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Abstract: A feedforward control algorithm for active noisecontrol based on the recursive
estimation of a generalized finite impulse response (FIR) filter is presented in this paper.
Recursive least square estimation (RLSE) with variable forgetting factors is applied to
a commercial air ventilation silencer to provide the onlineestimation of the generalized
finite impulse response (FIR) filter to obtain active noise compensation in an airduct. The
advantage of the generalized FIR filters lies in the possibility to include prior knowledge
of system dynamics in the tapped delay line of the filter. It isshown that a significant
improvement in noise cancellation is obtained with the implementation of generalized
FIR filter for feedforward ANC.
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1. INTRODUCTION

In applications where external sound disturbances in-
terfere with the environment, passive or active atten-
uation can be used to control sound emission. Pas-
sive noise control is effective at reducing high fre-
quency sound components but requires large amounts
of absorption material to reduce low frequent noise
signals (Gentryet al., 1997; Bernhard, 2000). Active
noise control (ANC) can be used for sound reduction
and can be particularly effective at lower frequency
sound components. ANC allows for much smaller
design constraints to achieve sound and noise sup-
pression and has received attention in recent years
in many active noise cancellation applications (Fuller
and Von Flotow, 1995; Berkman and E.K., 1997; Ca-
bell and Fuller, 1999; Meurers and Veres, 1999; Es-
mailzadehet al., 2002). The basic principle and idea
behind ANC is to cancel sound by a controlled emis-
sion of a secondary opposite (out-of-phase) sound sig-
nal (Denenberg, 1992; Wanget al., 1997).

In the situation of measurable sound disturbances with
ignorable acoustic coupling, feedforward compensa-
tion provides an effective resource to create a con-
trolled emission for sound attenuation. Algorithms
based on recursive (filtered) Least Mean Squares
(LMS) minimization (Haykin, 2001) can be quite ef-
fective for the estimation and adaptation of feedfor-
ward based sound cancellation (Carteset al., 2002).
To facilitate an output-error based optimization of the
feedforward compensation, a linearly parametrized fi-
nite impulse response (FIR) filter has been used for the
recursive estimation and adaptation.

In this paper we adopt the framework of output-error
based optimization of a linearly parametrized filters
for feedforward sound compensation. However, the
feedforward control algorithm presented here is based
on the recursive least square (RLS) estimation of a
generalized finite impulse response filter (Zeng and
de Callafon, 2003). Generalized or orthogonal FIR
models have been proposed in (Heubergeret al., 1995)
and exhibit the same linear parametrization as a stan-
dard FIR filter. Combined with a RLS estimation with
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variable forgetting factors (Landau, 1990), adaptive
infinite impulse response (IIR) filter estimation can
be obtained for feedforward sound compensation. The
adaptive IIR filter requires less parameters to be esti-
mated and provides a better approximation of the filter
needed for feedforward compensation.

2. ACTIVE NOISE CONTROL

2.1 Analysis of feedforward compensation

In order to analyze the design of the feedforward com-
pensatorF , consider the schematic representation of a
linear duct depicted in Figure 1. Sound waves from
an external noise source are predominantly traveling
from right to left and can be measured by a pick-up
microphone at the inlet and an error microphone at the
outlet.
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Fig. 1. Schematics of ANC system

The (amplified) signalu(t) from the input microphone
is fed into a feedforward compensatorF that controls
the signaluc(t) to the internal speaker for sound
compensation.
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Fig. 2. Block diagram of ANC system with feedfor-
ward compensation

The block diagram corresponding to Figure 1 is given
in Figure 2. Following this block diagram, the dynam-
ical relationship between the discrete time sampled
signals in the ANC system are characterized by differ-
ence equations, where the operatorq is used to denote
a unit sample delayqu(t) = u(t + 1). The measured
sound disturbanceu(t) measured at the input micro-
phone is characterized by

u(t) = W (q)n(t)

wheren(t) is a zero-mean filtered white noise signal
with varianceE{n(t)2} = λ and W (q) is a (un-
known) stable and stably invertible noise filter.

