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ABSTRACT

Parametrization of filters on the basis of orthonormal ba-

sis functions have been widely used in system identification and

adaptive signal processing. The main advantage of using or-

thonormal basis functions for a filter parametrization lies in the

possibility of incorporating prior knowledge of the system dy-

namics into the identification process and adaptive signal pro-

cess. As a result, a more accurate and simplified filter with less

parameters can be obtained. In this paper, several construction

methods of orthonormal basis function are discussed and ana-

lyzed. An application of active noise control based on these or-

thonormal basis constructions is presented.

INTRODUCTION

Many researchers have contributed to the use of orthonormal

basis functions in the area of system identification and model

approximation [1–7]. In the constructions of the orthonormal

basis functions, Laguerre and Kautz basis have been used suc-

cessfully in system identification and signal processing [8,9]. A

unifying construction in [2] generalized both the Laguerre and

Kautz basis in the context of system identification. Laguerre ba-

sis can be used for the identification of well-damped dynamical

systems with one dominant first-order [8],whereas a Kautz basis

is suitable for the identification of dynamical systems with sec-

ond order resonant modes [9]. A further generalization of these

results for arbitrary dynamical systems was reported in [1] and

∗Address all correspondence to this author.

is called generalized (orthonormal) basis functions. The gener-

alized orthonormal basis and unifying construction can be used

for systems with wide range of dominant modes, i.e, both high

frequency and low frequency behavior.

It has been shown that [1] if the dynamics of the orthonor-

mal basis functions can approach the dynamics of the dynamical

system to be estimated, the convergence rate of the parameter es-

timation will be very fast, and also the number of the parameters

to be determined to accurately approximate the system is much

smaller. Therefore, the choice of the orthonormal basis becomes

an important issue in order to obtain accurate models.

In this paper, we will focus on different constructions of the

orthonormal basis functions. Different constructions of the or-

thonormal basis will be analyzed and compared. An application

of generalized FIR filter based on different set of orthonormal ba-

sis to the active noise control is implemented. The performance

of active noise control with different generalized FIR filter struc-

ture are calculated and compared to illustrate the characteristics

of constructions of orthonormal basis.

SETS OF ORTHONORMAL BASIS FUNCTIONS

Consider a linear time invariant stable discrete time system

P(z) written as

P(z) =
k=0

Mkz
−k (1)
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where {Mk}k=0,1,2 · · · are the sequence of Markov parame-
ters. In general, the system P(z) can be approximated by
P(z, ) using a finite number of expansion coefficients =
{Mk}k=0,1, · · · ,N−1through

P(z, ) =
N−1

k=0

Mkz
−k (2)

The model P(z, ) represented in (2) is a Finite Impulse Response
(FIR) model and has some favorable properties. Firstly, it is lin-
early parameterized. Secondly, least square estimation of the pa-
rameters on the basis of input/output measurements of P(z) is
robust against colored noise on the output measurements, which
is one of the main features exploited in recursive filter estimation.

However, it is known that for a dynamical system including
both high and low frequency dynamics, a large number of co-
efficients N are required in order to capture the most important
dynamics of the system P(z) into the model P(z, ). Therefore,
FIR model structure in general is too simple to capture a system
with a broad-band dynamics.

Suppose {Vk(z)}k=0,1,2, · · · is an orthonormal basis sequence
for the set of systems inH2. Then there exists a unique expansion

P(z) = D0 +
k=0

LkVk(z) (3)

where {Lk}k=0,1,2, · · · are the generalized orthonormal expan-
sion coefficients for the basis {Vk(z)}, and D0 is a constant
feedthrough term. Based on this rationale, a model of the dy-
namical system P(z) can be represented by an finite length N

series expansion

P(z, ) = D0 +
N−1

k=0

LkVk(z), = [D0,L
T
0 , · · · ,LT

N−1]. (4)

When Vk(z) are chosen as Vk(z) = z−(k+1), then (4) simplifies
to (2). Therefore, (4) will be called a generalized FIR filter in
this paper. Because for real-time implementation of the filter,
the feedthrough term D0 should be set to 0, in the remain part of
this paper, D0 will be neglected. The orthonormal basis sequence
{Vk(z)}k=0,1,2, · · · can incorporate the possible prior knowledge of
the system to be approximated, and the model P(z, ) can be
more accurate for a finite number of coefficients N compared
to a standard FIR model structure. It is obvious that the accuracy
of the model P(z, ) depends on the choice of the basis function
Vk(z).

