbance , where Hz are the

integer multiples of the frequency of rotation up to the Nyquist

frequency.

Since the learning filter is designed from the frequency re-

sponse of a model of the sensitivity function, any perturbation or

error between the nominal model and the measurements results

in a violation of the learning convergence condition. Robustness

in the ILC algorithm, specifically at lower frequencies where the

frequency response measurements are not reliable, can be intro-

duced through filtering in order to guarantee (22). This addi-

tional filtering can be implemented by modifying the frequency

response data at the desired frequencies of prior to evaluating

the parameters of the FIR model. The coefficients are gener-

ated according to Proposition 2 and using the real-valued com-

putation (17). The FIR model describes a stable system
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Fig. 5. Frequency response of FIR model � ��������� approximation (solid line)

to �� ��� � (dotted line) and the intersection of the FIR model with �� ��� �
at � ( � ).

Fig. 6. Convergence condition (11) based on measurements
� ��� � ( � ) and

worst case convergence condition (22) based on � ��� � (  ).

that exactly intersects the frequency response of at

the frequencies , except at 70 Hz, as shown in Fig. 5.

Frequency response measurements in disk drives are typi-

cally unreliable well below the bandwidth of the controller be-

cause of the low frequent disturbance rejection properties of

the closed-loop system. The frequency response of the learning

filter has been modified at Hz in order

to conservatively guarantee the learning convergence condition

(22), presented for the disk drive in Fig. 6. Note that the conser-

vative design for at Hz will yield a slower

convergence of the error at that frequency.

Additional, robustness in the ILC algorithm can be provided

at each iteration through the iteration update parameter ,

where the convergence rate of the error at all frequencies is ef-

fected equally [22]. With the exception of some low-frequency

data, the experimental disk drive was sufficiently modeled by

to allow nonconservative update parameter for all

. Thus, evaluation of the robust convergence condition (22) is

required only once prior to the start of the ILC algorithm.

B. Application of the ILC Algorithm

The original PES, presented in Fig. 3, is used to deter-

mine the first iteration of the DCRS . The DCRS is

applied to the system as a adjunct reference signal that cancels

some of the periodic measurement disturbance as seen in Fig. 7.

Significant reduction in the PES is demonstrated after one itera-

tion. Further iteration of the DCRS according to the ILC update

law (16) demonstrates an improved performance with each iter-

ation of the modified reference signal for canceling the periodic

measurement disturbance in the PES. Fig. 7 shows the DCRS

through the fourth iteration and the resulting reductions in the

periodic measurement disturbance on the PES.

A close look at the progression of the DCRS in Fig. 7 shows

very little change from the first iteration to the fourth, and yet

these subtle changes have a significant impact on the resulting

PES. Fig. 8 shows the maximum PES over the sectors as a func-

tion of iteration where is designed as an approximation

to the disk drive inverse sensitivity. As the size of the error ap-

proaches zero in the iteration domain , the DCRS

also displays convergence to the DCRS that

directly cancels the effect of the periodic measurement distur-

bance in the PES. The error increase in later iterations of the

ILC algorithm results from working at the quantization level of

the DSP. An iteration update parameter , for example at

, could have been used to stop the ILC algorithm once a

sufficient performance level has been met.

The effectiveness of the DCRS for canceling periodic distur-

bances at multiple frequencies is observed in the spectral con-

tent of the PES. A comparison between the spectrum of the orig-

inal PES and the PES with the fourth iteration of the DCRS

applied is shown in Fig. 9. The periodic disturbance at 70 Hz,

which corresponds to the large eccentricity of the disk with re-

spect to the center of rotation, is reduced to the quantization

level of the experimental HDD system prior to implementation

of the ILC algorithm. The remaining 70-Hz disturbance below

the quantization was not targeted by the learning system since

this is well within the bandwidth of feedback loop. All other fre-

quency components of the periodic disturbance have been sig-

nificantly reduced in four iterations.

It is also important to mention that the nonrepeatable distur-

bances in the disk drive system were neither amplified nor de-

creased by the application of the ILC algorithm. This results

from the cascaded ILC structure where modification of the ref-

erence signal does not affect the properties of the closed-loop

transfer function. Addition of the ILC algorithm provides re-

duction of periodic measurement disturbances without the need

for redesigning the feedback controller.

IV. CONCLUSION

In this paper, iterative learning control for the design of ref-

erence signals has been developed for the reduction of periodic

measurement disturbances. The method is illustrated with ex-

perimental results on a hard disk drive read/write head tester. As

with most control design, with ILC one has to address the issues

of complexity of computation and implementation. The contri-

butions of this paper are to discuss the design of the learning

filter and demonstrate experimentally the effectiveness of ILC
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Fig. 7. Iteration 1–4 with resulting DCRS ! "�#�$ (top plot) and the resulting PES % "�#�$ (solid line, bottom plot) compared to the original PES % "�#�$ (dotted line).

Fig. 8. Convergence of the norm of the PES &'% "�#�$(& provided by the ILC
algorithm.

reference design methods for improving control performance.

Although knowledge of the system is not required for the ILC

algorithm to work, approximations of the system closed-loop

frequency response are used to design learning filters as FIR

model approximations of the system inverse providing for fast

rates of convergence in the learning system.
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