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Time Domain Control Oriented Model Validation using Coprime
Factor Perturbations

Marianne Crowder and Raymond de Callafon

Abstract—This paper addresses the time domain model presented in [2]. The closed-loop frequency-response data
validation problem for uncertainty models that are structured using both noisy and noise-free conditions was presented in
using coprime factorizations. A model validation technique is [5] with the application to a flexible structure. The results

proposed in which measurement data is used to validate a £ 15] sh that . factorizati in th taint
derived uncertainty model. Newly proposed model validation of [5] show that coprime factorizations in the uncertainty

techniques are based on a fractional representation approach model depend on the knowledge of a stabilizing feedback
and addresses the problem of correlation between the input controller to facilitate the closed-loop (in)validation of the

and output signals inherent to closed-loop systems. The model yncertainty model. Time domain model validation results
validation problem for coprime factorizations is considered for a variety of uncertainty models was presented in [14]

for closed-loop time domain data in the cases of noise-free where it was shown that the solutions are given in terms of a
and noisy measurements where the results rely on a linear g

relationship between input and output data. convex matrix optimization. By following the results given
in [14], this paper develops alternative model invalidation
. INTRODUCTION results for uncertainty models characterized with coprime

Closed-loop model validation is a critical procedure tdactorizations.
establish whether or not a model can reliably predict the ll. PROBLEM EORMULATION
output of a system measured under feedback controlled o T
conditions. In previously developed model validation tech?- Motivation for Closed-loop Model Validation
niques [14], [4], models can be parametrized in a Linear Validating models for control design purposes inher-
Fractional Transformation (LFT) uncertainty set to accourgntly requires closed-loop model validation techniques and
for modeling uncertainties. In [14] and [3] it was shown thatlosed-loop data. Closed-loop model validation is often
model validation tests have a low level of computationgpreferred since open-loop model validation may invalidate a
complexity by formulating the model validation problem asmodel that might be well-suited for control design purposes.
a convex optimization. However, application of these time- With a simple example it is easy to illustrate the benefits
domain based techniques to data obtained under closed-lagfpa closed-loop model validation technique over that of an
conditions is challenging for model validation purposes duepen-loop technique. Suppose a real plant is an integrator

to the presence of correlate noise on closed-loop signals asigch thatP(s) = 1 and the model is described &%s) =

the implicit modeling uncertainty in the closed-loop transfenﬁ wheree > 0. Compl{ting theﬁadditive and multiplicative
function. uncertainty descriptiona, and A,,, respectively yields

In this paper a fractional representation approach is ~ o 508 €
presented to address the model invalidation problem for Rafs) = P(s) = P(s) = s(s+e) @
measurements obtained under feedback controlled condi- A

tions. This approach allows the formulation of a unified A (s) = Pls) — Pls) = )

method to estimate models for stable, marginally stable P(s) s

or unstable systems via the estimation of stable coprime With ¢ > 0 it is obvious that amo-norm for the additive

factorizations on the basis of closed-loop data. The wor&nd multiplicative uncertainties given in (1) and (2) will be

on fractional model identification was initiated by [9] andunbounded and not suitable for open-loop model validation

further developed in the work by [11] [7] and [13]. Thetechniques. To overcome this problem, a closed-loop ori-

fractional approach forms an excellent framework to addregsited uncertainty should be used to describe perturbations

the identification of systems on the basis of closed-loop datd a model for control design purposes.

[1] and control (_)rier_1ted model validgtion [8]. (P Use of Fractional Models

A model validation problem using open-loop base o )

frequency-response data in a coprime factor framework was For model validation purposes, the possmle set _of models

is denoted by an uncertainty sBtand is characterized by

This research is supported by NASA GSRP, NGT4-52429 a fractional approach. A fractional based uncertainty/3et
M. Crowder is with the Department of Mechanical and Aerospac ; F .
Engineerng. University of California. San Diego, CA 92003 Usa thiS paper is structured as follows:
mcrowder@ucsd.edu P={P|P= ND~ 1 with
R. de Callafon is with Faculty of Mechanical and Aerospace - ~ ~ ~
Engineering, University of California, San Diego, CA 92093, USA N:=N+DA, D=D-NA 3)
callafon@ucsd.edu andA :=VA}