A unifying construction of the orthonormal basis function

was presented in [2] and given by

Vk(z) =

(

√

1−| k|2
z− k

)

k−1

i=0

(

1− īz

z− i

)

(5)

where { i}i=0,1,2, · · · ,N−1 is the variety of the poles. A model struc-
ture using unifying construction is illustrated in Fig. 1. The ad-
vantage of using the unifying construction (5) lies in the possi-
bility to include knowledge of multiple possible pole locations
in the generalized FIR filter, while the orthonormality of basis
Vk(z) is still preserved. This property may lead to a more accu-
rate model P(z, ) of the system P(z) to be approximated.
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Figure 1. ILLUSTRATION OF MODEL STRUCTURE USING UNIFYING

CONSTRUCTION OF THE BASIS FUNCTIONS.

The set of (generalized) orthonormal basis functions pre-
sented in [1] provides an alternative way to construct an or-
thonormal basis with all-pass functions. For details on the con-
struction of the generalized basis functions Vk(z) one is referred
to [1]. The following result shows the existence and construction
of the inner function which is crucial to create the orthonormal
basis functions.

Proposition 1. Let (A,B) be the state matrix and input matrix

of an input balanced realization of a discrete time transfer func-

tion H ∈ R H
p×m
2 ( R H

p×m
2 indicates the set of real rational

p×m matrix functions ) with a McMillan degree n > 0, and with

rank(B) = m. Then

(a) There exist matrices C,D such that (A,B,C,D) is a minimal

balanced realization of a square inner function Pa.

(b) A realization (A,B,C,D) has the property mentioned in (a)
if and only if

C = BT (In +AT )−1(In +A)
D = [BT (In +AT )−1B− Im]

(6)
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where In is n× n identity matrix, and Im is m×m identity

matrix.

Proof. For the proof, one is referred to [10].

Proposition 1 yields a square m×m inner transfer function
Pa(z) = D+C(zI −A)−1B, where (A,B,C,D) is a minimal bal-
anced realization. With the information obtained in Proposi-
tion 1, the orthonormal basis functions can be created with fol-
lowing proposition.

Proposition 2. Let Pa(z) be a square inner function with

McMillan degree n > 0 and (A,B,C,D) is a minimal balanced

realization of Pa(z). Define the input to state transfer function

V0(z) := (zI−A)−1B and

Vk(z) = (zI−A)−1BPa(z)
k

= V0(z)Pa(z)
k (7)

then the set of functions {Vk(z)}k=0,1,2,... are orthonormal basis

functions which have the following property

1

2 j

∮

Vi(z)V
T
j (1/z)

dz

z
=

{

I i = j

0 i �= j
(8)

Proof. For the proof, one is referred to [10].

Proposition 1 and Proposition 2 show how to use an inner
function to construct the orthonormal basis function Vk(z). In
summary, if an orthonormal basis with poles at { i}i=0,1,2,··· ,N−1

is desired, then from Proposition 1 an inner function Pa(z) with
these poles can be created. As a result, a balanced realization
(A,B,C,D) of inner function Pa(z) can be found to form the or-
thonormal basis function Vk(z) as in (7). The construction of a
generalized FIR filter on the basis of the (generalized) orthonor-
mal basis function is shown in Fig. 2.
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Figure 2. ILLUSTRATION OF MODEL STRUCTURE BASED ON (GEN-

ERALIZED) ORTHONORMAL BASIS FUNCTIONS.