The error microphone signale(t) can be described by

e(t) = W (q) [H(q) + G(q)F (q)] n(t) (1)

whereH(q) is a stable filter in the ‘primary path’ and
G(q) is a stable filter in the ‘secondary path’ of the
ANC system. BothH(q) and G(q) characterize the
discrete time dynamic aspects of the sound propaga-
tion through the ANC system to the errore(t) mi-
crophone signal. In case the transfer functions in (1)
are known, an ideal feedforward compensatorF (q) =
Fi(q) can be obtained in case

Fi(q) = −
H(q)

G(q)
(2)

is a stable and causal transfer function. The solu-
tion of Fi(q) in (2) assumes full knowledge ofG(q)
and H(q). Moreover, the filterFi(q) may not be a
causal or stable filter due to the dynamics ofG(q)
andH(q) that dictate the solution of the feedforward
compensatorFi(q). An approximation of the feedfor-
ward filterFi(q) can be made by an output-error based
optimization that aims at finding the best causal and
stable approximationF (q) of the ideal feedforward
compensator inFi(q) in (2).

2.2 Estimation of feedforward compensation

A direct adaptation of the feedforward compen-
sator F (q, θ) can be performed by considering the
parametrized error signale(t, θ)

e(t, θ) = H(q)u(t) + F (q, θ)G(q)u(t). (3)

Definition of the signals

y(t) := H(q)u(t), uf (t) := −G(q)u(t) (4)

reduces (3) to

e(t, θ) = y(t) − F (q, θ)uf (t) (5)

for which the minimization

min
θ

1

N

N
∑

t=1

e2(t, θ) (6)

to compute the optimal feedforward filterF (q, θ) is a
standard output-error (OE) minimization problem in a
prediction error framework (Ljung, 1999).

Using the fact that the variance of the inlet micro-
phone signalu(t) satisfies‖u‖2 = |W (q)|2λ, the
minimization of (6) forlimN→∞ can be rewritten into
the frequency domain expression

min
θ

∫

−π

π

|W (ejω)|2|H(ejω) + G(ejω)F (ejω, θ)|2

(7)
using Parceval’s theorem (Ljung, 1999). It can be ob-
served that the standard output-error (OE) minimiza-
tion problem in (6) can be used to compute the optimal
feedforward filterF (q, θ), providedy(t) anduf (t) in
(4) are available.
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The signals in (4) are easily obtained by performing
a series of experiments. The first experiment is done
with F (q, θ) = 0, so that the error microphone signal
e1(t) satisfies

e1(t) = H(q)u(t)

and obviouslyy(t) in (4) is found byy(t) = e1(t).
Subsequently, the input signaluf (t) can be obtained
by pass the measured input microphone signalu(t)
from the first experiment through an estimated model
Ĝ(q) of G(q). BecauseG(q) is fixed once the mechan-
ical and geometrical properties of the ANC system in
Figure 1 are fixed, an initial off-line estimation can
be used to estimate a model forG(q) to construct the
filtered input signaluf (t).

Estimation of a model̂G(q) can be done with the stan-
dard open-loop identification technique by performing
an experiment using the control speaker signaluc(t)
as excitation signal and the error microphone signal
e(t) as output signal. SincêG(q) is used for filtering
purposes only, a high order model can be estimated to
provide an accurate reconstruction of the filtered input
signal via

ûf (t) := Ĝ(q)u(t) (8)

that can be used in the adaptive and recursive opti-
mization of the feedforward filterF (q, θ) in (5).

3. GENERALIZED FIR FILTER

In general, the OE minimization of (6) is a non-linear
optimization but reduces to a convex optimization
problem in caseF (q, θ) is parametrized linearly in
the parameterθ. Linearity in the parameterθ is also
favorable for on-line recursive estimation of the filter,
as converge to optimal and unbiased feedforward com-
pensators is obtained irrespective of the coloring of the
noise on the data (Ljung, 1999). A linear parametriza-
tion of F (q, θ) can be obtained by using a FIR filter

F (q, θ) =

N
∑

k=0

θkq−k (9)

but many parametersθk are required to approximate
an optimal feedforward controller for a complex ANC
with many lightly damped resonance modes. To im-
prove these aspects, generalized FIR filters can be
used.