2182



where A is defined as the (unknown but bounded) pertur- As an example, gonsigeff and C' to be stable transfer
bation functionswitharcf N =P, D =1, N.=C, D, = I. This
yields an uncertainty s&® where for each modeP € P
A ={A|A € RHo and|[Afloo <1} 4 it can be verified that
and wherg(N', D) and (N, D) respectively denote a right
coprime factorizationr¢f) of the nominal model” and
the controllerC' that is stabilizes the nominal modél.  5n4 illustrates thaiA is a perturbation on a closed-loop

The weighting function/” in (3) is used to normalize the {ansfer function. For an arbitrarcf (N, D) of P and
unknown but bounded perturbation. The models 7 are  (cf(n,, D,) of C it can be shown that

A= (I+PC)"YP-P) (8)

D. A =D Y1+ PC)~Y(P-P)D (9)

Ne

which illustrates that the coprime factor uncertainty is
a weighted closed-loop uncertainty, where the sensitivity
function (I + PC)~! plays an important role.

Reconsider the example described earlier where a Pl
controller C(s) = K, + K, is used for control a plant
P(s) = 1. With a nominal model” = -, the coprime
factor uncertainty description is given by

— = = P E

u + I

R +y oy
-1
¥ D

N7

€
2+ (Kp+e)s+K;

visualized in the block diagram of Figure 1. Note that thexg shown in(1) and (2), the additive and multiplicative
uncertainty model given ir3) is different from standard ncertainty become unbounded when 0. However,A..;
additive coprime factor perturbations as used in [2]. i, (10) is stable and bounded for the cdsg> —¢, K; > 0,

~ Inthe uncertainty model given if8), the perturbatiom\  \hich is the condition for stability of the feedback connec-
is used to model @ combined perturbation onttfgV, D) tion of £ andC. This simple example shows the clear merits
of the modelP” and thercf (N., D) of the controller plays of 5 coprime factor based uncertainty description over that
an important role in assigning the common perturbations igf an additive or multiplicative uncertainty description.

the rcf (N, D). Introducing a combined perturbatiah on

the rcf (V, D) of the modelP in the uncertainty modeP,  C. Closed-Loop Model Validation Problem

establishes a link with the Youla-Kucera parameterization For dealing with closed-loop data. consider a feedback
[1] that facilitates closed-loop model validation of the 9 P ’

. .__..__ .connection of a system, denoted I3, and a feedback
uncertainty model. The Youla-Kucera parameterization R ontrollerC, with o — P+ d. u — r — Cy. and wheral
applicable to all model® € P in (3), provided the nominal . ’ y=rtotirdu="r 9

model P and the controllerC’ form a stable feedback > & additive noise on the outpthThe S|gnak c_ienotes_an_
connection external reference signal that provides sufficient excitation

. . . . . of the closed-loop system and the signaldenotes an
An alternative presentation @ in (3) can be given in " . . .
terms of an LET additive colored noise that will be present on bot the input
and outputy signal. With this information, the input-output
P={P|P=F,Q,A), Aec A} (5) data{u,y} of the closed-loop controlled systeR), can be
described by

Fig. 1. Coprime factor based uncertainty mo@el Ay = (10)

where
Fu(Q,A) i= Qa2 + Qu Al — Q11A) Q12 (6) [ v ] = [ ];O ] (I+CP,) '+ [ _IC } (I+P,0)d

u
and whereA is defined in (4). The entries of the coefficient . oo (11)
matrix Q in (5) dictate the way in which the set of modelsWhere the additive noisé is assumed to be uncorrelated

P is being structured and are given by with the external reference signal
. a For closed-loop model validation purposes, the reference
Qu = VD N, Q2 = VD

) signalr is considered as an input signal. The sigimaind/or
Qy = D, +ND 'N, Quy = ND y can be considered as a measurable closed-loop output
) ] ) signal. When only the outpuj is considered for closed-
Although complicated at first glance, the uncertainty modqbop model purposes, the mahfrom the reference signal