The difference between the generalized basis functions in (7)
and the unifying construction (5) is that in (7) the poles of P(z, )
are restricted to a finite set { 0, · · · , n−1}. Using unifying con-
struction (5), the poles of P(z, ) can be extended to infinite. The
reason the generalized basis functions can only incorporate finite
modes is that the order of the inner function Pa(z) in the orthonor-
mal basis functions is finite. A more general orthonormal basis
functions which can incorporate an infinite number of poles is
summarized in the following proposition.

Proposition 3. Consider a sequence of inner function Pai(z),
i = 0,1,2, · · · , where each Pai(z) has a corresponding balanced

realization (Ai,Bi,Ci,Di) and consider i(z) = (zI − Ai)
−1Bi.

Then the set of functions {Vi(z)}i=0,1,2,··· with

V0(z) = 0(z),
Vi(z) = i(z)Pa(i−1)(z) · · ·Pa1(z)Pa0(z)

(9)

is mutually orthonormal.

Proof. The proof is similar to the proof for Proposition 2.

Because the set of functions {Vi(z)}i=0,1,2,··· are mutually or-
thonormal, then Vi(z) can constitute a set of orthonormal basis
functions. The construction of orthonormal basis function de-
scribed in Proposition 3 is named (generalized) mutual orthonor-
mal basis functions. With Vi(z) in place, the model P(z, ) of a
dynamical system P(z) can be represented as

P(z, ) =
N−1

k=0

Lk k(z)Pa(k−1)(z) · · ·Pa1(z)Pa0(z)

=
N−1

k=0

LkVk(z).

(10)

If Pa(z) = Pa0(z)= Pa1(z)= · · ·= Pa(N−2)(z), then (9) can be sim-
plified to (7) and therefore the construction of the basis functions
in (9) is the generalization of the construction of basis functions
in (7).

ACTIVE NOISE CONTROL

The application of feedforward compensation in the area
of active noise control has received attention in recent years
[11–15]. The basic principle and idea behind ANC is to can-
cel sound by a controlled emission of a secondary opposite (out-
of-phase) sound signal [16, 17]. In most applications, a linearly
parametrized filter such as a finite impulse response (FIR) is used
for the recursive estimation and adaptation of noise cancellation
because of the linear parameter and linear phase shift properties.
However, for a complex system with broadband dynamics such
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as an airduct with several resonance modes, a sufficient high or-
der of FIR filter is needed to characterize the dynamics. As a
result, this would cause a slow convergence rate and increased
computational burden.

In this section we will discuss the design of an ANC algo-
rithm for an ACTA air ventilation silencer utilizing the theory of
orthonormal basis functions. Located in the System Identifica-
tion and Control Laboratory at UCSD, a commercial ACTA si-
lencer for sound control in air ventilation systems is used for the
case study. A photograph of the experiment is given in Fig. 3 and
a schematic representation of the experimental setup is depicted
in Fig. 4.

Figure 3. ACTA AIRDUCT SILENCER LOCATED IN THE SYSTEM

IDENTIFICATION AND CONTROL LABORATORY AT UCSD

ANC

y(t)

�
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�

�

� ��
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Figure 4. SCHEMATICS OF ACTIVE NOISE CONTROL SYSTEM IN

AN AIRDUCT

As indicated in Fig. 4, sound waves from an external noise
source are predominantly travelling from right to left (primary
path) and can be measured by the reference microphone at the in-
let and the error microphone at the outlet. The (amplified) signal
x(t) from the reference microphone is fed into an adaptive feed-
forward filter through a secondary path that controls the signal
y(t) to the control speaker for sound compensation. The signal
e(t) from the error microphone is used for evaluation of the effec-
tiveness of the ANC system. The objective of feedforward filter
is to minimize the measured sound noise by creating a secondary
path antinoise to cancel the primary path noise.