To improve the approximation properties of the feed-
forward compensator in ANC, the linear combination
of tapped delay functionsq−1 in the FIR filter of (9)
are generalized to

F (q, θ) = D0 +

N
∑

k=0

θkVk(q)

whereD0 is a direct feedtrough term andVk(q) are
generalized (orthonormal) basis functions (Heuberger
et al., 1995) that contain knowledge of the dynamics
of the optimal feedforward controller for the ANC

system. The basis functions are a generalization of
Vk(q) = q−k used in a FIR filter and guarantee the
causality and stability of the feedforward compen-
sator for implementation purposes. For details on the
construction of the functionsVk(q) one is referred
to (Heubergeret al., 1995). A short overview of the
properties is given here.

Let (A,B) be the state matrix and input matrix of
an input balanced realization with a McMillan degree
n > 0, and withrank(B) = m. Then matrices(C,D)
can be constructed according to

C = UB∗(In + A∗)−1(In + A)

D = U [B∗(In + A∗)−1B − Im]

whereU ∈ R
m×m is any unitary matrix. This yields a

squarem × m inner transfer functionP (q) = D +
C(qI − A)−1B, where (A,B,C,D) is a minimal
balanced realization.(·)∗ indicates complex conjugate
transpose of a matrix.

As P (q) is a analytic outside and on the unit circle, it
has a Laurent series expansion

P (q) =

∞
∑

k=0

Pkq−k

which yields a set of orthonormal functionsPk

(Heubergeret al., 1995). Orthonormality of the setPk

can be seen byz-transformation ofPk :

1

2π

∫ π

−π

Pi(ejω)PT
k (e−jω)dω =

{

I i = k

0 i 6= k

DefineV0(q) := (qI − A)−1B and

Vk(q) = (qI − A)−1BP k(q) = V0(q)P
k(q) (10)

then a generalized FIR filter can be constructed that
consists of a linear combination of the basis functions
D0 +

∑N

k=0 θkVk(q). This yields a generalized FIR
filter that can be augmented with standard delay func-
tions

F (q) = q−nk

[

D0 +

N
∑

k=0

θkV0(q)P
k(q)

]

(11)

to incorporate a delay time ofnk time steps in the
feedforward compensator. A block diagram of the
generalized FIR filterF (q) in (11) is depicted in
Figure 3 and it can be seen that it exhibits the same
tapped delay line structure found in a conventional
FIR filter, with the difference of more general basis
functionsVk(q).

An important property and advantage of the gener-
alized FIR filter is that knowledge of the (desired)
dynamical behavior can be incorporated in the basis
functionVk(q). If a more elaborate choice for the basis
function Vk(q) is incorporated, then (11) can exhibit
better approximation properties for a much smaller
number of parametersN than used in a conventional
FIR filter. Consequently, the accuracy of the optimal
feedforward controller will substantially increase. In
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Fig. 3. Basic structure of generalized FIR filter

the next section we will elaborate on the choice of the
basis functionVk(q) and the use of the generalized
FIR filter in the role of ANC based on feedforward
compensation.

4. ESTIMATION OF GENERALIZED FIR FILTER

4.1 Construction of basis functions

To facilitate the use of the generalized FIR filter, the
basis functionVk(q) in (10) have to be selected. A low
order model for the basis functions will suffice, as the
generalized FIR model will be expanded on the basis
of Vk(q) to improve the accuracy of the feedforward
compensator. With no feedforward compensator in
place, the signaly(t) is readily available via

y(t) := H(q)u(t) (12)

and an initial low order IIR model̂F (q) of the feed-
forward filterF (q) can be estimated with the signals
available from (8) and (12) using the OE-minimization

F̂ (q) = F (q, θ̂), θ̂ = min
θ

1

N

N
∑

t=0

ε2(t, θ) (13)

of the prediction error

e(t, θ) = y(t) − F (q, θ)ûf (t)

where ûf (t) is given in (8). The initial low order
IIR model F̂ (q) can be used to generate the basis
functions Vk(q) of the generalized FIR filer of the
feedforward compensatorF (q). An input balanced
state space realization of the low order modelF̂ (q)
is used to construct the basis functionVk(q) in (10).