P can be simplified if either the modét or the controller r to the outputy for all modelsP € P in (3) can be written
C is stable. In that case, the uncertainty Batlustrates the 55 another LFT:

closed-loop oriented character of the allowable perturbation
A. S={S|S=F.MA),AcA} (12)
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with M given by This equation shows that the inputs and outputs uniquely
o - ~ Sy determine the firsta Markov parameters of the transfer
%ﬂ - OD %12 - g(f +CC]§L (13) function A(z). The existence of such A, that is stable
27 He (r+Cp) and satisfieg A || < oo, is the classical Caragilory-Fegr
and whereA is defined in (4). The entries a¥/ in (12) interpolation problem [15].
are all known quantities and determined by the coprime |t can be observed from Figure 1 thatand w are the
factor uncertainty seP in (3). It can be verified that all input-output signals of the coprime factor uncertairty
entries of M/ are stableif and only if the controllerC"  For model validation, the problem is considered where a
internally stabilize the nominal moddP, as required by portion of this input-output data is used to determine the
the construction of the uncertainty modelin (3). minimum norm causal operatdx that could have produced
With the LFT F,(M,A) given in (12) and (13) it the portion of data. In case the input-output signaind
is easy to see the benefits of the coprime factor based are available, the model validation problem could be
uncertainty modeP in (3) for closed-loop model validation symmarized as follows.
purposes. The closed-loop map framto y is simplified  proplem 1: Model Validation Problem
as Fu(M,A) = Myy + M AM,; where the uncertainty Given the signalsy = (v, v, ,v, € R™) andw =
A now appears linearly. The affine representation of thg, ., ... w, € RP) shown in Figure 1, the uncertainty
coprime factor perturbatiomA in the closed-loop map model given in (3) is not invalidated by the data w) if

Fu(M,A) can be exploited to formulate a time domainthere exist a stable causal operatomith || Al < 1 such
model validation techniques that rely on linearity of thgngat

uncertainty in the input-output map.

(wlalw%"' a(wn):A(vlerQv"' 7vn)' (18)

II1. NOTATION AND MAIN RESULTS Note that the inputsy; and outputsw; are allowed to
Following the results given in [15], notation regardingb€ vectors. Problem 1 determines whether there exists an

discrete time domain model validation techniques are no@pPeratorA such that the output of\ for the period of

described. These results are used to establish the framewérk (1,2,---,n) is exactlyw = (w1, ws, -+ ,w,) when
for the closed-loop model validation discussed in this papelfie input of A is v = (v1,v2,- -+ ,v,). If there does exist
For a sequence of vectots= (ki, ks, - ,k, € R™), such aA, then the uncertainty model is not invalidated. In
let 7, € R™*" denote the associated Toep"tz matrixlight of the problem formulation given in Problem 1, two
defined as key items need to be addressed in order to solve the model
ky 0 .- 0 invalidation problem. First, it remains to determine how to
_ access the signatsandw as measurements afandy are
T, = ko kp -0 . (14) the only signals available from the closed-loop experiments.
0 Second, once the signalsandw have been established, a

k: k 1: ey method must be developed to check the existence Af a

] ~with ||Al|» < 1 and is found from the Extension theorem
Further, let5™ denote the set of one-sided sequences witf [14].
elements inR™ and define then-step filter operatorr,, : Theorem 1:Extension Theorem [14]
S™ — S™ such that Given input sequences = (o1,02, -+ ,0, € R™) with
(- koy by, k) — (0,-+-,0,k1,--- ,ky). (15) © = myv and output sequences = (wy,Wa, -, Wy €

o i . RP) with w = Av. ThenA is a stable, causal, linear, time-
Let A be a stable, casual, time-invariant system with, .- operator with| A« < 1 if and only if

transfer matrix
il TITy <TIT, (19)
A(z) =hy+hyz ' hgz - = hez' ™" (16) v !
£=1 where T; and T,; are the associated Toeplitz matrices
whereh;, i = 1,2,--- are the matrix Markov parametersformed fromv andw, respectively.