Analysis of Feedforward Compensation

In order to analyze the design of the feedforward compen-
sator F , consider the block diagram depicted in Fig. 5. Follow-

ing this block diagram, dynamical relationships between signals
in the ANC system are characterized by discrete time transfer
functions, with zx(t) = x(t +1) indicating a unit step time delay.
The spectrum of noise disturbance x(t) at the input microphone
is characterized by filtered white noise signal n(t) where W (z)
is a (unknown) stable and stable invertible noise filter [18]. The
dynamic relationship between the input x(t) and the error micro-
phone signals e(t) is characterized by primary path H(z) whereas
G(z) characterizes the relationship between control speaker sig-
nal y(t) and error microphone signal e(t). Finally, Gc(z) is used
to indicate the acoustic coupling from control speaker signal
back to the input microphone signal x(t) that creates a positive
feedback loop with the feedforward F(z).

W (z)
�

n(t)

H(z)Gc(z)

�

�
F(z)

G(z)

�

� � �e(t)

y(t)

v(t)
+

+

+

+

x(t)

Figure 5. BLOCK DIAGRAM OF ANC SYSTEM WITH FEEDFORWARD

For the analysis we assume in this section that all transfer
functions in Fig. 5 are stable and known. The error microphone
signal e(t) can be described by

e(t) = W (z)

[

H(z)+
G(z)F(z)

1−Gc(q)F(z)

]

n(t) (11)

and is bounded if the positive feedback connection of F(z) and
Gc(z) is stable. In case the transfer functions in Fig. 5 are known,
perfect feedforward noise cancellation can be obtained in case

F(z) = − H(z)

G(z)−H(z)Gc(z)

=
F̃(z)

1+ F̃(z)Gc(z)
, F̃(z) := −H(z)

G(z)

(12)

and can be implemented as a feedforward compensator in case
F(z) is a stable and causal transfer function. The expression in
(12) can be simplified for the situation where the effect of acous-
tic coupling Gc can be neglected. In that case, the feedforward
compensator F can be approximated by

F(z) ≈ F̃(z) = −H(z)

G(z)
(13)
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and for implementation purposes it would be required that F(z)
is a causal and stable filter.

In general, the filter F(z) in (12) or (13) is not a causal or
stable filter due to the dynamics of G(z) and H(z) that dictate the
solution of the feedforward compensator. Therefore, an optimal
approximation has to be made to find the best causal and stable
feedforward compensator.

Estimation of Feedforward Compensation

In case the mechanical and geometrical properties of the si-
lencer in Fig. 4 are fixed, the transfer functions H(z), G(z) and
Gc(z) are predetermined, but possibly unknown. It is important
to make a distinction between varying dynamics and fixed dy-
namics in the ANC system for estimation and adaptation pur-
poses. An off-line identification technique can be used to esti-
mate these transfer functions to determine the essential dynamics
of the feedforward controller. Subsequently, the spectral contents
of the sound disturbance characterized by the (unknown) stable
and stably invertible filter W (z) is the only varying component
for which adaptation of the feedforward control is required.

For the analysis of the direct estimation of the feedforward
compensator we assume that the acoustic coupling Gc can be
neglected to simplify the formulae. In that case, the error signal
e(t) is given by

e(t, ) = H(z)x(t)+F(z, )G(z)x(t)

and definition of the signals

y(t) := H(z)x(t), x f (t) := G(z)x(t) (14)

leads to

e(t, ) = y(t)+F(z, )x f (t)

for which the minimization

min
1

N

N

t=1

e(t, ) (15)

to compute the optimal feedforward filter F(z, ) is a standard
output error (OE) minimization problem in a prediction error
framework [18]. Using the fact that the input signal x(t) satis-
fies ‖x‖2 = |W (z)|2 , the minimization of (15) for limN→ can
be rewritten into the frequency domain expression

min
∫ −

|W (e j )|2|H(e j )+G(e j )F(e j , )|2d (16)

using Parseval’s theorem [18].
It should be noted that the signals in (14) are easily ob-

tained by performing a series of two experiments. The first ex-
periment is done without a feedforward compensator, making
e(t) = H(z)x(t) � y(t) and e(t) is the signal measured at error
microphone. The input signal x f (t) can be obtained by applying
the measured input microphone signal x(t) from this experiment
to the control speaker in a second experiment that is done without
a sound disturbance. In that situation e(t) = G(z)x(t) � x f (t).