With a known (initial) feedforwardF (q, θ̂) in place,
the signaly(t) can be generated via

y(t) := H(q)u(t) = e(t) + F (q, θ̂)uf (t) (14)

and requires measurement of the error microphone
signal e(t), and the filtered input signaluf (t) =
G(q)u(t) that can be simulated by (8). Since the
feedforward filter is based on the generalized FIR
model, the input̂uf (t) is also filtered by the tapped
delay line of basis functions. A new filtered input
signalūk(t) can be defined as

ūk(t) = Vk(q)Ĝ(q)u(t) (15)

With the signaly(t) in (14), ûf (t) in (8), ūk(t) in (15)
and the basis functionVk(q) in (10) from the initial

low order model in (13), the system dynamics can be
rewritten as a linear regression form

y(t) = φT (t)θ, θ = [θ1, ..., θn]T (16)

whereφT (t) = [ūT
1 (t), ..., ūT

n (t)] is the available in-
put data vector andθ is the parameter vector to be
estimated of the generalized FIR feedforward com-
pensator.

4.2 Recursive estimation

The objective is to identify (estimate) the values of
the parametersθ in (16) such that the feedforward
controller minimizes the error signale(t). The pa-
rametersθ can be identified with the available input-
output data up to timet by a standard recursive least
square (RLS) algorithm (Haykin, 2001). It is known
that RLS algorithm at steady-state operation exhibits
a windup problem if the forgetting factor remains con-
stant, which will deteriorate the estimation results. As
a result, a variable forgetting factor (Landau, 1990) be
employed to prevent this problem from occurring. The
parametersϑ can be estimated by RLS algorithm with
variable forgetting factor through two steps in each
sample time:

(1) Compute the gain vectork(t) and the parameters
θ̂(t) at the current sample time

k(t) =
P (t − 1)φ(t)

λ1(t) + φT (t)P (t − 1)φ(t)
(17)

ξ(t) = y(t) − θ̂T (t − 1)φ(t) (18)

θ̂(t) = θ̂(t − 1) + k(t)ξ∗(t) (19)

(2) Update the inverse correlation matrixP (t) and
the forgetting factorλ1(t)

P (t) = λ1(t)
−1P (t − 1)−

λ1(t)
−1k(t)φT (t)P (t − 1)

(20)

λ1(t) = λ0λ1(t−1)+1−λ0; 0 < λ0 < 1 (21)

where the typical values can be:λ1(0) = 0.95 ∼
0.99; λ0 = 0.95 ∼ 0.99.

Relationship (21) leads to a forgetting factor that
asymptotically tends towards 1. The recursive least
square minimization will be

J(t) =

t
∑

i=1

λ1(i)
t−i[y(i) − θ̂(t)T φ(i)]2 (22)

The algorithm is initialized by setting

θ̂(0) = 0, P (0) = δ−1I

a typical value forδ choose in this paper isδ = 0.001.

From (17), we can see that even though the input data
vector φ(t) is zero at some timet, the gain vector
k(t) does not increase becauseλ1 6= 0. A zero or
small input data vectorφ(t) can occur when the sound
disturbanceu(t), measured by the inlet microphone
in Figure 1, is small. In that event, the recursive esti-
mation routine will be robust in the presence of lack
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of excitation from the sound disturbance. As a result,
θ̂(t) = θ̂(t− 1), and the parametersθ(t) of the gener-
alized FIR filter at the current sample timet remain
constant when only a small or no inlet disturbance
signalu(t) is being measured. An additional advan-
tage of the usage of a variable forgetting factorλ1(t)
computed by (21) is a rapid decrease of the inverse
correlation matrix. In general this results in an accel-
erating convergence by maintaining a high adaptation
at the beginning of the estimation when the parameters
θ are still far from the optimal value.

5. IMPLEMENTATION OF FEEDFORWARD ANC

5.1 Modelling of the system dynamics

For the experimental verification of the proposed feed-
forward noise cancellation, the ACTA silencer de-
picted in Figure 4 was used. The system is an open-
ended airduct located at the System Identification and
Control Laboratory at UCSD that will be used as a
case study for the ANC algorithm presented in this pa-
per. Experimental data and real time digital control is
implemented at a sampling frequency of 2.56kHz and
experimental data of the error and input microphone
were gathered for the initialization of the feedforward
controller.