of the the transfer functiom\(z). Suppose the input se- Proof: See [14] [ |
quencea = (ai,as,...,a,) iS applied to a system and Corollary 1: Given the sequencesandw, (19) is equiv-
the outputb = (b1, be,...,b,) is collected for the period alent to
rlated by a Toepitz matix such that th folowing holds: ool Ty) 4 ) < 1 20
y P 9 * Proof: With o, # 0, the matrix 7, has full
by ha 0O -+ 0 ay column rank. It follows that77; > 0 which also
by , W o s implies (TXT;)~'/2 > 0. Pre-multiplying and post-
=" ! . |- @7) multiplying T T, — TX Ty > 0 by (TXT;)~'/2 results in
- : .0 1 (TTTy) V(T Ty — TE Ty ) (TI T)~1/2 > 0. Substituting
bn hy hp_1 -+ hy n G = Ty(TIT;)~1/? reduces the result to — GG > 0.
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Since \(GTG) = o(G?), it follows that1 > &(G) which  following LMI:

is equivalent tol > & (T (TX T;)~1/?). ] mina < 1 such that
The results in Theorem 1 and Corollary 1 provide tools - -

to check the existence of with ||A]l. < 1. However, { al Y } >0
the results only hold when the initial input signal is set to yoor |-

zero. When model validation must be done in real-time o§ypstitutingy” = 7, — T (TTT,)=1/2 and minimizing over
the basis of short batches of data sequences, the effect;qf matrix7, establlshes the result. -

initial conditions must be taken into account. The effect ofhe result given in Theorem 2 extends the results shown
initial conditions on the output signab can be expressed iy [14] to the more general model validation case when the

as - initial conditions are not zero. What remains to be done is
p= Zpkv(t — k) (21) the_ computation ob andfzf; from closed—lqop datdu, y},
which will be addressed in the next section.
where p is based on previous input measurementg-or IV. CLOSED-LOOP MODEL VALIDATION
the general case of determining the minimum norm casual RESULTS
operatorA that could have produced a set of data at an Consider the input signal = (u1,us, -+ ,u,; u; € R™)
arbitrary time after the beginning of the data measuremenggplied to the physical systefy, where the output meas-
for the model validation, the following result can be usedurement signayy = (y1,%2, - ,yn; yi € RP?) is observed.
Theorem 2:Given the input measurementss = Using the signals(u,y) available from the closed-loop
(v1,v2,-+-,v, € R™) and the output measurements=  experiments it is possible to describe the auxiliary signals
(w1, ws, -+ ,w, € RP). There exists a stable, causal,(v,w) as filtered versions of the signdls, y). Without loss
linear, time-invariant operatoA with ||Allc < 1 and a of generality, it is assumed that the input-output experiment
p defined in (21) such that is conducted immediately such that # 0. Following the
results shown in [6], consider the following.
w—p= Ay (22) Lemma 1:Consider the uncertainty model given in (3)

if and only if there exists) = (p1, p pn € RP) with where the auxiliary signals andw are described by
— 1, P2, s Pn

51(T0 — T,)(TIT,) V2 < 1 (23) v=vibsewie | L] e
whereT,, T,,, andT, are formed from the Toeplitz matrices and R A
of w, v and p. w=(D.+ PN:)"'[I —P] { Y } (25)
Proof: Substitutingw = w — p andv = m,v into the _ v _

proof of Theorem 1 establishes the result. m then the closed-loop map in (11) can be rewritten as
The convex problem shown in Theorem 2 is possible w=Av+§ (26)
because the sequenee is a linear combination of two _ o
signals such thaiy = w + p. where the signad is given by

As described earlier, the signal is the response due to § =D (I + PyC)'d 27)

an input signab with v(t) = 0 V ¢ < 1 andp captures the

mismatch due to initial conditions. To determine the effecgnd wherev is uncorrelated withi.