Feedforward Design with Generaliz ed FIR Filter

To facilitate the use of the generalized FIR filter shown in
(4), the basis functionsVk(z) in (9) can be selected. A relative low
order model for the basis functions will suffice, as the generalized
FIR model will be expanded on the basis of Vk(z) to improve the
accuracy of the feedforward compensator.

With no feedforward compensator in place, the signal y(t) is
readily available via

y(t) := H(z)x(t) (17)

and an initial low order IIR model F̂(z) of the feedforward filter
F(z) can be estimated using the OE-minimization

F̂(z) = F(q, ˆ), ˆ = min
1

N

N

t=0

2(t, ) (18)

of the prediction error

(t, ) = y(t)+F(z, )x f (t)

where x f (t) is given as

x f (t) = Ĝx(t) (19)

The initial low order IIR model F̂(z) can be used to gener-
ate the basis functions Vk(z) of the generalized FIR filer of the
feedforward compensator F(z). An input balanced state space
realization of the low order model F̂(z) is used to construct the
basis function Vk(z) in (9).

With a known (initial) feedforward F(q, ˆ) and the basis
function Vk(z) in place, the signal y(t) can be generated via

y(t) : = H(z)x(t)

= e(t)+

[

N−1

k=0

LkVk(z)

]

x f (t)
(20)
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and requires measurement of the error microphone signal e(t),
and the filtered input signal x f (t) = Ĝ(z)x(t). Since the feedfor-
ward filter is based on the generalized FIR model, the input x f (t)
is also filtered by the tapped delay line of basis functions. A new
filtered input signal x̄k(t) can be defined as

x̄k(t) = Vk(z)Ĝ(z)x(t) (21)

With the signal y(t) in (20), x f (t) in (19), x̄k(t) in (21) and
the basis function Vk(z) in (9) from the initial low order model in
(18), (20) can be rewritten as a linear regression form

y(t) = T (t) , = [L0,L1, ...,LN−1]
T (22)

where T (t) = [ x̄T0 (t), ..., x̄TN−1(t)] is the available input data vec-
tor and is the parameter vector to be estimated of the gener-
alized FIR feedforward compensator. Therefore, the parameter
vector can be estimated with recursive least square (RLS) esti-
mation [19].

ACTIVE NOISE CONTROL PERFORMANCE

Modeling of ANC System Dynamics

In order to initializate and calibrate the feedforward con-
troller, an 18th order ARX model Ĝ(z) of G(z) was estimated
in order to be able to create the filtered input signal x f (t) in (19).
The filtered input signal x f (t) and the observed error microphone
signal y(t) sampled at 2.56kHz were used to estimate a low order
OE model F̂(z) to create the basis functions Vk(z) in (9) for the
generalized FIR filter parametrization of the feedforward con-
troller. During the estimation of the model F̂(z) also an estimate
of the expected time delay nk was performed and was found to
be nk = 16.

To limit the complexity of the orthonormal basis functions
for real-time filter implementation, it is assumed that only two
complex conjugate pole pairs of −H(z)/G(z) are available for
the construction of basis function Vk(z). In addition, the order
of the feedforward filter expressed in terms of its orthonormal
basis functions is limited to 20 for a fair comparison between the
usage of different basis functions for feedforward based active
noise control.