Fig. 4. ACTA airduct silencer located in the System
Identification and Control Laboratory at UCSD

In order to create the filtered input digitalûf (t) in
(8) andū(t) in (15), a 21th order ARX model̂G(q)
which can pick most main resonance modes ofG(q)
was estimated for filtering purposes.

The filtered input signal̂uf (t) and the observed error
microphone signaly(t) sampled at 2.56kHz were used
to estimate a low (4th) order IIR modelFf (q, θ) to
create the basis functionVk(q) in (10) for the general-
ized FIR filter parametrization of the feedforward con-
troller. During the estimation of the low order model
F̂ (q) also an estimate of the expected time delaynk

in (11) was performed and was found to benk = 16.
The identification results of the 4th order IIR model
Ff (q, θ) is shown in Figure 5. From Figure 5 it can be
observed that the 4th order modelFf (q, θ) picks two

resonance modes ofH(q)
G(q) . The reason only 4th order

model Ff (q, θ) is estimated is thatFf (q, θ) is only
used to create the basis function, and a high accurate
model is not necessary.

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

Frequency [HZ]

A
m

pl
itu

de
[D

B
]

Fig. 5. Amplitude of spectral estimate of−H(q)
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5.2 Implementation of feedforward ANC

After initialization, the information of the filter̂G(q),
the basis functionVk(q) and the time delaynk was
used to perform a recursive estimation of the general-
ized FIR filter based feedforward compensatorF (q).
To illustrate the effectiveness of the recursive general-
ized FIR feedforward compensator, data has been gen-
erated over 1.5 seconds, where a sound disturbances is
generated into the air-duct during the first half second
and the last half seconds, and is turned off in between.
For the generalized FIR filter onlyN = 5 parameters
θi, i = 1, . . . , 5 in (16) were estimated for the con-
struction of the feedforward compensator. With a 4th
order basis functionVk(q), each parameterθi ∈ R1×4

and this amounts to IIR feedforward compensator of
order 20.

The performance of the generalized FIR filter is con-
firmed by the estimates of the spectral contents of
the microphone error signale(t) plotted in Figure 6.
The spectral content of the error microphone signal
has been reduced significantly by the generalized FIR
filters in the frequency range from 40 till 400Hz.
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Fig. 6. Estimate of spectral contents of error micro-
phone signale(t) without ANC (solid) and with
ANC using 20th order generalized FIR filter (dot-
ted)

To illustrating the stability and convergence proper-
ties of the recursive least square (RLS) estimation,
the norm of parameters‖θi‖ for i = 1, . . . , 5 is
shown in Figure 7. Since each parameterθi in (16)
is of dimensionR1×4, only ‖θi‖ for i = 1, ..., 5 is
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plotted to provide 5 lines for each multidimensional
parameter. From Figure 7, it can be observed that
the parameters‖θi‖ converge to a steady state very
quickly which validates an important property for the
recursive least square (RLS) algorithm. Moreover, the
parameter values remain constant in the presence of
lack of excitation at the middle part of the experiment.
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Fig. 8. Evaluation of error microphone signal before
ANC (top) and with ANC using 20th order gen-
eralized FIR filter (bottom)

The final conformation of the performance of the ANC
has been depicted in Figure 8. From Figure 8 it can
be observed that, even though the sound disturbance
excitation drastically reduces fromt = 0.5 andt = 1
seconds during the experiment, the error microphone
signal is not identically zero because of the measure-
ment error of the inlet and outlet microphones. Fur-
thermore, the estimation of the parametersθi does
not diverge during this time interval due to the robust
property of the RLS algorithm. The significant reduc-
tion of the error microphone signal observed in the
time traces and the norm of the signals displayed on
the right part of Figure 8 indicates the effectiveness
of the generalized FIR filter for feedforward sound
compensation.

6. CONCLUSIONS

In this paper a new methodology has been proposed
for the active noise control in an airduct using a
feedforward compensation that is parametrized with
a generalized FIR filter. The feedforward filter with

the linear parametrization is an IIR filter that can be
estimated via filtered recursive least squares (RLS)
techniques with variable forgetting factor. The design
is evaluated on the basis of an experimental active
noise cancellation experiment and shows significant
sound reduction. The RLS is robust with respect to
lack of disturbance excitation by the adaptation of the
forgetting factor in the recursive estimation.
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