of initial conditions, the result given in Theorem 2 requires ~ Proof: See [6]. ]

the additional monitoring of past input samples of the signaihe signals(v,w) can be considered as an input and a

v. However, the effect of the initial conditions reflected in(Possibly) disturbed output signal of the uncertainty

p can be solved by a standard convex optimization. where the input is uncorrelated with the disturbance acting
Corollary 2: Given the Toeplitz matriced’,, T,,, and ©n the signakv [6]. It can be noted that is not perturbed

unknown initial condition Toeplitz matrixZ,, the model by the additive noise present in the closed-loop data. This

validation test given in (23) can be written as the followingS due to the fact that

linear matrix inequality (LMI): c 1 { y ] . (28)
min «, such thatoe <1 and ) )
P Trr \—1/2\T and thusv is a function ofr only. On the other hand, the
O‘IT 12 (T =T,(T, To) ) >0 signalw is perturbed by the additive noigkas indicated in
Tw—=Ty(Ty Ty) I (26) where the noise ow is characterized by the filtered

Proof: The equation given in (23) can be rewritten asoised in (27). For model validation purpose it is assumed
7(Y) < al wherea <1 andY = (T, — T,)(T.'T,)~'/2.  that knowledge of a bound with |5(¢)| <~ V ¢ is known.
The inequalitya(Y) < al < 0 < of — YYT. Using the By conducting an experiment on the closed-loop system,
schur complement ofil — Y'Y reduces the result to the it is possible to characterize as a bound on the noise
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disturbance. When no reference signal is applied to tr@ubstitutingy” = (7,,~7,~7,)(T.' T,,)~*/? and minimizing
closed-loop system and the output signal is measured, theer the matriced,, T, establishes the result. |
quantity (1 + P,C)~'d is observed. Further, by filtering The convex optimization results for the closed-loop
this observed signal witlD !, the signald in (27) can be model validation problem given in Lemma 2 are obtained
determined. For the general case of noisy measuremendsie the fact that the coprime factor uncertaidtyis affine

consider the following result. in the closed-loop input-output maf, ). Note that the
Lemma 2:Consider the uncertainty model given in (3),A is not affine in the open-loop input-output mé&p, y),
the signalsv and w defined in (24) and (25) withw = but becomes affine when the controll€t is applied to
(w1, wa, - ,wp; w; € RP), v = (vy,vg,---,v,; v; € the coprime factor uncertainty modél in (3). Once the
R™), the effect of initial conditions described in (21), andcontroller is applied to the system, the same input output
an upper bound for the filtered noise= D, with data (u,y) can be used to perform model validation in
closed-loop.
D, = {§(t) | [6(t)| <~ ¥ t}. (29
) ) , . . V. ILLUSTRATION OF MODEL VALIDATION
Thep the_ coprime factor uncertainty model given in 3) is TECHNIQUES
not invalidated by the closed-loop data, y) if and only
if the following convex problem is solvable: As described earlier, closed-loop model validation tech-
niques are required to validate models used for control
Does there exist = (q1,q2, - ,qn € ™D, ¢; € RP) design purposes. The fractional approach discussed in this
and ap = (p1, p2, - , pn € RP) defined in (21) such that Paper provides a method to deal with closed-loop exper-
iments and takes into account the closed-loop data and
G[(Tw — T, — T,)TIT,) "2 <1 (30) the closed-loop model. To further illustrate the coprime

factor model validation techniques presented in this paper,

where T, Ty, Ty, and T, are formed from the Toeplitz ., qiger again the example described in Section II-A where
matrices ofw, v, ¢ and p. P=1p— 1 andC=K, K1
Proof: It can be observed that the uncertainty model s ste’ § N

in (3) is not invalidated if and only f there existsme A il;s'”gs:;;)?;v'teod%ig;itgg fﬁgtg'fmae”?atchtirmuondcee":té -
with ||Alls < 1 such that P P y

A,y as developed in (10). For comparison to the open-loop
w—q—p=Ampv uncertainty descriptions computed in (2) and (1), Figure 2
shows the uncertainty description for the coprime factor,
for someq € 7, D, and some € RP. Invoking Theorem 1 muiltiplicative, and additive uncertainty descriptions. As
establishes the result. ]

Similar to the noise-free case shown in Corollary 2, the 5
convex optimization in (30) can be written as an LMI
problem. The result has been summarized in the following.