The 4th order IIR model Ff (z, ) used for all pass function
generation is shown in Fig. 6. From this figure it can be observed
that the 4th order model Ff (z, ) only approximately models two
resonance modes of the ideal, and possibly unstable, feedforward

filter −H(z)
G(z) .

In order to illustrate the effect of the orthonormal basis func-
tions on the performance of the feedforward filter for active
noise control, different orthonormal basis functions are chosen
for comparison in the next section.
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Figure 6. AMPLITUDE OF SPECTRAL ESTIMATE OF −H(z)
G(z) (SOLID)

AND 4TH ORDER PARAMETRIC MODEL Ff (z, ) (DOTTED)

Construction of Orthonormal Basis

With the model Ff (z, ) shown in Fig. 6, 2 complex con-
jugate pole pairs z1, z̄1 = 0.8045 ± 0.4751i, z2, z̄2 = 0.9225 ±
0.2358i are available for the construction of basis functions. Us-
ing this information, the performance of feedforward active noise
cancellation is compared for different sets of basis functions for
the feedforward filter.

The first set of basis functions considered here uses the
knowledge of the two complex conjugate pole pairs to create a
single all pass function

Pa(z) = |z1|2|z2|2
(z− z−1

1 )(z− z̄−1
1 )(z− z−1

2 )(z− z̄−1
2 )

(z− z1)(z− z̄1)(z− z2)(z− z̄2)
(23)

for the standard orthonormal FIR expansion Vk(z) as presented
in (7). Since Pa(z) is a simple 4th order all-pass function, from
Proposition 1 and Proposition 2, the parametrization of the first
orthonormal FIR expansion F5(z, ) is given by

F5(z, ) = z−d
5

k=1

Lk−1Vk−1(z), Vk−1(z) = 0(z)Pa(z)
k−1 (24)

where d = 16 to account for the observed time delays and

0(z) = (zI −A)−1B in which (A,B) are computed from an in-
put balanced state-space realization of Pa(z). Furthermore, n is
limited to n = 5 to ensure that F1(z, ) has a McMillan degree
less than or equal to 20 for a fair comparison between the usage
of different basis functions for feedforward based active noise
control.

The second set of basis functions Vk(z) used for comparison
is based on mutually orthonormal basis functions created with
the knowledge of two all-pass functions Pa1(z) and Pa2(z) that
separate the knowledge of the two complex conjugate pole pairs

6 Copyright c© 2005 by ASME



z1, z̄1 and z2, z̄2. The construction of Pa1(z) and Pa2(z) is sim-
ilar to Pa(z) in (23), but only one complex conjugate pole pair
z1, z̄1 or z2, z̄2 is included to create Pa1(z) and Pa2(z), respectively.
On the basis of the two all-pass functions Pa1(z) and Pa2(z), fol-
lowing the parametrization given in Proposition 3, the following
feedforward filter Fm(z, ) is considered:

Fm(z, ) = z−d
10

k=1

Lk−1Vk−1(z) where

Vk−1(z) =







1(z)Pa1(z)
k−1, k = 1, . . . ,m

2(z)Pa2(z)
k−m−1P1(z)

m, k = 1+m, . . . ,10

(25)

where d = 16 to account for the observed time delays and with

1(z) = (zI − A1)
−1B1 in which (A1,B1) are computed from

an input balanced state-space realization of Pa1(z) and 2(z) =
(zI−A2)

−1B2 in which (A2,B2) are computed from an input bal-
anced state-space realization of Pa2(z).

In the above parametrization, the basis functions Vk−1(z) are
built up from a linear combination of the all-pass functions Pa1(z)
and Pa2(z) such that Vk−1(z) are mutually orthonormal, see also
Proposition 3. The index m for Fm(z, ) determines how many
times the all-pass function Pa1(z) is taken into account in the
construction of the mutually orthonormal basis functions. E.g.
m = 0 will only use the all-pass function Pa2(z) whereas m = 10
will only use the all-pass function Pa1(z). If m is chosen as m = 5,
then Fm(z, ) in (25) is equivalent to F5(z, ) in (24).