Corollary 3: Given the Toeplitz matrice§’,, T,,, un-
known initial condition Toeplitz matrixZ},, and unknown
disturbance Toeplitz matri€;,, the model validation test
given in (30) can be written as the following linear matrix
inequality (LMI): 107}

H
O‘

Amplitude

minr, T,c, such thatx <1 and

ol YT
Y I

:| > 0 1073 -2 ‘—1 ‘0 ) 1
— 10 10 10
Frequency [Hz]
whereY = (T _T T )(TTT )71/2 Fig. 2. Bounded coprime factor descriptidx.; (solid) and normalizing
w a pIATYO V) L over boundV (dotted)
Proof: The equation given in (30) can be
rewritten as (YY) < «af where « < 1 and
Y = (T, - T, — T,)(T'T,)~'/2. The inequality
7Y) < al & 0 < ol — YYT. Using the schur
complement ofal — YY7T reduces the result to the
following LMI:

seen in Figure 2, the coprime factor uncertainty descrip-
tion A,y is the only bounded uncertainty description for
the closed-loop system. Since the open-loop uncertainty
descriptionsA,, and A, are unbounded on the domain,
only the closed-loop uncertainty description is suitable for
closed-loop model validation.

For illustration purposes, we consider a white noise unit
>0 variance reference signal When the reference signalis
= applied to the closed-loop systeif, C), the measurements

minimize o < 1 such that

ol YT
Y I
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of the closed-loop input/output signdls, ) depicted in are VI. CONCLUSIONS

available for model validation purposes. With the signals |, this paper, the model validation problem of a fractional

(u,y) and the uncertainty descriptiah.; overbounded by representation has been studied with application to time

the weighting functiori” it remains to establish the filtered gomain data. It has been found that the LFT approach

signalsw andw. . greatly facilitates manipulation and computation of linear
Since both the closed-loop modeland the controlle€’  systems and that the use of closed-loop data in using LFT's

are stable transfer function§l?, C') can be described by a gjiow the formulation of affine closed-loop expressions for

trivial choice of thercf: N = P, D =1, No =C, D. = 1.  closed-loop model validation.

Using thisrcf, the auxiliary signals) andw described by The model validation problem presented in this paper

(24) and (25) can be obtained via filtering of the measuregetermines whether the uncertainty model is capable of

closed-loop input/output signals., y). reproducing data. Although prior knowledge of the system
Following the procedure outlined in this paper, théehavior and knowing how the model relates to observed
Toeplitz matricesl’; and T} are constructed for data are important modeling considerations, as pertinent

a factor in model validation is the appropriateness of the
uncertainty model. As presented in this paper, uncertainty

whereN = 200 andn = 1,2,...,300 indicates the starting modeling using coprime factorizations allows one to per-
index of the data for moel validation purposes. Applying théorm time domain model validation techniques that reduce
model validation result of Corollary 1 to the matricés t0 a convex feasibility problem. The convex feasibility

and T} will show that the coprime factor based uncertaintproblems rely on the model information and the observed
model is not invalidated by the closed-loop input/outpuglosed-loop data
data(u, y), provideds (T (T T5)~'/?) < 1. As mentioned

in Section lll, the effect of initial conditions must be ) S ,
considered when performing model validation on a set of! B Atceror, [F19% voula kucera o éiéngg_t'fgc’);‘dl%‘gg’_e and
data obtained at a time later then the start of the experimengz) . Boulet and B. Francis, “Consistency of open-loop experimental
The results shown in Figure 3 show the model validation frequency-response data with coprime factor for plant modit&£E

results using data after the start of the experiment. As seey, 1ransactions on Automatic Contygp. 1680-1691, 1998.
’ B] J. Chen, “Frequency-domain tests for validation of linear fractional
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pp. 748-760, 1997.
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