Comparison of ANC Performance

The variance of the error microphone signal e(t) can be used
to characterize the performance of active noise control using
feedforward filters with different sets of basis functions. With
the experimental setup described in Section , the variance of
measured error microphone signal e(t) in the case of no active
noise control is found to be 0.6403. Application of a standard
20th order FIR feedforward filter (2) with 16 steps time delay in
which the parameters are found by a Least Squares optimization
reduces the variance of error microphone signal e(t) to 0.2421.
Modifying the FIR filter to the feedforward filter in (24), that uses
a single 4th order all-pass function Pa(z), reduces the variance of
e(t) to 0.0978 using the same Least Squares optimization. For
this particular application of feedforward based active noise con-
trol a 60% performance improvement is obtained compared to
the use of a standard FIR filter.

Different combinations m of basis functions in the mutual
orthonormal basis functions in (25) to construct Fm(z, ) will give
variations on the active noise control performance. Using again
a Least Squares optimization to compute the parameters Lk−1 in
(25), the variance of the error microphone signal e(t) for combi-
nations m of the all-pass functions Pa1(z) and Pa2(z) is shown in
Fig. 7 as a final comparison for this case study.

From Fig. 7, the following observations can be made.
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Figure 7. COMPARISON OF VARIANCE OF ERROR e(t) USING 20TH

ORDER ORTFIR FILTER Fm(z, ) WITH DIFFERENT COMBINATIONS

m OF MUTUAL ORTHONORMAL BASIS

Firstly, if only the 2nd order Pa1(z), m = 10 or Pa2(z), m = 0 all-
pass functions are used to create orthonormal basis functions, the
variance of e(t) is worse compared to choosing 4th order basis
function Pa(z) or any linear combination of Pa1(z) and Pa2(z) as
all-pass functions. Hence, higher order orthonormal basis func-
tions which include more poles of the dynamic system to be ap-
proximated is preferable to reach an improvement in model ap-
proximation and also active noise control performance.

Secondly, the smallest variance of error signal e(t) is ob-
tained when m = 4. This implies that the quality of the approxi-
mation of feedforward controller (or active noise control perfor-
mance) is not only related to the location of the poles of the basis
function, but is also determined by the number of coefficients
used for building the series expansion on the basis of a specific
basis function.

Finally, it is also observed that the variance of e(t) with or-
thonormal basis constructed by 4th order all pass function Pa(z)
is the same as that of two all pass functions Pa1(z) and Pa2(z)
being equally weighted (m = 5). This phenomena confirms that
Fm(z, ) in (25) is exactly equal to F1(z, ) in (24) if m = 5.

The performance of feedforward ANC using generalized
FIR filters with different construction of orthonormal basis func-
tions is confirmed by estimate of the spectral content of the mi-
crophone error signal e(t) plotted in Fig. 8. The spectral content
of the error microphone signal has been reduced significantly by
the generalized FIR feedforward compensator F̂ in the frequency
range from 30 till 400Hz.

CONCLUSIONS

The advantages of using generalized FIR filters in system
identification / adaptive filtering are twofold. First, the general-
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ized FIR filter has the same linear parameter structure as a FIR
filter that is favorable for recursive estimation and adaptation pur-
poses. Second, the generalized FIR filter can incorporate possi-
ble prior knowledge of the system dynamics in the tapped delay
line of the filter. This property can greatly reduce the number
of parameters to be estimated during adaption and the tuning of
the filter. In this paper different constructions of the orthonor-
mal basis functions are discussed and analyzed. A comparison
of these constructions in generalized FIR filter are made with
the application to the active noise control in an airduct. The re-
sults show that during the construction of the orthonormal basis
functions, a high order orthonormal basis functions with small
number of parameters are preferable comparing with the low or-
der orthonormal basis functions with relative larger number of
parameters.
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